Tutorial:
Complex Event Recognition in the Big Data Era

Nikos Giatrakos!, Alexander Artikis%3, Antonios Deligiannakis?,
Minos Garofalakis*

Technical University of Crete, Chania, Greece
2University of Piraeus, Greece
SNCSR Demokritos, Athens, Greece
4ATHENA Research & Innovation Center, Athens, Greece

Slides available at:

« Rapid growth due to several information-
generating technologies, such as mobile

computing, sensornets, and social networks The data deluge

ANDHOW T0 HANOLE T:A 14-PAGE SPECIAL REFORT

* How can we cost-effectively manage and
analyze all this data...?

FOURTH
PARADIGM

SCIENCE IN THE
PETABYTEERA yym

Big Data Challenges: The Four V’'s (... and one D)

Volume: Scaling from Terabytes to Exa/Zettabytes
Velocity: Processing massive amounts of streaming data

Variety: Managing the complexity of multiple relational and
non-relational data types and schemas

Veracity: Handling inherent uncertainty and noise in the data

Distribution: Dealing with massively distributed information

Existing Big Data Platforms ‘

Large computing clusters — scale ’
out to 1000s of commodity nodes §

Map/Reduce, Hadoop, Spark i@hadmmp

Simple programmatic models, scalable,

replication for robustness Spo’."{(‘z

BUT: Batch processing of static data
Focus on relational model (tables, SQL)

Storm/Heron, Flink, Spark Streaming
Simple, scalable dataflow processing
Hard to map from higher level logic and
complex analytics tasks!

Complex Event Recognition (Event Pattern
Matching, CEP)

* Input
« Massive streams of time-stamped Simple Derived Events
(SDEs) coming from (distributed) sources

« Output
* Complex/Composite Events (CEs)— collections of SDEs
and/or CEs satisfying some pattern
« Patterns defined using variety of constraints
(temporal, spatial, logical, ...)

« Not restricted to simple aggregation!

. Complex, multi-level CE hierarchies

« Inherent uncertainty (SDEs, patterns)

Complex Event Recognition (Event Pattern
Matching, CEP)

INPUT B RECOGNITION B Ouvreur B
~-Ooog--- [Event --0000 -
Streams of SDEs /| Recognition

OO0 --- System 0000 ---

Distributed CER
Event
ster/ . ' Streams
\@
/ @
- ' . o N

&9 Local

Complex Event Recognition for
Credit Card Fraud Management

Input:

» Credit card transactions from all over the world.

Output:

» Cloned card — a credit card is being used simultaneously in
different countries.

» New high use — the card is being frequently used in
merchants or countries never used before.

» Potential batch fraud — many transactions from multiple
cards in the same point-of-sale terminal in high amounts.

Complex Event Recognition for
Credit Card Fraud Management

Fraud must be detected within 25 milliseconds.

v

Fraudulent transactions: 0.1% of the total number of
transactions.

v

v

Fraud is constantly evolving.

v

Erroneous transactions, missing fields.

Complex Event Recognition for Maritime Surveillance

Fast Approach

» A vessel is moving at a high speed ...

» towards other vessels.

Possible Rendezvous

» Two vessels are suspiciously delayed ...
> in the same location ...

» at the same time.

Complex Event Recognition for Maritime Surveillance

‘Sea’ of information:

» >200,000 vessels operate globally.

» Position signals need to be combined with other data streams
» Weather forecasts, sea currents, etc.

» ... and static information
» NATURA areas, shallow waters, coastlines, etc.

Complex Event Recognition for Maritime Surveillance

‘Sea’ of noisy information:
» GPS manipulation has risen 59% over the past two years.
» There is a 30% increase over the past two years of vessels
reporting a false identity.
» 27% of vessels do not report position at least 10% of the
time.
» 19% of vessels are repeat offenders.

This Tutorial: CER + Big Data (4Vs + D)

Introduction

« Complex Event Recognition Languages
« Handling Uncertainty

» Scalable (Parallel and Distributed) CER

e Outlook

Part 1:
Complex Event Recognition Languages

Language Requirements: Credit Card Fraud Management

» Input:
» |nstantaneous events.
» Context information.

» Qutput: durative events.
» Relational & non-relational events.
» Limited temporal distance between the events comprising
fraudulent activity ("WITHIN’ constraint).
» Event sequences.
» Spatial reasoning for some patterns.

Language Requirements: Maritime Surveillance

> Input:
» Instantaneous events.
» Durative events.
» Context information.

» Output: durative events.

» The interval may be open.

» Relational events.

» No limit on the temporal distance between the events
comprising the composite activity.

» Concurrency constraints.

» Spatial reasoning.

» Event hierarchies.

Event Algebra

Core components of an event algebra with point-based semantics:

» Sequencing (SEQ) lists the required event types in temporal
order — eg SEQ(A, B, C).

» Kleene closure (+) collects a finite yet unbound number of
events of a particular type. It is used as a component of SEQ
— eg SEQ(A, B+, ().

» Negation (" or !) verifies the absence of certain events in a
sequence — eg SEQ(A, !B, C).

» Value predicates specify constraints on the event attributes

» Aggregate functions max, min, count, sum, avg.

Event Algebra

» Composition refers to:
» Union of constraints — eg SEQ(A, B, C) USEQ(A, D, E).
» Negation of a sequence — eg ISEQ(A, B, C).
» Kleene closure of a constraint — eg SEQ(A, B, C)+.
» Windowing (WITHIN) restricts a CE definition to a specific
time period.

Event Selection Strategies

» Strict contiguity: No intervening events allowed between two
sequence events in the pattern.

» Partition contiguity: Same as above, but the stream is
partitioned into substreams according to a partition attribute.
Events must be contiguous within the same partition.

» Skip-till-next-match: Intervening events are allowed, but only
non-overlapping occurrences of SEQ are detected. E.g. for
SEQ(A, B, C) and a3, by, by, c1, only ay, by, c1 will be detected.

» Skip-till-any-match: Most flexible (and expensive). Detects
every possible occurrence. For the previous example, ai, by,
will also be detected.

Example

Fishing pattern:
» A vessel slows down, ...
» begins a series of turns, where, for each pair of successive

turns, their difference in heading is more than 90 degrees, ...

» and subsequently the vessel stops moving at a low speed.

PATTERN SEQ(lowSpeedStart a, turn+ b, lowSpeedEnd c)
WHERE skip-till-next-match

AND vesselld

AND b]i]. heading—b[i—1].heading > 90

WITHIN 21600

Event Calculus

» A logic programming language for representing and reasoning
about events and their effects.
» Key components:
> event (typically instantaneous).
» fluent: a property that may have different values at different
points in time.
» Built-in representation of inertia:
» F =V holds at a particular time-point if F =V has been

initiated by an event at some earlier time-point, and not
terminated by another event in the meantime.

Run-Time Event Calculus (RTEC)

Predicate

Meaning

happensAt(E, T)
initiatedAt(F =V, T)

terminatedAt(F =V, T)
holdsFor(F =V, 1)

holdsAt(F =V, T)
union_all([Jz,...,Jn], 1)
b Jn]1 I)

relative_complement all

AR

intersect all([J;, ...

Event E occurs at time T

At time T a period of time for which
F =V is initiated

At time T a period of time for which
F =V is terminated

| is the list of the maximal intervals
for which F =V holds continuously

The value of fluent F is V at time T
T iU o Udp)

F=l i N v Td)
L= e L)

Example

CE definition:

initiatedAt(gap(Vessel) =true, T)
happensAt(gapStart(Vessel), T),
holdsAt(coord(Vessel) =(Lon, Lat), T),
not nearPorts(Lon, Lat)

terminatedAt(gap(Vessel) =true, T) <
happensAt(gapEnd(Vessel), T)

CE recognition: holdsFor(gap(Vessel) = true, /)

Summary

» Various types of language ...

» Automata-based
» Logic-based
» Tree-based

» ... addressing different requirements.

» Some steps towards a systematic, formal comparison of
expressivity and complexity have been taken.

A. Artikis, A. Margara, M. Ugarte, S. Vansummeren, M. Weidlich. Complex Event
Recognition Languages: A Tutorial. DEBS, 2017.

Part 2:
Uncertainty Handling

Common Problems of Complex Event Recognition

» Limited dictionary of SDE and context variables.
> No explicit representation of oil spillage.
» Incomplete SDE stream.
» Sharp turn was not detected.
» Erroneous SDE detection.
» Slow motion was classified as stop.
» Inconsistent ground truth (CE & SDE annotation).

» Disagreement between (human) annotators.

Therefore, an adequate treatment of uncertainty is required.

Statistical Relational Learning

Improving performance
through experience

PROBABILITIES
Formal and Sound mathematical
declarative foundation for
relational reasoning under

representation uncertainty

Markov Logic Networks (MLN)

SYNTAX: weighted first-order logic formulas (w;, F;)

When input events SDE, and SDEg occur at T,
then the output event CE is initiated:

3.18 happensAt(SDE,. T) A happensAt(SDEg, T) = initiatedAt(CE, T)

SEMANTICS: (w;, F;) represents a probability distribution over possible

worlds

SDEs | weight of the i-th formula |
/

PY=¥|X=x]= Z}\) exp (Z w; mi(x, y))

7 AN

I Possible world: CEs | ’ Partition function l | number of satisfied groundings ‘

A world violating formulas becomes less probable, but not
impossible!

Event Calculus in Markov Logic Networks (MLN-EC)

INPUT) ' TRANSFORMATION) ' INFERENCE) Output O

Complex Compact
Event Knowledg Markov Logic Networks
Definitions e Base
Recognise
d Complex

Event Events

Calculus
Axioms

Simple
Event
Stream

MLN-EC: Probabilistic Inference

Marginal Inference:

» For all time points T, calculate the probability of each CE
being true (recognised), given all input SDEs (evidence)

P(holdsAt(CE, T)=true|SDEs)

» Marginal inference is #P-complete — approximate inference

» MC-SAT algorithm (Markov Chain Monte Carlo techniques
with SAT solver)

MLN-EC: Probabilistic Inference

Maximum a Posteriori (MAP) Inference:

» Find the world with the highest probability
Input: truth values for all input SDEs (evidence)

v

v

Output: truth values of the output CEs that maximise the
probability (recognition)

argmax (P(holdsAt(CE, T)|SDE5))
holdsAt(CE, T)

\4

MAP Inference is NP-hard — approximate inference

» Various methods: local search, linear programming, etc.

MLN-EC: Inertia

:' H -~ Eccrisp
05 - i
04 T T 5 T T T T T T ~ T T T T T T T T T D ‘l T T T
0 3 10 20 time »
initiation initiation termination
oo holdsAt(CE, T+1)« oo —holdsAt(CE, T+1)<«
[Initiation Conditions] [Termination Conditions]
oo —holdsAt(CE, T+1)«< oo holdsAt(CE, T+1)«<

—holdsAt(CE, T) A holdsAt(CE, T) A
- [Initiation Conditions] =3 [Termination Conditions]

MLN-EC: Inertia

0.5 1

Eccrisp

MLN—EC

0 A —
0 3 10 20 time »
initiation initiation termination
1.2 holdsAt(CE, T+1)< 0.7
Initiation Conditions]

—holdsAt(CE, T+1)<«=

Termination Conditions]

o0

—holdsAt(CE, T+1)<« oo holdsAt(CE, T+1)«<
—holdsAt(CE, T) A holdsAt(CE, T) A
—'[Initiation Conditions]

=3 [Termination Conditions]

MLN-EC: Inertia

- Eccrisp
.'-_ —— MLN-EC
05 : H
0 T T é T T T T T T A T T T T T T T T T D ‘I T T T
0 3 10 20 time »
initiation initiation termination
1.2 holdsAt(CE, T+1)< 0.7 —holdsAt(CE, T+1)<«
Initiation Conditions]
23

[Termination Conditions]
—holdsAt(CE, T+1)<«
—holdsAt(CE, T) A

oo holdsAt(CE, T+1)«<
—'[Initiation Conditions]

holdsAt(CE, T) A

X [Termination Conditions]

MLN-EC: Inertia

0.5 4
0 T T S T T T T T T A T T T T T T T T T D T T T T
0 3 10 20 time »
initiation initiation termination
1.2 holdsAt(CE, T+1)< 0.7 —holdsAt(CE, T+1)<«
[Initiation Conditions] [Termination Conditions]
oo —holdsAt(CE, T+1)« 2.3 holdsAt(CE, T+1)«<
—holdsAt(CE, T) A holdsAt(CE, T) A

- [Initiation Conditions] X [Termination Conditions]

MLN-EC: Inertia

i
0.5 4

10
initiation

initiation

1.2 holdsAt(CE, T+1)<«

Initiation Conditions]

o0

—holdsAt(CE, T+1)«<
—holdsAt(CE, T) A

—'[Initiation Conditions]

Eccrisp

MLN—EC

termination

0.7

—holdsAt(CE, T+1)<«=
Termination Conditions]
0.6 holdsAt(CE, T+1)«<
holdsAt(CE, T) A

X [Termination Conditions]

Summary

First-order logic & Probabilistic Graphical Models:

v Complex temporal patterns, with explicit time constraints.
Event hierarchies. Background knowledge. Usually provide a
formal Event Algebra.

« No lteration. Limited support for Windowing.

v Pattern uncertainty. Limited independence assumptions. Hard
constraints possible.

« Often training is required to assign weights to rules. Harder
(but not impossible) to express data uncertainty.

v MAP and approximate inference.

% Low (or unknown) throughput.

E. Alevizos, A. Skarlatidis, A. Artikis, G. Paliouras. Probabilistic Complex Event

Recognition: A Survey. ACM Computing Surveys, 2017.

Summary

Automata:

v lteration, Windowing, formal Event Algebra.

x Limited support for event hierarchies. No background
knowledge. Implicit time representation (hence no explicit
constraints on time attribute).

v~ Data uncertainty, both with respect to occurrence of events
and event attributes.

x Limited or no support for rule uncertainty. Too many
independence assumptions. No hard constraints.

v~ Support for confidence thresholds. High throughput values.

x Throughput figures come from experiments with simplistic
event patterns.

E. Alevizos, A. Skarlatidis, A. Artikis, G. Paliouras. Probabilistic Complex Event

Recognition: A Survey. ACM Computing Surveys, 2017

Part 3:
Scalable, Distributed Complex Event Recognition

How to scal
Sy s

o~

e CER in the Big Data Era

\\\\\\

Scaling out to
— Parallel Architectures: Computer Clusters/Grids, The Cloud
— Networked Settings: Dispersed Clusters, Multi-Cloud Platforms

https://en.wikipedia.org/wiki/Blue_Gene

Scalable - Distributed Complex Event Recognition

Why? Well, 1t's the Big Data Era
> Volume, Velocity, Variety, Veracity (Uncertainty)

Centralized Architecture
Sequential CER

INPUT > \ | OutpuT

- OOo - [x| 0OO0O0-
Streams/Queries i System i Recognised CEs

- 0O0o0 - | | ..0000 -

Scalable - Distributed Complex Event Recognition

Why? Well, 1t's the Big Data Era
> Volume, Velocity, Variety,

Centralized Architecture
Sequential CER

InPUT> OutpuT

- 0O000g- . --0000 -
Streams/Queries i Recognised CEs

| ...0000 -

Scalable - Distributed Complex Event Recognition
Clustered Architecture

Parallel CER
CER
INpPUT > 3 _ 3 OutpuT

- dOaf-- --0000 -

Streams/Queries i CER i Recognised CEs
0000 - ..0000 -
Tools Performance metrics

» Parallelism | crR | > Throughput

> Elastic Resource i i > CPU utilization

Allocation

Scalable Complex Event Recognition
Parallelization & Elasticity in state-of-the-art DSMSs:
> Horizontal Scalability in Stream Processing by design
» Facilities for Elastic Resource Allocation
» Fault Tolerance in message processing
» Popular Platforms: Apache Storm (Heron/Trident), Spark Streaming

CER Languages & CER Systems:
> High-Level CER Language Support
> Uncertainty-aware CER (sometimes)
> Support for various streaming operations (windowing etc.)

How to bridge the gap?

HackerBrucke Munich

https://en.wikipedia.org/wiki/Hackerbr%C3%BCcke

CER + modern DSMSs: Case Study Apache Storm £ storm

Storm Topology .

wege® ()T
Spout / % / G
\

O 3 :

000 &

Tasks

CER + modern DSMSs: Case Study Apache Storm £ storm

Sy

Open-Source Examples

Storm Topology

Tuple
>

CER Queries,
CER Operators

go here
(manually/custom
?Jutomation)

'~ EsperTech

Siddhi-CEP

000 &

Tasks

CER + modern DSMSs: Case Study Apache Storm £ storm
Storm Topology .

TupIe, *
CER Quetries, C / LER

CER Operators

go here
(manually/custom
iutomation)

Data Partitioning — Which task a tuple goes to?
» Shuffle Grouping: Random tuple distribution
> Fields Grouping: Partition based on field(s) — keys
> All Grouping: Replicate tuple to all tasks
> Custom: Define your own

000 &

Tasks

CER + modern DSMSs: Case Study Spark Streaminsq ‘IQZ
oar

Kafka .
p input data o] batches of batches of
ume stream ot Spark input data Spark | processed data
HDFS/S3 @, . .
— 5’| Streaming Engine 1]
Kinesis @

Twitter

DStream
RDD@t1 RDD@t2 RDD@t3

([(] (W]
> Transformations

> Window Operators OO0 Oog
> Output Operators /
[

v v v

Isz stream = Esperfech CER Siddhi- O P

o)

o
4—4—4—5
L =

Are we done?

CER Parallelization must guarantee Correctness:
Patterns in Centralized CER = Patterns in Parallel CER
Which parallelization scheme to use?

Criteria — Common Pitfalls

<-| Parallelization Granularity - Agility |->

Support for Event Selection Policies

10} paaN

Support for Event Consumption Policies

LLoad (Im)Balance

Support for Parallelization of Windows

uonedtunwiLLI07)/uonedliday

Categorization of Parallelization Approaches in CER &

Parallelization Granularity - Agility

Task Parallelism

Query-based

[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Recap on Event Selection Policies

>

Strict contiguity [Sc]: No intervening events allowed between two sequence
events in the pattern.

Partition contiguity [Pc]: Sameasabove, but the stream is partitioned into
substreams according to apartition attribute. Events must be contiguous
within the same patrtition.

Skip-till-next-match [Stnm]: irrelevant events are skipped until an event
matching the next pattern component is encountered. If multiple events in the
stream can match the next pattern component, only the first of them is
considered.

E.g.for SEQ(A, B, C) and ay, by, by, c1, only ai, b1, c1 will be detected.

Skip-till-any-match [Stam]: Most flexible (and expensive). Detects every
possible occurrence. For the previous example, a1, bz, ¢1 will also be
detected.

Event Consumption Policies

>

>

Consume [Co]: Single event is used in a single pattern match

Event f——)

Match

Reuse [Re]: Single event can participate in multiple pattern
matches as long as it remains valid e.g. given window

constraints

* *

Event [————<

Match

Bounded Reuse [BRe]: Single event can participate in up to N

pattern matches as long as it remains valid

*
Event 4N<>

Match

E.g. for SEQ(A, B, C) and ay, by, by, c1

skip-till-any-match & Reuse - (a1, b1, ¢1), (a1, b2, ¢1)

skip-till-any-match & Consume - (ai, b1, ¢1)

Generic Stream Window Types

> Time-based Windows [TiW]: The upper bound of the current
window is the current timestamp while the lower bound is
determined based on a given time-interval parameter.

> Tuple-based Windows [TuW]: The upper and lower bound of the
current window is determined so that it contains a certain amount of
tuples

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Query-based Parallelization [T-REX, JSS'12]

- 0O0O0oa -
Event Streams Static Index <)
g I [v ! i 3
Automaton Models
o
2
YYVY _vvy vVYy @
| Stateldx | Stateldx | ... | Stateldx | 2
: XTI’ $id i
% 4> [sequences|Sequences| ... [Sequences]
§ A A v VL VL v VL VL _—
[GeneratorIGenerator IGenerator]

YYY v vy

— 0000
E Subscribed Applications j Recogn. CEs
0000

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Operator-based Parallelization[Moeller et al, DEBS'09]

> Allows for multi-query and intra-query optimizations

» Intra-query optimizations - Query Rewriting:
- Commutativity: OP(A,B)=0P(B,A)~> OR
- Associativity: OP(OP(A,B),C)=0P(A,0P(B,C))~>0R, SEQ
- Evaluate operators with the rarest events first

> Multi-query optimizations - Operator Sharing

(I -—-- -
Event Streams 1
1
I:l I:l I:l I:l Operator 1 I Operator j
. 0000
: Recognised CEs
B 0000

Operator n

Operator i Automaton Instances

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Partition key-based Parallelization [Hirzel et al, DEBS'12]

> Claims CER as a special operator MatchRegex (Input Events)

> Includes a PARTITION BY (key) statement for key-based data
partitioning

» Partition-isolation and uniqueness of longest match for correctness

> Implemented as an extension of IBM System S

Operator Instance 1

Key-based
SEIit
- Ooog - % Operator Instance i 5| 0000 -
Event Streams E 9 Recognised CEs
Q
perator Instance

Partition key-based Parallelization - Examples

S & Calleel
%Cg) CallEvent %% Partition By
Caller (Caller ID)
Q) Callee n
:’%C“ i’ location

u éu pdates
<+
2 l’:

(2,
~ B
e $

Partition By
(User ID)

————————1—————————

Partition By = »:?:
(Area ID)

Pattern-sensitive Partition-based Parallelization
[Mayer et al, DEBS'16]

>

>

>

>

Introduces pattern-sensitive data partitioning apart from key-based
Partition Start: e>BOOL Partition End: (partition, e)>BOOL

New event may start, be part of, or terminate a partition

No partition isolation - replication of event to multiple partitions
Can be used to parallelize sliding windows!

Operator Instance 1

Pattern-
sensitive Split

Operator Instan

~OoOog - .g sg ..0000 -
Event Streams % aq_) Recognised CEs
0000 - = = |- --O000 .-

perator Instance

Pattern-sensitive Partition - Examples

w . .
1 Window slides
W)
— Ws
|_'_ W
Overlapping
Spatiotemporal «?
3 Partitions P 2.
o ~ ™
< LT ST ~ 7 . S
B c 2 , e s\ /,a-;\-"l'—~- -~ \\“ D
o /S X S \ o &
0 .= h \ = 0Q
oo / » \ h o v
a = i m = \ / S om
()] 1 1 7 = 5 -
[y B ‘\ — : // (‘<D >0
— = \ \ 'l ’ " O
b @ / . o
wn o
w ”
>

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

State-based Parallelization [Balkesen et al, DEBS'13]

>

>

>

>

Qodad %1
..., €4,e3,e2,el E
oood @ .., (a3), (a1)

NFA states (A,B,...)>Processing Units (PUs), NFA edges - Pipelines
Event type-based data partitioning

Filtering and predicate evaluation per state

Pipeline the results among states on NFA structure

Evaluation load towards final state

FPGAs [Woods et al, PVLDB"10]

GPUs [CudaCEP,JPDC'12] Column-based Delayed Processing (CDP)

Event type -

..., (a3b4)
based Etlit

m'\‘ 0000

C @ Recognised CEs
(a3b4ficl) 0000

.., (a3f1) ‘

- (a3), (al

_[

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Categorization of Parallelization Approaches in CER

Task Parallelism

Query-based
[T-REX, J55'12]
|

Operator-based
[Moeller et al, DEBS'09]

Partition-based
[Hirzel et al, DEBS'12]
[Mayer et al, DEBS'16]

State-based
[Balkesen et al, DEBS'13]

Data Parallelism

Run-based
[Balkesen et al, DEBS'13]

Graph-based
[Mayer et al, DEBS'16]

Hardware-based
[Woods et al, PVLDB'10]
[CudaCEP, JPDC'12]

A

Run-based Parallelization[Balkesen et al, DEBS'13]
> Split stream into overlapping batches of B size
> Size of overlap S = maximal_match_length-1 < B/2
» Assign a batch to one PU

> A PU detects all matches that start in the first B--S events in a
batch

» Batch-based data partitioning - Load Balancing

N=10, S=3 time

&

T e o
'

PU1- § PU2- § PU3 -
Operator Instance 1 | Operator Instance 2 | Operator Instance 3

Run-based Parallelization[Balkesen et al, DEBS'13]
> Split stream into overlapping batches of B size
> Size of overlap S = maximal_match_length-1 < B/2
» Assign a batch to one PU

> A PU detects all matches that start in the first B--S events in a
batch

» Batch-based data partitioning - Load Balancing

N=10, S=3 time

IIII:I I o o E][][]E] E][][]E(] RxEEE N IIII 1

@ @‘ @
i/

PU1- ‘ PU2 - ‘ PU 3 -
Operator Instance 1 Operator Instance 2 | Operator Instance 3

3
.3

No one size fit all solution!

Task Parallelism Data Parallelism

Query- Operator- | Partition Pattern State- Run- Hybrid

Criterion based based Key-based sensitive based based

Sc
Pc

Stnm

Selection
Policies

Stam
Co
Re

BRe

ANV

Cconsumptio
n
Nallaiaa

Tuw
Tiw
LB

Rep/
Comm

Window
Parallel

X XX X[CLAXCLL
d0

% X L% % XX X
x XX X[CCLLLLS
RN RN ENE NN RN

Agility

X XX X[CULLCLQ
CRXX[CL XX X

Provisioning/statistics collection |

L}

T—

Measure Analyze

« (Elasticity) »

Actuate Plan

4

Operator Migration

Operator Placement

Luoneldepv uolezl|a|jeled

t

.

Elastic Resource Allocation in CER — FUGU Approach
[Heinze et al, DB3@VLDB ‘13, DEBS'14]
Key Concepts
> First Fit Bin Packing for Operator Placement «
> Elastic, Workload Unaware, Resource Allocation
» Local & Global Threshold-based Approach
» Reinforcement Learning Approach

Q5=1
Q1=6 ||| @3=5
PU1 PU2

= e

Elastic Resource Allocation in CER — FUGU Approach
[Heinze et al, DB3@VLDB ‘13, DEBS'14]

Key Concepts

> First Fit Bin Packing for Operator Placement
> Elastic, Workload Unaware, Resource Allocation «

» Threshold-based
Approach

» Reinforcement

Learning Approach
- Look up table
describing “benefit”
of each action based
on recent experience

“ oge .
Utilization

Upper T > N\
Scale Out / \/\
Lower T 91 \1

Scale In >
Time
Utilization Scale In No Action Scale Out
80% 0.28 0.7 0.88
90% 0.28 0.5 0.9
100% 0.1 0.4 1.0

Elastic Resource Allocation in CER — Queueing Models
[Mayer et al, IEEE BigData'14]

Key Concepts
> Workload-, Latency-, Load-shedding Aware Scheme

» Choices based on probabilistic buffer limit (BL)
Incoming PU 1 Outgoing

Event Queue Q Event Queue
OOo0no 0000
Event Streams < 5 PUI Recognised CEs
[[\ 0000
PUC Exponential/

deterministic departures

Exponential arrivals]
C serving PUs

C&C-1

Yes C&C+1 Yes
W P=P(Q(t)<BL)<P, .. <
? N P>P » Return C

(0] last thres

Elastic Resource Allocation in CER — Time Series-based
[Zacheilas et al, IEEE BigData’15]

Key Concepts

> Monitor event input rate and processing latency
> Predict their values (Gaussian Processes, SVM, NNs)
» Construct state graph and compute shortest path

Cost
O<T

Init

W1 W2 ’
1PU ></.9__
T

Cost(k PUs>A<k PUs)

WH
/1PU/

)O

7 Last
Cost=0

k PUs

Lookahead Time Horizon (H)

Scalable - Distributed Complex Event Recognition

Why? Well, 1t's the Big Data Era
> Volume, Velocity, Variety, Veracity

Centralized Architecture
Sequential CER

INPUT > \ | OutpuT

o o [x| 0OO0O0-
Streams/Queries i System i Recognised CEs

- 0oog - |0000 -

Scalable - Distributed Complex Event Recognition
Clustered Architecture

Parallel CER
CER
INpPUT > 3 _ 3 OutpuT

- dOaf-- --0000 -

Streams/Queries i CER i Recognised CEs
0000 - ..0000 -
Tools Performance metrics

» Parallelism | crR | > Throughput

> Elastic Resource i i > CPU utilization

Allocation

Scalable - Distributed Complex Event Recognition
Networked Architecture: Geographically Distributed CER

Local
Distributed CER Event
per CIuster m Streams
:Q n m Ooog %
0ooo % o

> Business User Poses CER queries (busmess logic)
> The business logic is independent of geographic locations
> Does not specify which operations are performed at each site
> Goal: Use business logic and perform “efficient” CER
> Data Centralization often not possible in Big Data Applications

Key Ingredients for Distributed CER in Big Data
Networked Architecture: Geographically Distributed CER

o & Local
Distributed CER & Event
per CIuster/ ' Streams
0ooo

%
> | Tools/Optimizations for reducing data exchange \
between clusters

> Architectures that support these tools

> An optimizer: decide best way to distribute business logic
given tools & architecture

Tool 1 for In-Situ Processing: Push-Pull Paradigm

Key Concept: Do not transmit frequent events, unless rare events
occur. May increase latency but decreases network cost

Rare Event >

>
Frequent AND

Event i’

Decreases Network Cost

Increases Latency

Increase Buffer Requirements (for cached
events that may be pulled later)

Same idea can speed up CER WITHIN a
cluster [Kolchinsky et al, DEBS'15]

Example: Different ways of evaluating AND

el @]
I
e2 AND Q2 AND € -
e3
3 AND 02 AND
AND
e3
e3is pulled when e2 is pulled when el appears

el and e2 appear e3is pulled when el and e2 appear

Push-Pull Approach for CER [Adkere et al, PVLDB'08]

3 4
Operator Graph ©
Single site E g
a 2
| O 8
! 2
: Q
)
o Comm. cost
Key Ideas:

> All operators evaluated at a central site/cluster
> Data pushed/pulled to central location based on desired

optimization criteria
> Bandwidth Cost, Latency, Available Memory

> DP + Greedy Algorithms provided

Sufficient for Big Data CER?
» Processing not actually pushed inside the network

> May not be suitable for large scale distributed topologies

Tool 2: Distributed Function Monitoring (DFM)

Key Idea:
» Define a function f() over the data of different clusters
> Communicate only when function f() crosses a threshold

Should These
Clusters Commumcate?

Cluster Data
E Apply f()
on Vector

/ \@/

N .
oooo %}%

Tool 2: Distributed Function Monitoring (DFM)

Key Idea:
» Define a function f() over the data of different clusters
> Communicate only when function f() crosses a threshold
» Definition of function depends on desired task
» Simple aggregates of data cross a threshold (i.e., SUM)
» Event frequency statistics have changed significantly
(i.e., Cosine Similary, Pearson Coefficient etc)
> The global model of the data has changed significantly
(Distributed Machine Learning)
> The variance of some data has changed significantly
> And many more...

Key Tool: Geometric Monitoring

> Generic tool

> DFM problem much simpler for linear functions

> One may derive more efficient solutions for specific functions

Basic Tool: Geometric Monitoring (GM) - Setup

Continuous Tracking of
f(v(t))>T or f(v(t))<T N v
(v(t) (v() ﬁ () zllew(t) }

Coordinator

vi(t):local vector(s)
maintained at each
site at time t

/ >N

stream(s)
> Track if f(v(t))>T

> Works for any f() over the (weighted) average of local v(t)

Basic GM Scheme [Sharfman et al, SIGMOD'06]

> e(t): Last known average vector

> Sites check f() within
B(e+ Avy/2, ||Avi||/2)

» If union of B(e+ Avy/2, ||Avi||/2)
crosses the threshold, v(t) may
have crossed the threshold

|_
A
e
—
()]
—
(]
<
2
©
(O]
—
<<

Key Points

>
>

Monitoring done in a distributive way
Sites perform local tests to see if f() may have crossed T
> Test: find min/max of f() over a sphere (costly!)

Many improvements have followed...

GM Scheme — Key Advances

Key Problems & Solutions (at a glance)

> Make the local test much simpler and more efficient

» Safe Zones [Keren et al, TKDE'12]
» Check if e+ Ay, is inside a “safe” convex region

> Convex Decomposition + Convex Bounds [Lazerson et al,
PVLDB'15, KDD'16]
» Methodology to help find a good safe zone

@ Estimate vectore
L) Weighted Meanv

@ Diift vectoruzesay

GM Scheme — Key Advances (cont)

Key Problems & Solutions (cont.)
» Prediction Models [Giatrakos et al, SIGMOD’12, TODS"14]
» If we can predict the values of the local vectors, can we
do better?

> Sampling [Giatrakos et al, SIGMOD'16]
> For many sites, chances of communication increases =
use sampling

> Sketches [Garofalakis et al, PVLDB13]
> How to combine GM with sketches if vectors are too large

Key Ingredients for Distributed CER in Big Data

s Local
Distributed CER &"E

vent

perCister/ ' n Streams
= N2 l

= —WB= .

Tools/Optimizations for reducing data exchange
between clusters

> Push-pull paradigm (for regular event operators)
> Distributed Function Monitoring/GM
Architectures that support these tools

An optimizer: decide best way to distribute business logic
given tools & architecture

Architectures for Distributed CER in Big Data
> No current support for desired tools for CER
> Push-pull paradigm, Distributed Function Monitoring/GM

> How hard is it to develop them? Simplest approach
> Take a CER engine for distributed (intra-cluster) CER

> Move Distributed Function Monitoring outside the CER
engine

> Easier to write custom code this way

Architectures for Distributed CER in Big Data (cont.)
> How hard is it to develop them? Simplest approach
> The CER engine must emit an event on pull requests

>

>

>

>

Event must be handled outside the CER engine
Emitting events is simple and done for output events
Pull requests can only occur on state transitions

Not too much code to add

Hardest task: out of order data

Let's see an example...

An Architecture for CER in Big Data Applications

The FERARI Approach [Flouris et al, SIGMOD’16]

CER Optimizer FERARI
Dashboard

Authoring

Tool

logical plan
event
stream

physical analyzer

|hl 2

Full-fledged, End-to-end
CER solution

> Distributed CER per
site (using STORM) ush
> Adaptive
> Distributed
- In-Network
- In-Situ
Processing

FERARI [Flouris et al, SIGMOD’16]: Inside each Cluster

(implementation using STORM)

Inter-site

communication
Push/Pull Msgs

Events etc
Recall pushed
data per site

Communicator

Storage of derived events
Statistics for Optimizer that may be sent remotely
Pull Requests Satisfies pull requests
Handle partitioned states Stores GM related data
Out-of-order processing

GM monitoring
Time
Gate-
Keeper

Distributed Machine
Local
CER Optimizer Remote Site

Learning Operators
Site

runtime statistics

10

Optimizer Inputs
P\u y
" — m ﬂ BL BR

Network of Sites Operator Graph

Inputs
> Business Logic
> Network Parameters
> Event Frequency Statistics
> Optimization Goals

In-Network Processing = Operator Placement Problem

Goals:
» exploit data Variety,
> push computation to sites

Distributed Complex Event Recognition

In-Network Processing - Operator Placement Problem in
Traditional Streaming Settings

> Key Concept: exploit data Variety, push computation to sites

Operator Graph
oooo
oooo \ e
/ \ — P
Oong
Oong
— m 0ooo
Network of Sites oooo

An Architecture for CER in Big Data Applications

The FERARI Approach [Flouris et al, SIGMOD’16]

CER Optimizer FERARI
Dashboard

Authoring

Tool

logical plan
event
stream

physical analyzer

|hl 2

Full-fledged, End-to-end
CER solution

> Distributed CER per
site (using STORM) ush
> Adaptive
> Distributed
- In-Network
- In-Situ
Processing

FERARI Optimizer

CER Plan
Optimizaton Goals
Constraints
Optimizer Hints Check
whether to

o CER Optimizer adapt plan

CER Model event
e Generate Site

i analyzer -)
phpyli'ﬁa' Configurations
JSON, GM,
For each logical plan . . i \ communication
consider c%ffere%t Site Configurations

Consider multiple equivalent
logical plans by query rewriting

physical plans

(placement of
operators).
Pick Best

Optimizer mostly independent
of underlying CER engine

Outlook

Future Exciting Research Domains
> IoT Domain
> 100,000s of nodes
> Heterogeneous capabilities
> Not data centers
> How to detect complex events?
> In-situ processing extremely crucial

> Automatic Learning & Adaptation of CER patterns
» Patterns of interest change over time

» Effective Support for Complex Analytics Operators
» E.g., time series analysis, machine learning

Additional Readings (beyond what is in tutorial’s abstract)

> G. Cugola, A. Margara. Processing Flows of Information: From
Data Stream to Complex Event Processing. ACM Computing
Surveys, 2012.

> E. Alevizos, A. Skarlatidis, A. Artikis, G. Paliouras. Probabilistic
Complex Event Recognition: A Survey. ACM Computing
Surveys, 2017.

> G. Cugola, A. Margara. Low latency complex event processing
on parallel hardware. J. Parallel Distrib. Comput., 2012.

> T. Heinze, V. Pappalardo, Z. Jerzak, C. Fetzer. Auto-scaling
techniques for elastic data stream processing. In DEBS, 2014.

> R. Mayer, B. Koldehofe, K. Rothermel. Meeting predictable
buffer limits in the parallel execution of event processing
operators. In IEEE BigData, 2014.

> L. Kolchinsky, I. Sharfman, A. Schuster. Lazy evaluation
methods for detecting complex events. In DEBS, 2015.

Additional Readings (beyond what is in tutorial’s abstract)

> N. Giatrakos, A. Deligiannakis, M. Garofalakis. Scalable
Approximate Query Tracking over Highly Distributed Data
Streams. In SIGMOD, 2016.

> D. Keren, I. Sharfman, A. Schuster, A. Livne: Shape Sensitive
Geometric Monitoring. IEEE Trans. Knowl. Data Eng., 2012.

> A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M.
Garofalakis, V. Samoladas: Monitoring Distributed Streams
using Convex Decompositions. PVLDB, 2015.

> A. Lazerson, D. Keren, A. Schuster: Lightweight Monitoring of
Distributed Streams. In KDD, 2016.

> M. Garofalakis, D. Keren, V. Samoladas: Sketch-based

Geometric Monitoring of Distributed Stream Queries. PVLDB,
2013.

