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Big Data is Big News (and Big Business) 

•  Rapid growth due to several  information-

generating technologies, such as mobile 
computing, sensornets, and social networks 
 
 

• How can we cost-effectively manage and 
analyze all this data…? 



Big Data Challenges: The Four V’s  (… and one D) 

• Volume:  Scaling from Terabytes to Exa/Zettabytes 

 

• Velocity: Processing massive amounts of streaming data 

 

• Variety: Managing the complexity of multiple relational and 

non-relational data types and schemas 

 

• Veracity: Handling inherent uncertainty and noise in the data 

 

• Distribution:  Dealing with massively distributed information  
 

 



Existing Big Data Platforms 

 Map/Reduce, Hadoop, Spark 
Simple programmatic models, scalable, 

replication for robustness 

BUT: Batch processing of static data 

           Focus on relational model (tables, SQL)  

 

 Storm/Heron, Flink, Spark Streaming 
Simple, scalable dataflow processing 

Hard to map from higher level logic and 

complex analytics tasks! 

Large computing clusters – scale    

out to 1000s of commodity nodes 

 



Complex Event Recognition (Event Pattern 
Matching, CEP) 

• Input 

• Massive streams of time-stamped Simple Derived Events 

(SDEs) coming from (distributed) sources 

 

• Output  

• Complex/Composite Events (CEs) –  collections of SDEs 

and/or CEs satisfying some pattern 

• Patterns defined using variety of constraints 

(temporal, spatial, logical, …)  

• Not restricted to simple aggregation! 

•  Complex, multi-level CE hierarchies 

•  Inherent uncertainty (SDEs, patterns) 

 



Complex Event Recognition (Event Pattern 
Matching, CEP) 

Distributed CER  

per Cluster 

Local  

Event  

Streams 

















This Tutorial:  CER + Big Data (4Vs + D) 

• Introduction  

 

• Complex Event Recognition Languages 

 

• Handling Uncertainty 

 

• Scalable (Parallel and Distributed) CER 

 

• Outlook 

 





























Statistical Relational Learning 

LOGIC 

Formal and  

declarative  

relational  

representation 

Improving performance  

through experience 
 

LEARNING 

PROBABILITIES 
Sound mathematical  

foundation for  

reasoning under  

uncertainty 





Event Calculus in Markov Logic Networks  (MLN-EC) 
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Part 3: 
Scalable, Distributed Complex Event Recognition 



How to scale CER in the Big Data Era 

Scaling out to 

– Parallel Architectures: Computer Clusters/Grids, The Cloud  

– Networked Settings: Dispersed Clusters, Multi-Cloud Platforms 

https://en.wikipedia.org/wiki/Blue_Gene 

https://en.wikipedia.org/wiki/Blue_Gene


Scalable - Distributed Complex Event Recognition 

Why? Well, It’s the Big Data Era 

›  Volume, Velocity, 

CER  

System 

INPUT ›  

.  .  .  .  .  .  

Streams/Queries 

.  .  .  .  .  .  

OUTPUT 

.  .  .  .  .  .  
 

Recognised CEs 

.  .  .  .  .  .  

Centralized Architecture 

Sequential CER 

Veracity (Uncertainty) Variety, 



Scalable - Distributed Complex Event Recognition 

Why? Well, It’s the Big Data Era 

›  Volume, Velocity, 
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System 

INPUT ›  

.  .  .  .  .  .  

Streams/Queries 

.  .  .  .  .  .  

OUTPUT 

.  .  .  .  .  .  
 

Recognised CEs 

.  .  .  .  .  .  

Centralized Architecture 

Sequential CER 

Variety, 



Tools 

› Parallelism 

› Elastic Resource 

     Allocation 

Scalable - Distributed Complex Event Recognition 

CER 

INPUT ›  

.  .  .  .  .  .  

Streams/Queries 

.  .  .  .  .  .  

OUTPUT 

.  .  .  .  .  .  
 

Recognised CEs 

.  .  .  .  .  .  

CER 

CER 

…
 

Performance metrics 

› Throughput 

› CPU utilization 

Clustered Architecture 

Parallel CER 



Scalable Complex Event Recognition 

Parallelization & Elasticity in state-of-the-art DSMSs: 

› Horizontal Scalability in Stream Processing by design 

› Facilities for Elastic Resource Allocation 

› Fault Tolerance in message processing 

› Popular Platforms: Apache Storm (Heron/Trident), Spark Streaming 

 

CER Languages & CER Systems: 

› High-Level CER Language Support 

› Uncertainty-aware CER (sometimes) 

› Support for various streaming operations (windowing etc.) 

 

How to bridge the gap? 

 

HackerBrucke Munich 

https://en.wikipedia.org/wiki/Hackerbr%C3%BCcke


Bolt 

CER + modern DSMSs: Case Study Apache Storm 

Storm Topology 

Spout 

Tuple 

…
 

Tasks 



Bolt 

CER + modern DSMSs: Case Study Apache Storm 

Storm Topology 

Spout 

Tuple 

…
 

Tasks 

CER 

CER 

CER 

CER 

CER Queries, 
CER Operators 
go here  
(manually/custom
automation) 

Open-Source Examples 
 
 
 
  



Bolt 

Data Partitioning – Which task  a tuple goes to? 

› Shuffle Grouping: Random tuple distribution 

› Fields Grouping: Partition based on field(s) – keys 

› All Grouping: Replicate tuple to all tasks 

› Custom: Define your own 

CER + modern DSMSs: Case Study Apache Storm 

Storm Topology 

Spout 

Tuple 

…
 

Tasks 

CER 

CER 

CER 

CER 

CER Queries, 
CER Operators 
go here  
(manually/custom
automation) 



CER + modern DSMSs: Case Study Spark Streaming 

time 

R
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CER 

› Transformations 

› Window Operators 

› Output Operators 

CE stream 

DStream 
RDD@t1 RDD@t4 RDD@t2 RDD@t3 



Are we done?  

 
 

 
 

 

Support for Event Selection Policies 

Support for Event Consumption Policies 

Support for Parallelization of Windows  

Parallelization Granularity - Agility 
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Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

Categorization of Parallelization Approaches in CER & 
Parallelization Granularity - Agility 

Data Parallelism 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



Recap on Event Selection Policies 

›  Strict contiguity [Sc]: No intervening events allowed between two  sequence  

events  in the pattern.  

 

›  Partition contiguity [Pc]: Same as above, but the stream is  partitioned into 

substreams according to a partition attribute.  Events  must be  contiguous 

within the same  partition.  

 

›  Skip-till-next-match [Stnm]: irrelevant events are skipped until an event 

matching the next pattern component is encountered. If multiple events in the 

stream can match the next pattern component, only the first of them is 

considered. 

     E.g. for  SEQ(A, B, C ) and a1, b1, b2, c1, only a1, b1, c1 will be detected. 

 

›  Skip-till-any-match [Stam]: Most flexible (and expensive). Detects  every 

possible occurrence. For the previous example, a1, b2, c1  will also be  

detected. 



Event Consumption Policies 
›  Consume [Co]: Single event is used in a single pattern match 

 

 

›  Reuse [Re]: Single event can participate in multiple pattern 

matches as long as it remains valid e.g. given window 

constraints 

 

 

›  Bounded Reuse [BRe]: Single event can participate in up to N 

pattern matches as long as it remains valid 

 

Event Match * 1 

Event Match * * 

Event Match * N 

E.g. for  SEQ(A, B, C) and a1, b1, b2, c1 
skip-till-any-match & Reuse  (a1, b1, c1), (a1, b2, c1)  

skip-till-any-match & Consume  (a1, b1, c1) 



Generic Stream Window Types 

›   Time-based Windows [TiW]: The upper bound of the current 

window is the current timestamp while the lower bound is 

determined based on a given time-interval parameter.  

 

 

›  Tuple-based Windows [TuW]: The upper and lower bound of the 

current window is determined so that it contains a certain amount of 

tuples 

 



Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



Automaton Models 

Query-based Parallelization [T-REX, JSS’12]  
.  .  .  

Event Streams 

.  .  .  .  .  .  

.  .  .  
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Recogn. CEs 



Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



Operator-based Parallelization[Moeller et al, DEBS’09]  
› Allows for multi-query and intra-query optimizations 

› Intra-query optimizations  Query Rewriting: 

- Commutativity: OP(A,B)=OP(B,A) OR 

- Associativity: OP(OP(A,B),C)=OP(A,OP(B,C))OR, SEQ 

- Evaluate operators with the rarest events first 

› Multi-query optimizations  Operator Sharing 

 

Automaton Instances Operator i 

Input Output 

Automaton 

Operator 1 

Operator n 

Event Streams 

Recognised CEs 

 

Operator j 



Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



Partition key-based Parallelization [Hirzel et al, DEBS’12]  
› Claims CER as a special operator MatchRegex(Input_Events) 

› Includes a PARTITION BY(key) statement for key-based data 

partitioning 

› Partition-isolation and uniqueness of longest match for correctness 

› Implemented as an extension of IBM System S 

.  .  .  

Event Streams 

.  .  .  .  .  .  

.  .  .  
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Partition key-based Parallelization - Examples 

Partition By  

(Caller ID) … … Caller 

Callee 1 Call Event 

Callee n 

Partition By  

(User ID) 
Partition By  

(Area ID) 

location 
updates 



Pattern-sensitive Partition-based Parallelization  
[Mayer et al, DEBS’16]  

› Introduces pattern-sensitive data partitioning apart from key-based 

› Partition Start: eBOOL   Partition End: (partition, e)BOOL 

› New event may start, be part of, or terminate a partition 

› No partition isolation  replication of event to multiple partitions 

› Can be used to parallelize sliding windows! 

.  .  .  
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Pattern-sensitive Partition - Examples 
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Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



State-based Parallelization [Balkesen et al, DEBS’13]  
› NFA states (A,B,…)Processing Units (PUs), NFA edges  Pipelines  

› Event type-based data partitioning 

› Filtering and predicate evaluation per state 

› Pipeline the results among states on NFA structure 

› Evaluation load towards final state 

› FPGAs [Woods et al, PVLDB’10] 

› GPUs [CudaCEP,JPDC’12] Column-based Delayed Processing (CDP) 
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Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
[Mayer et al, DEBS’16] 

State-based 
[Balkesen et al, DEBS’13] 

Run-based 
[Balkesen et al, DEBS’13] 

Graph-based 
[Mayer et al, DEBS’16] 

Hardware-based 
[Woods et al, PVLDB’10] 

[CudaCEP, JPDC’12] 

Task Parallelism 

Query-based 
[T-REX, JSS’12] 

Operator-based 
[Moeller et al, DEBS’09] 



Categorization of Parallelization Approaches in CER 

Data Parallelism 

Partition-based 
[Hirzel et al, DEBS’12] 
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time 

Run-based Parallelization[Balkesen et al, DEBS’13]  
› Split stream into overlapping batches of B size 

› Size of overlap S = maximal_match_length-1 ≤ B/2 

› Assign a batch to one PU 

› A PU detects all matches that start in the first B-­S events in a 

batch 

› Batch-based data partitioning  Load Balancing 

N=10, S=3 
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Operator Instance 3 



time 

Run-based Parallelization[Balkesen et al, DEBS’13]  

N=10, S=3 
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Operator Instance 2 

PU 1 –  
Operator Instance 1 

PU 3 –  
Operator Instance 3 

› Split stream into overlapping batches of B size 

› Size of overlap S = maximal_match_length-1 ≤ B/2 

› Assign a batch to one PU 

› A PU detects all matches that start in the first B-­S events in a 

batch 

› Batch-based data partitioning  Load Balancing 



Task Parallelism Data Parallelism 
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No one size fit all solution! 
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Provisioning/statistics collection 

Operator Migration 



Key Concepts 

› First Fit Bin Packing for Operator Placement 

› Elastic, Workload Unaware, Resource Allocation 

 Local & Global Threshold-based Approach 

 Reinforcement Learning Approach 

Elastic Resource Allocation in CER – FUGU Approach 
[Heinze et al, DB3@VLDB ‘13, DEBS’14] 

Q4=3 Q2=3 
Q3=5 

Q5=1 

Q1=6 

Q6=2 

PU1         PU2        PU3        PU4        PU5 

Q4=3 Q2=3 
Q3=5 Q1=6 

Q6=2 
Q5=1 



Elastic Resource Allocation in CER – FUGU Approach 
[Heinze et al, DB3@VLDB ‘13, DEBS’14] 

Key Concepts 

› First Fit Bin Packing for Operator Placement 

› Elastic, Workload Unaware, Resource Allocation 

 Threshold-based  

     Approach 

Utilization Scale In No Action Scale Out 

80% 0.28 0.7 0.88 

90% 0.28 0.5 0.9 

100% 0.1 0.4 1.0 

 Reinforcement  

Learning Approach 

- Look up table  

  describing “benefit”  

  of each action based 

  on recent experience 

Time 

Utilization 
Upper T  
 Scale Out 

Lower T  
Scale In 



Yes 

Elastic Resource Allocation in CER – Queueing Models 
[Mayer et al, IEEE BigData’14] 

Key Concepts 

› Workload-, Latency-, Load-shedding Aware Scheme 

› Choices based on probabilistic buffer limit (BL) 

Incoming 
Event Queue Q 

PU 1 

PU C 

PU i 

… 

… 

Outgoing 
Event Queue 

Exponential arrivals 
Exponential/ 

deterministic departures C serving PUs 

nowP=P(Q(t)≤BL)<Pthres

?  

CC+1 

lastP>Pthres? 

CC-1 

No 
Return C 

Yes 

No 

Event Streams 

 

  

Recognised CEs 

  



Elastic Resource Allocation in CER – Time Series-based 
[Zacheilas et al, IEEE BigData’15] 

Key Concepts 

› Monitor event input rate and processing latency 

› Predict their values (Gaussian Processes, SVM, NNs) 

› Construct state graph and compute shortest path 

Lookahead Time Horizon (H) 

1 PU 
Init Last 

W1 

k PUs 

… 

1 PU 

W2 

k PUs 

… 

1 PU 

WH 

… 

k PUs 

Cost=0 

Cost 

Cost(κ PUsλ<κ PUs) 



Scalable - Distributed Complex Event Recognition 

Why? Well, It’s the Big Data Era 

›  Volume, Velocity, 

CER  

System 

INPUT ›  
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Centralized Architecture 

Sequential CER 

Veracity Variety, 



Scalable - Distributed Complex Event Recognition 

CER 

INPUT ›  
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OUTPUT 

.  .  .  .  .  .  
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Performance metrics 

› Throughput 

› CPU utilization 

Clustered Architecture 

Parallel CER 

Tools 

› Parallelism 

› Elastic Resource 

     Allocation 



Scalable - Distributed Complex Event Recognition 
Networked Architecture:   Geographically Distributed CER 

› Business User Poses CER queries (business logic) 

› The business logic is independent of geographic locations 

› Does not specify which operations are performed at each site 

› Goal: Use business logic and perform “efficient” CER 

› Data Centralization often not possible in Big Data Applications 

Distributed CER  

per Cluster 

Local  

Event  

Streams 



Key Ingredients for Distributed CER in Big Data 
Networked Architecture:   Geographically Distributed CER 

› Tools/Optimizations for reducing data exchange 

between clusters 

› Architectures that support these tools 

› An optimizer: decide best way to distribute business logic 

given tools & architecture 

Distributed CER  

per Cluster 

Local  

Event  

Streams 



Tool 1 for In-Situ Processing: Push-Pull Paradigm 

› Decreases Network Cost 
› Increases Latency 
› Increase Buffer Requirements (for cached 

events that may be pulled later) 
› Same idea can speed up CER WITHIN a 

cluster [Kolchinsky et al, DEBS’15] 

AND 
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e3 
AND 

e1 

e2 

e3 

AND 

AND 

e3 is pulled when  

e1 and e2 appear 

e2 is pulled when e1 appears 

e3 is pulled when e1 and e2 appear 

Key Concept: Do not transmit frequent events, unless rare events 
occur. May increase latency but decreases network cost 

AND 

Rare Event 

Frequent 

Event 

Example:  Different ways of evaluating AND 
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Push-Pull Approach for CER [Adkere et al, PVLDB’08] 

Key Ideas:  
› All operators evaluated at a central site/cluster 

› Data pushed/pulled to central location based on desired 

optimization criteria 

› Bandwidth Cost, Latency, Available Memory   

› DP + Greedy Algorithms provided 
 

Sufficient for Big Data CER?  
› Processing not actually pushed inside the network 

› May not be suitable for large scale distributed topologies 

Single site 
Operator Graph 
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Tool 2: Distributed Function Monitoring (DFM) 

Key Idea:  
› Define a function f() over the data of different clusters 

› Communicate only when function f() crosses a threshold 

Should These  

Clusters Communicate? 

Cluster Data 

Apply f()  

on Vector 



Tool 2: Distributed Function Monitoring (DFM) 

Key Idea:  
› Define a function f() over the data of different clusters 

› Communicate only when function f() crosses a threshold 

› Definition of function depends on desired task 

› Simple aggregates of data cross a threshold (i.e., SUM) 

› Event frequency statistics have changed significantly 

(i.e., Cosine Similary, Pearson Coefficient etc) 

› The global model of the data has changed significantly 

(Distributed Machine Learning) 

› The variance of some data has changed significantly 

› And many more… 

 

Key Tool:  Geometric Monitoring 

› Generic tool  

› DFM problem much simpler for linear functions 

› One may derive more efficient solutions for specific functions 



Basic Tool: Geometric Monitoring (GM) - Setup 

› Track if f(v(t))>T 

› Works for any f() over the (weighted) average of local vi(t) 

Coordinator 

N sites 

vi(t):local vector(s) 
maintained at each 

site at time t 

S1 SN 

Continuous Tracking of 
f(v(t))>T or f(v(t))<T 

v(t)= 
 v i(t)
N
i=1

N
 

Local data 
stream(s) 



Basic GM Scheme [Sharfman et al, SIGMOD’06]  

ΔV5 
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ΔV3 

ΔV2 

e 

ΔV1 

A
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w

h
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e 
f(

v)
>T

  e(t): Last known average vector 

 

 Sites check f() within  

 Β(e+ Δvi/2, ||Δvi||/2) 

 

 If union of Β(e+ Δvi/2, ||Δvi||/2) 
crosses the threshold, v(t) may 
have crossed the threshold 

 

v(t) 

Key Points 

› Monitoring done in a distributive way 

› Sites perform local tests to see if f() may have crossed T 

› Test: find min/max of f() over a sphere (costly!) 
 

› Many improvements have followed… 



GM Scheme – Key Advances 

Key Problems & Solutions (at a glance) 

› Make the local test much simpler and more efficient 

› Safe Zones [Keren et al, TKDE’12] 

› Check if e+ Δvi is inside a “safe” convex region 

› Convex Decomposition + Convex Bounds [Lazerson et al, 

PVLDB’15, KDD’16] 

› Methodology to help find a good safe zone 



GM Scheme – Key Advances (cont) 

Key Problems & Solutions  (cont.) 

› Prediction Models [Giatrakos et al, SIGMOD’12, TODS’14] 

› If we can predict the values of the local vectors, can we 

do better? 

 

› Sampling [Giatrakos et al, SIGMOD’16] 

› For many sites, chances of communication increases  

use sampling 

 

› Sketches [Garofalakis et al, PVLDB’13] 

› How to combine GM with sketches if vectors are too large 



Key Ingredients for Distributed CER in Big Data 

› Tools/Optimizations for reducing data exchange 

between clusters 

› Push-pull paradigm (for regular event operators) 

› Distributed Function Monitoring/GM 

› Architectures that support these tools 

› An optimizer: decide best way to distribute business logic 

given tools & architecture 

Distributed CER  

per Cluster 

Local  

Event  

Streams 



Architectures for Distributed CER in Big Data 

› No current support for desired tools for CER 

› Push-pull paradigm, Distributed Function Monitoring/GM 

 

› How hard is it to develop them? Simplest approach 

› Take a CER engine for distributed (intra-cluster) CER 

› Move Distributed Function Monitoring outside the CER 

engine 

› Easier to write custom code this way 

AND 

AND 

e1 

e2 

e3 



Architectures for Distributed CER in Big Data (cont.) 

› How hard is it to develop them? Simplest approach 

› The CER engine must emit an event on pull requests 

› Event must be handled outside the CER engine 

› Emitting events is simple and done for output events 

› Pull requests can only occur on state transitions 

› Not too much code to add 

› Hardest task: out of order data 

› Let’s see an example… 

AND 

AND 

e1 

e2 

e3 



The FERARI Approach [Flouris et al, SIGMOD’16] 

An Architecture for CER in Big Data Applications 

Full-fledged, End-to-end 
CER solution 

› Distributed CER per 

site (using STORM) 

› Adaptive 

› Distributed 

- In-Network  

- In-Situ 

Processing 



FERARI [Flouris et al, SIGMOD’16]: Inside each Cluster 
(implementation using STORM) 

Statistics for Optimizer 

Pull Requests 

Handle partitioned states  

Out-of-order processing 

• Inter-site 

communication 

• Push/Pull Msgs 

• Events etc 

• Recall pushed 

data per site 

Storage of derived events 

that may be sent remotely 

Satisfies pull requests 

Stores GM related data 

GM monitoring 

Distributed Machine 

Learning Operators 

10
2 



In-Network Processing  Operator Placement Problem 
Goals:  

› exploit data Variety, 

› push computation to sites 

Optimizer Inputs 

TR 

BL BR 

TL 

Inputs 
› Business Logic 

› Network Parameters 

› Event Frequency Statistics 

› Optimization Goals 

Network of Sites Operator Graph 



TR 

BL BR 

TL 

In-Network Processing  Operator Placement Problem in 
Traditional Streaming Settings 

› Key Concept: exploit data Variety, push computation to sites 

Distributed Complex Event Recognition 

Network of Sites 

Operator Graph 



The FERARI Approach [Flouris et al, SIGMOD’16] 

An Architecture for CER in Big Data Applications 

Full-fledged, End-to-end 
CER solution 

› Distributed CER per 

site (using STORM) 

› Adaptive 

› Distributed 

- In-Network  

- In-Situ 

Processing 



FERARI Optimizer 

Optimizer mostly independent  
of underlying CER engine 

CER Optimizer 

runtime 

statistics 

Annotated 

CER Model 

 

logical plan 

physical 

plan 

event 

stream 

analyzer 

Site Configurations 

cost 

Consider multiple equivalent 

logical plans by query rewriting 

For each logical plan 

consider different 

physical plans 

(placement of 

operators).  

Pick Best 

Generate Site 

Configurations  

JSON, GM, 

communication 

Check 

whether to 

adapt plan 



Outlook 



Future Exciting Research Domains 

› IoT Domain  

› 100,000s of nodes 

› Heterogeneous capabilities 

› Not data centers 

› How to detect complex events? 

› In-situ processing extremely crucial 

 

› Automatic Learning & Adaptation of CER patterns 

› Patterns of interest change over time 

 

› Effective Support for Complex Analytics Operators 

› E.g., time series analysis, machine learning 
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