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ABSTRACT

Proactive streaming analytics continuously extract real-time busi-

ness value from massive data that stream in data centers or clouds.

This requires (a) to process the data while they are still in motion;

(b) to scale the processing to multiple machines, often over various,

dispersed computer clusters, with diverse Big Data technologies;

and (c) to forecast complex business events for proactive decision-

making. Combining the necessary facilities for proactive streaming

analytics at scale entails: (I) deep knowledge of the relevant state-

of-the-art, (II) cherry-picking cutting edge research outcomes based

on desired features and with the prospect of building interoperable

components, and (III) building components and deploying them

into a holistic architecture within a real-world platform. In this

tutorial, we drive the audience through the whole journey from (I)

to (III), delivering cutting edge research into a commercial analytics

platform, for which we provide a hands-on experience.

CCS CONCEPTS

• Information systems → Online analytical processing en-

gines; Streammanagement;MapReduce-based systems; • Soft-

ware and its engineering→ Software design engineering.
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1 BACKGROUND – USE CASES – OBJECTIVES

At an increasing rate, numerous industrial and scientific institu-

tions face business requirements for real-time, proactive analytics to

derive actionable items and timely support decision-making proce-

dures. In the stock market domain, proactive analytics enable timely

reaction to opportunities or risks. In maritime surveillance, volumi-

nous position streams of thousands of vessels, satellite images or

acoustic signal streams are fused to predict illegal activities [12].

Big Data platforms such as Apache Flink or Apache Spark have

designed streaming APIs to facilitate hotizontally scaling-out, i.e.,

parallelizing, the computation of streaming analytics tasks to a

number of Virtual Machines (VM) available in corporate computer

clusters or the cloud. Useful as these facilities may be, they only

focus on a narrow part of the challenges that proactive analytics

workflows need to encounter in streaming settings.

First, Big Data platforms currently provide none or suboptimal

support for proactive streaming analytics tasks engaging Machine

Learning (ML) operators. The major ML APIs they provide, such

as MLlib or FlinkML, do not focus on parallel implementations of

streaming algorithms. The same holds for proactive analytics via

forecasting complex business events [21].

Second, Big Data platforms by design focus only on horizontal

scalability as described above. To materialize additional types of

scalability, such as vertical and federated scalability, stream summa-

rization techniques come in handy. Surprisingly, Big Data platforms

have no libraries or APIs dedicated to stream summaries.

Third, Big Data technologies are significantly fragmented. De-

livering continuous proactive analytics at scale requires optimizing

the execution of workflows over a variety of Big Data platforms at

a number of, potentially geo-dispersed, clusters or clouds.

Motivated by the above, the goals and objectives of this tutorial

are: (1) to provide a comprehensive study of the state-of-the-art on

(a) distributed complex event forecasting, (b) stream summariza-

tion over distributed settings, (c) inter-cluster and cross-platform

optimization, (2) to reason about cherry-picking state-of-the-art

techniques to build respective architectural components, (3) to pro-

vide a hands-on experience on integrating these components into

a generic architecture, incorporated in a commercial analytics plat-

form, used in real-world use cases. All components used in this

tutorial are provided open-source by the authors ( footnotes 1 to 4).
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2 CONTENT AND ORGANIZATION

Our presentation covers the topics cited next, complemented with

analytical examples, insights and lessons learned:

Introduction

• Motivation, Use Cases and Challenges

(Geo-)Distributed Proactive Stream Analytics

• The Case for Stream Synopses [4, 17, 39, 49]

• Complex Event Forecasting (CEF) [20, 21, 34, 46]

• Inter-/Intra-cluster Optimization [1, 5, 9, 16, 28, 35, 48, 53]

Cherry-picking Research & Building Components

• Synopses-as-a-Service Paradigm [11, 39]

• Options for Distributed CEF Architecture [22, 33]

• Integrating Multi-cluster, Cross-platform & Adaptive Optimiza-

tion Concepts [13, 25, 27, 35, 36]

Hands-on Experience

• System Architecture

• Workflow Construction & Execution

Open Issues & Takeaways

3 STATE OF THE ART

3.1 Stream Summarization

Synopses provide approximate answers, with accuracy guarantees,

to popular analytic operators [2, 24, 32], simultaneously reducing

processing and memory loads. In that, they can boost horizontal

scalability provided by Big Data platforms, at scale. However, in

(geo-)distributed streaming analytics there are two additional types

of scalability that are not covered by Big Data platforms whatsoever.

Vertical scalability, i.e., scaling the computation with the number

of processed streams, is also a necessity. Additionally, federated

scalability involves communication reduction in geo-distributed

streaming settings composed of multiple, potentially geo-dispersed

computer clusters. Here, synopses aid in scaling the computation

by allowing the communication of compact data summaries.

Apache DataSketches [4] and Stream-lib [50] are software li-

braries of stochastic streaming algorithms and summarization tech-

niques. Although, these libraries are detached from paralleliza-

tion aspects, their functionality can be used in Big Data platform

programs. However, horizontal scalability configuration is left to

the programmer. SnappyData’s [49] stream processing is based on

Spark and incorporates a limited set of synopses serving simple

SUM, COUNT and AVG queries. Similarly, StreamApprox [17] offers

only sampling as a pipeline operator. Thus, these are deprived of

vertical scalability features and federated scalability provisions.

The prominent work of Condor [39] elegantly optimizes the par-

allel computation of stream summaries, still neglecting aspects of

horizontal scalability, as well as vertical and federated scalability.

Table 1 summarizes our above discussion.

3.2 Complex Event Forecasting

Complex Event Recognition (CER) is one of the technologies with

increased popularity [3, 34] when the main goal is to first learn and

then detect interesting activity patterns occurring within a stream

of events, coming from on-field devices or sensors. Complex Events

must be detected with minimal latency. As a result, a significant

body of work has been devoted to computational optimization is-

sues. Less attention has been paid to forecasting event patterns

[34], despite the fact that forecasting has attracted considerable

attention in various related research areas, such as time-series fore-

casting [18], sequence prediction [19, 23, 37, 38], temporal mining

[14, 15, 40, 44] and process mining [8]. Consider, for example, credit

card fraud management in the financial domain [7], where the de-

tection of suspicious activity patterns of credit cards must occur

with minimal latency that is in the order of a few milliseconds. The

decision margin is extremely narrow. Being able to forecast that a

certain sequence of transactions is very likely to be a fraudulent

pattern provides wider margins both for decision and for action.

For example, a processing system might decide to devote more

resources and higher priority to those suspicious patterns to ensure

that the latency requirement will be satisfied. The need for Com-

plex Event Forecasting (CEF) has been acknowledged though, as

evidenced by several conceptual proposals [6, 30, 31]. The few pre-

vious concrete attempts at CEF [43, 45, 47] have various limitations.

Either they do not even target complex event forecasting, focus-

ing instead on simple event forecasting, or they employ relatively

simple probabilistic models that cannot uncover deep dependencies.

3.3 Inter-cluster/Cross-platform Optimization

A crucial feature for optimizing streaming workflows involves

the ability to adapt a currently deployed workflow execution plan

at runtime. This is due to the high volatility of streaming work-

loads that can rapidly render a previously preferable execution

plan to severely suboptimal. Cross-platform systems have evolved

[5, 9, 16, 28, 42], some incorporating their own optimizers. Nonethe-

less, their focus is on batch, instead of streaming settings [26] and

rarely consider runtime adaptation scenarios [1]. Even systems

that support stream processing, are restricted to a single streaming

platform [16, 29]. Few stream processing systems [1, 48, 52] have

touched upon aspects of adaptive re-scaling of streamingworkflows,

focusing on a single engine as well. Table 2 summarizes the stream

processing and optimization capacity of major relevant frameworks.

Optimizing in geo-distributed, cross-platform streaming settings

is a totally different business because optimization must support

in a unified way, across platforms and throughout the network of

clusters, the following features: (a) adaptation and migration of a de-

ployed workflow/query plan at runtime, (b) instant new execution

plan generation for arbitrarily complex workflows and networks,

and (c) lightweight and incremental performance modelling.

4 CHERRY-PICKS FOR S/W COMPONENTS

Synopses Component: To tackle the gaps left by the aforemen-

tioned efforts, we illustrate a new synopses maintenance para-

digm, namely Synopses Data Engine-as-a-Service (SDEaaS)1 [10,

11]. SDEaaS synthesizes the software technology concepts used

in Stream-lib [50] and includes a rich set of synopses integrat-

ing [4, 17, 49]. It better handles CPU core allocation compared to

these works mainly because synopses can be maintained by a single

running job in one or more clusters. SDEaaS accounts for all three

types of required scalability and can accept on-the-fly requests for

1https://sdeaas.github.io
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Scalability→

Synopses Approach↓
Horizontal Vertical Federated

DataSketch [4]
�

(Spark Integration)
� �

Stream-lib [50] � � �

StreamApprox [17]
�

(Stratified Sampling)
� �

SnappyData [49]
�

(Simple Aggregates)
� �

Condor [39] � � �

SDaaS [11] � � �

Table 1: Stream Summarization & Scalability

Features→ Stream Synopses Optimization Proactive Analytics

System↓ Support Support
Cross-

Platform

Multi-

Cluster

Runtime

Adaptation

Parallel/

Distributed ML

CEF

Musketeer [28] � � � � � � �

IReS [5] � � � � � � �

BigDawg [9]
�

(S-Store)
� � � � � �

Rheem [16]
�

(JavaStreams)
� � � � � �

INforE [35] � � � � � � �

SheerMP [25] � � � � � � �

Wayeb [21, 46] � � � � � � �

Table 2: Required Features for Proactive Streaming Analytics at Scale

plugging-in new synopses techniques into its library and/or main-

taining synopses on demand. It also allows for ad-hoc or continues

queries on maintained summaries even in cross-platform scenarios.

CEF Component: Tackling shortcomings of previous CEF and

CER approaches, we illustrate a CEF framework that is both formal

and easy to use, thus avoiding confusion about how patterns should

be written and which operators are allowed [34]. Our framework

(Wayeb2) is formal, compositional and as easy to use as simply

writing regular expressions. The user declaratively defines a pattern

and provides a training data stream. Wayeb can also uncover deep

probabilistic dependencies in a stream by using a variable-order

Markov model. Additionally, Wayeb can perform various types of

forecasting, both for simple events (i.e., predicting what the next

input event might be) and Complex Events (events defined through

a pattern). Thus, it overcomes restrictions of previous methods.

Optimizer: We illustrate an optimizer, namely SheerMP [25] 3, that

unifies the optimization of multi-cluster, cross-platform streaming

workflows by synthesizing and significantly extending virtues of

prior work, providing: (i) both rapid, best-effort optimization ap-

proaches [41, 53] and more time-consuming algorithms guarantee-

ing to devise optimal plans [27], (ii) seamless runtime adaptation/job

migration [1], (ii) computationally inexpensive, incremental cost

model construction [36], (iii) lightweight statistics collection [51].

5 HANDS-ON RAPIDMINER STUDIO

The constructed components are generic enough to be used in iso-

lation, without tying them to a specific platform. However, to boost

proactive analytics at scale one needs to be able to concurrently ex-

ploit their advanced features in application workflows. To achieve

that, we incorporate the involved components into a commercial

platform, namely RapidMiner studio. The streaming extension we

provide to the Studio4 enables analysts to easily design proactive

streaming analytics workflows without coding. This is achieved by

encapsulating the constructed components as operators represented

by boxes. The Optimizer Component extends RapidMiner Studio by

a so-called “Nest” operator. The Nest operator is a sub-process op-

erator, which means that families of operators (from the Synopses

Data Engine, CEF Components and stream transformations pro-

vided by Big Data platforms) can be placed inside it. Having placed

a Nest operator in a workflow, the user can double click on it and

then encapsulate other operators/boxes. This is done in a GUI via

2https://github.com/ElAlev/Wayeb
3https://bitbucket.org/infore_research_project/optimizer-release/
4https://bitbucket.org/infore_research_project/rapidminer-extension-streaming-
release

drag and drop actions and operators can be connected by drawing

arrows to define the data flow. We use a dictionary to map platform-

agnostic operators of designed workflows to physical operators

for the supported platforms and networked clusters. Apache Kafka

connection objects are used to fuse operator input/outputs. The

hands-on experience on the streaming extension of RapidMiner Stu-

dio comes in the form of designing and parameterizing workflows

for application scenarios mentioned in Section 1. Sample Videos:

Maritime Use Case & Forecasting (https://youtu.be/q2wxlgLjjiQ),

Financial Use Case & Optimization: (https://youtu.be/68zyJNoEjiU)

6 OPEN ISSUES

Stream Summarization. The approach of SDEaaS [11] is, in principle,

complementary to Condor [39]. On one hand, SDEaaS fosters sim-

ple, per stream or round-robin parallelization schemes. On the other

hand, Condor lacks support for vertical and federated scalability.

Combining Condor with SDEaaS, preserving their advantages, is

a non-trivial task future research should encounter. Proving their

portability in other Big Data platforms also remains an open issue.

Complex Event Forecasting. CEF currently works by assuming the

complex events are defined via patterns. However, often analysts

may have labels for complex events without having a definition for

them. How one could forecast such complex events, even in the

absence of event definitions (e.g., by first extracting those defini-

tions from the existing labels and then performing CEF as usual)?

Moreover, CEF could be used for pattern-driven lossless stream com-

pression, to minimize the communication cost, which is a severe

bottleneck for geo-distributed CER [34]. The probabilistic model

that CEF constructs should be pushed down to the event sources,

to compress each individual stream before transmitting to a central

source. This is a novel compression concept not considered so far.

Optimization. A major system research direction involves the fact

that job migration from one Big Data platform to another is not

supported. Even unifying programming models such as Apache

Beam, currently establish no clear equivalence between the stream-

ing APIs of popular Big Data platforms. Additionally, SheerMP [25]

employs an operator-based scheme while Jarvis [13] optimizes mi-

gration via clever data partitioning over multiple sources, but a

single processing cluster. Replicating operators, simultaneously par-

titioning their inputs over multiple clusters and platforms remains

an open issue. Finally, SheerMP does not optimize CEF operators,

but the Wayeb Optimizer [46] specializes the generic optimization

approach of SheerMP. Integrating CEF optimization support to

SheerMP would be an important extension left for future work.
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