
Tutorial:

Complex Event Recognition in the Big Data Era

Nikos Giatrakos1, Alexander Artikis2,3, Antonios Deligiannakis1,

Minos Garofalakis1,4

1Technical University of Crete, Chania, Greece

2University of Piraeus, Greece
3NCSR Demokritos, Athens, Greece

4ATHENA Research & Innovation Center, Athens, Greece

Slides available at:

Big Data is Big News (and Big Business)

• Rapid growth due to several information-

generating technologies, such as mobile
computing, sensornets, and social networks

• How can we cost-effectively manage and
analyze all this data…?

Big Data Challenges: The Four V’s (… and one D)

• Volume: Scaling from Terabytes to Exa/Zettabytes

• Velocity: Processing massive amounts of streaming data

• Variety: Managing the complexity of multiple relational and

non-relational data types and schemas

• Veracity: Handling inherent uncertainty and noise in the data

• Distribution: Dealing with massively distributed information

Existing Big Data Platforms

 Map/Reduce, Hadoop, Spark
Simple programmatic models, scalable,

replication for robustness

BUT: Batch processing of static data

 Focus on relational model (tables, SQL)

 Storm/Heron, Flink, Spark Streaming
Simple, scalable dataflow processing

Hard to map from higher level logic and

complex analytics tasks!

Large computing clusters – scale

out to 1000s of commodity nodes

Complex Event Recognition (Event Pattern
Matching, CEP)

• Input

• Massive streams of time-stamped Simple Derived Events

(SDEs) coming from (distributed) sources

• Output

• Complex/Composite Events (CEs) – collections of SDEs

and/or CEs satisfying some pattern

• Patterns defined using variety of constraints

(temporal, spatial, logical, …)

• Not restricted to simple aggregation!

• Complex, multi-level CE hierarchies

• Inherent uncertainty (SDEs, patterns)

Complex Event Recognition (Event Pattern
Matching, CEP)

Distributed CER

per Cluster

Local

Event

Streams

This Tutorial: CER + Big Data (4Vs + D)

• Introduction

• Complex Event Recognition Languages

• Handling Uncertainty

• Scalable (Parallel and Distributed) CER

• Outlook

Statistical Relational Learning

LOGIC

Formal and

declarative

relational

representation

Improving performance

through experience

LEARNING

PROBABILITIES
Sound mathematical

foundation for

reasoning under

uncertainty

Event Calculus in Markov Logic Networks (MLN-EC)

INPUT › TRANSFORMATION › INFERENCE › OUTPUT □

Compact

Knowledg

e Base

Complex

Event

Definitions

Event

Calculus

Axioms

Simple

Event

Stream

Markov Logic Networks

Recognise

d Complex

Events

Part 3:
Scalable, Distributed Complex Event Recognition

How to scale CER in the Big Data Era

Scaling out to

– Parallel Architectures: Computer Clusters/Grids, The Cloud

– Networked Settings: Dispersed Clusters, Multi-Cloud Platforms

https://en.wikipedia.org/wiki/Blue_Gene

https://en.wikipedia.org/wiki/Blue_Gene

Scalable - Distributed Complex Event Recognition

Why? Well, It’s the Big Data Era

› Volume, Velocity,

CER

System

INPUT ›

.

Streams/Queries

.

OUTPUT

.

Recognised CEs

.

Centralized Architecture

Sequential CER

Veracity (Uncertainty) Variety,

Scalable - Distributed Complex Event Recognition

Why? Well, It’s the Big Data Era

› Volume, Velocity,

CER

System

INPUT ›

.

Streams/Queries

.

OUTPUT

.

Recognised CEs

.

Centralized Architecture

Sequential CER

Variety,

Tools

› Parallelism

› Elastic Resource

 Allocation

Scalable - Distributed Complex Event Recognition

CER

INPUT ›

.

Streams/Queries

.

OUTPUT

.

Recognised CEs

.

CER

CER

…

Performance metrics

› Throughput

› CPU utilization

Clustered Architecture

Parallel CER

Scalable Complex Event Recognition

Parallelization & Elasticity in state-of-the-art DSMSs:

› Horizontal Scalability in Stream Processing by design

› Facilities for Elastic Resource Allocation

› Fault Tolerance in message processing

› Popular Platforms: Apache Storm (Heron/Trident), Spark Streaming

CER Languages & CER Systems:

› High-Level CER Language Support

› Uncertainty-aware CER (sometimes)

› Support for various streaming operations (windowing etc.)

How to bridge the gap?

HackerBrucke Munich

https://en.wikipedia.org/wiki/Hackerbr%C3%BCcke

Bolt

CER + modern DSMSs: Case Study Apache Storm

Storm Topology

Spout

Tuple

…

Tasks

Bolt

CER + modern DSMSs: Case Study Apache Storm

Storm Topology

Spout

Tuple

…

Tasks

CER

CER

CER

CER

CER Queries,
CER Operators
go here
(manually/custom
automation)

Open-Source Examples

Bolt

Data Partitioning – Which task a tuple goes to?

› Shuffle Grouping: Random tuple distribution

› Fields Grouping: Partition based on field(s) – keys

› All Grouping: Replicate tuple to all tasks

› Custom: Define your own

CER + modern DSMSs: Case Study Apache Storm

Storm Topology

Spout

Tuple

…

Tasks

CER

CER

CER

CER

CER Queries,
CER Operators
go here
(manually/custom
automation)

CER + modern DSMSs: Case Study Spark Streaming

time

R
e
ce

iv
e
r

CER

› Transformations

› Window Operators

› Output Operators

CE stream

DStream
RDD@t1 RDD@t4 RDD@t2 RDD@t3

Are we done?

Support for Event Selection Policies

Support for Event Consumption Policies

Support for Parallelization of Windows

Parallelization Granularity - Agility

L
o
a
d
 (

Im
)B

a
la

n
ce

N

e
e
d
 fo

r

R
e
p

lica
tio

n
/C

o
m

m
u
n
ica

tio
n

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

Categorization of Parallelization Approaches in CER &
Parallelization Granularity - Agility

Data Parallelism

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

Recap on Event Selection Policies

› Strict contiguity [Sc]: No intervening events allowed between two sequence

events in the pattern.

› Partition contiguity [Pc]: Same as above, but the stream is partitioned into

substreams according to a partition attribute. Events must be contiguous

within the same partition.

› Skip-till-next-match [Stnm]: irrelevant events are skipped until an event

matching the next pattern component is encountered. If multiple events in the

stream can match the next pattern component, only the first of them is

considered.

 E.g. for SEQ(A, B, C) and a1, b1, b2, c1, only a1, b1, c1 will be detected.

› Skip-till-any-match [Stam]: Most flexible (and expensive). Detects every

possible occurrence. For the previous example, a1, b2, c1 will also be

detected.

Event Consumption Policies
› Consume [Co]: Single event is used in a single pattern match

› Reuse [Re]: Single event can participate in multiple pattern

matches as long as it remains valid e.g. given window

constraints

› Bounded Reuse [BRe]: Single event can participate in up to N

pattern matches as long as it remains valid

Event Match * 1

Event Match * *

Event Match * N

E.g. for SEQ(A, B, C) and a1, b1, b2, c1
skip-till-any-match & Reuse  (a1, b1, c1), (a1, b2, c1)

skip-till-any-match & Consume  (a1, b1, c1)

Generic Stream Window Types

› Time-based Windows [TiW]: The upper bound of the current

window is the current timestamp while the lower bound is

determined based on a given time-interval parameter.

› Tuple-based Windows [TuW]: The upper and lower bound of the

current window is determined so that it contains a certain amount of

tuples

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

Automaton Models

Query-based Parallelization [T-REX, JSS’12]
. . .

Event Streams

.

. . .

C
ER

 Q
u

eries

…

Subscribed Applications

S
to

re
d

 E
v

e
n

ts

Static Index

C

E F
A

B D 1 1 C

E F
A

B D 1 1 C

E
A

B D 1 1

… State Idx State Idx

State Idx

… Sequences Sequences Sequences

… Generator Generator Generator

Recogn. CEs

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

Operator-based Parallelization[Moeller et al, DEBS’09]
› Allows for multi-query and intra-query optimizations

› Intra-query optimizations  Query Rewriting:

- Commutativity: OP(A,B)=OP(B,A) OR

- Associativity: OP(OP(A,B),C)=OP(A,OP(B,C))OR, SEQ

- Evaluate operators with the rarest events first

› Multi-query optimizations  Operator Sharing

Automaton Instances Operator i

Input Output

Automaton

Operator 1

Operator n

Event Streams

Recognised CEs

Operator j

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

Partition key-based Parallelization [Hirzel et al, DEBS’12]
› Claims CER as a special operator MatchRegex(Input_Events)

› Includes a PARTITION BY(key) statement for key-based data

partitioning

› Partition-isolation and uniqueness of longest match for correctness

› Implemented as an extension of IBM System S

. . .

Event Streams

.

. . .

S
p
litte

r M
e
rg

e
r

.

Recognised CEs

.

…

…

C

E F
A

B D 1 1

C

E F
A

B D 1 1

C

E F
A

B D 1 1

Operator Instance 1

Operator Instance n

Operator Instance i

Key-based
Split

Partition key-based Parallelization - Examples

Partition By

(Caller ID) … … Caller

Callee 1 Call Event

Callee n

Partition By

(User ID)
Partition By

(Area ID)

location
updates

Pattern-sensitive Partition-based Parallelization
[Mayer et al, DEBS’16]

› Introduces pattern-sensitive data partitioning apart from key-based

› Partition Start: eBOOL Partition End: (partition, e)BOOL

› New event may start, be part of, or terminate a partition

› No partition isolation  replication of event to multiple partitions

› Can be used to parallelize sliding windows!

. . .

Event Streams

.

. . .

S
p
litte

r M
e
rg

e
r

.

Recognised CEs

.

…

…

C

E F
A

B D 1 1

C

E F
A

B D 1 1

C

E F
A

B D 1 1

Operator Instance 1

Operator Instance n

Operator Instance i

Pattern-
sensitive Split

Pattern-sensitive Partition - Examples

w4

w3

w2

w1 Window slides

Overlapping
Spatiotemporal

Partitions

P
e

:
n

eigh
b

o
rh

o
o

d

d
isso

lves

P
s:

ve
ss

el
 n

ei
gh

b
o

rh
o

o
d

fo

rm
at

io
n

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

State-based Parallelization [Balkesen et al, DEBS’13]
› NFA states (A,B,…)Processing Units (PUs), NFA edges  Pipelines

› Event type-based data partitioning

› Filtering and predicate evaluation per state

› Pipeline the results among states on NFA structure

› Evaluation load towards final state

› FPGAs [Woods et al, PVLDB’10]

› GPUs [CudaCEP,JPDC’12] Column-based Delayed Processing (CDP)

C

F

A

B D

…, e4, e3, e2, e1

…, (a3), (a1)

…, (a3), (a1)

…, (a3b4)

…, (a3b4)

…, (a3f1)

…, (a3b4f1c1)

Recognised CEs

 S
p
litte

r

Event type -
based Split

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

Categorization of Parallelization Approaches in CER

Data Parallelism

Partition-based
[Hirzel et al, DEBS’12]
[Mayer et al, DEBS’16]

State-based
[Balkesen et al, DEBS’13]

Run-based
[Balkesen et al, DEBS’13]

Graph-based
[Mayer et al, DEBS’16]

Hardware-based
[Woods et al, PVLDB’10]

[CudaCEP, JPDC’12]

Task Parallelism

Query-based
[T-REX, JSS’12]

Operator-based
[Moeller et al, DEBS’09]

time

Run-based Parallelization[Balkesen et al, DEBS’13]
› Split stream into overlapping batches of B size

› Size of overlap S = maximal_match_length-1 ≤ B/2

› Assign a batch to one PU

› A PU detects all matches that start in the first B-­S events in a

batch

› Batch-based data partitioning  Load Balancing

N=10, S=3

C

F

A

B D C

F

A

B D C

F

A

B D

PU 2 –
Operator Instance 2

PU 1 –
Operator Instance 1

PU 3 –
Operator Instance 3

time

Run-based Parallelization[Balkesen et al, DEBS’13]

N=10, S=3

C

F

A

B D C

F

A

B D C

F

A

B D

PU 2 –
Operator Instance 2

PU 1 –
Operator Instance 1

PU 3 –
Operator Instance 3

› Split stream into overlapping batches of B size

› Size of overlap S = maximal_match_length-1 ≤ B/2

› Assign a batch to one PU

› A PU detects all matches that start in the first B-­S events in a

batch

› Batch-based data partitioning  Load Balancing

Task Parallelism Data Parallelism

Criterion
Query-
based

Operator-
based

Partition
Key-based

Pattern
sensitive

State-
based

Run-
based

Hybrid

S
e
le

c
ti
o
n

P
o
lic

ie
s

Sc

A
N

D

Pc

Stnm

Stam

C
o
n
s
u
m

p
ti
o

n

P
o
lic

ie
s
 Co

Re

BRe

W
in

d
o
w

P
a
ra

lle
l

TuW

O
R

TiW

A
g
ili

ty
 LB

Rep/
Comm

No one size fit all solution!

Analyze

Plan Actuate

Measure

Elasticity

O
p

e
ra

to
r

P
la

ce
m

e
n

t
Parallelizatio

n
 A

d
ap

tatio
n

Provisioning/statistics collection

Operator Migration

Key Concepts

› First Fit Bin Packing for Operator Placement

› Elastic, Workload Unaware, Resource Allocation

 Local & Global Threshold-based Approach

 Reinforcement Learning Approach

Elastic Resource Allocation in CER – FUGU Approach
[Heinze et al, DB3@VLDB ‘13, DEBS’14]

Q4=3 Q2=3
Q3=5

Q5=1

Q1=6

Q6=2

PU1 PU2 PU3 PU4 PU5

Q4=3 Q2=3
Q3=5 Q1=6

Q6=2
Q5=1

Elastic Resource Allocation in CER – FUGU Approach
[Heinze et al, DB3@VLDB ‘13, DEBS’14]

Key Concepts

› First Fit Bin Packing for Operator Placement

› Elastic, Workload Unaware, Resource Allocation

 Threshold-based

 Approach

Utilization Scale In No Action Scale Out

80% 0.28 0.7 0.88

90% 0.28 0.5 0.9

100% 0.1 0.4 1.0

 Reinforcement

Learning Approach

- Look up table

 describing “benefit”

 of each action based

 on recent experience

Time

Utilization
Upper T 
 Scale Out

Lower T 
Scale In

Yes

Elastic Resource Allocation in CER – Queueing Models
[Mayer et al, IEEE BigData’14]

Key Concepts

› Workload-, Latency-, Load-shedding Aware Scheme

› Choices based on probabilistic buffer limit (BL)

Incoming
Event Queue Q

PU 1

PU C

PU i

…

…

Outgoing
Event Queue

Exponential arrivals
Exponential/

deterministic departures C serving PUs

nowP=P(Q(t)≤BL)<Pthres

?

CC+1

lastP>Pthres?

CC-1

No
Return C

Yes

No

Event Streams

Recognised CEs

Elastic Resource Allocation in CER – Time Series-based
[Zacheilas et al, IEEE BigData’15]

Key Concepts

› Monitor event input rate and processing latency

› Predict their values (Gaussian Processes, SVM, NNs)

› Construct state graph and compute shortest path

Lookahead Time Horizon (H)

1 PU
Init Last

W1

k PUs

…

1 PU

W2

k PUs

…

1 PU

WH

…

k PUs

Cost=0

Cost

Cost(κ PUsλ<κ PUs)

Scalable - Distributed Complex Event Recognition

Why? Well, It’s the Big Data Era

› Volume, Velocity,

CER

System

INPUT ›

.

Streams/Queries

.

OUTPUT

.

Recognised CEs

.

Centralized Architecture

Sequential CER

Veracity Variety,

Scalable - Distributed Complex Event Recognition

CER

INPUT ›

.

Streams/Queries

.

OUTPUT

.

Recognised CEs

.

CER

CER

…

Performance metrics

› Throughput

› CPU utilization

Clustered Architecture

Parallel CER

Tools

› Parallelism

› Elastic Resource

 Allocation

Scalable - Distributed Complex Event Recognition
Networked Architecture: Geographically Distributed CER

› Business User Poses CER queries (business logic)

› The business logic is independent of geographic locations

› Does not specify which operations are performed at each site

› Goal: Use business logic and perform “efficient” CER

› Data Centralization often not possible in Big Data Applications

Distributed CER

per Cluster

Local

Event

Streams

Key Ingredients for Distributed CER in Big Data
Networked Architecture: Geographically Distributed CER

› Tools/Optimizations for reducing data exchange

between clusters

› Architectures that support these tools

› An optimizer: decide best way to distribute business logic

given tools & architecture

Distributed CER

per Cluster

Local

Event

Streams

Tool 1 for In-Situ Processing: Push-Pull Paradigm

› Decreases Network Cost
› Increases Latency
› Increase Buffer Requirements (for cached

events that may be pulled later)
› Same idea can speed up CER WITHIN a

cluster [Kolchinsky et al, DEBS’15]

AND

e1

e2

e3

AND
e1

e2

e3
AND

e1

e2

e3

AND

AND

e3 is pulled when

e1 and e2 appear

e2 is pulled when e1 appears

e3 is pulled when e1 and e2 appear

Key Concept: Do not transmit frequent events, unless rare events
occur. May increase latency but decreases network cost

AND

Rare Event

Frequent

Event

Example: Different ways of evaluating AND

TR

BL BR

TL

Push-Pull Approach for CER [Adkere et al, PVLDB’08]

Key Ideas:
› All operators evaluated at a central site/cluster

› Data pushed/pulled to central location based on desired

optimization criteria

› Bandwidth Cost, Latency, Available Memory

› DP + Greedy Algorithms provided

Sufficient for Big Data CER?
› Processing not actually pushed inside the network

› May not be suitable for large scale distributed topologies

Single site
Operator Graph

P
a
re

to
 O

p
ti
m

a
lit

y

Comm. cost

La
te

n
cy

Tool 2: Distributed Function Monitoring (DFM)

Key Idea:
› Define a function f() over the data of different clusters

› Communicate only when function f() crosses a threshold

Should These

Clusters Communicate?

Cluster Data

Apply f()

on Vector

Tool 2: Distributed Function Monitoring (DFM)

Key Idea:
› Define a function f() over the data of different clusters

› Communicate only when function f() crosses a threshold

› Definition of function depends on desired task

› Simple aggregates of data cross a threshold (i.e., SUM)

› Event frequency statistics have changed significantly

(i.e., Cosine Similary, Pearson Coefficient etc)

› The global model of the data has changed significantly

(Distributed Machine Learning)

› The variance of some data has changed significantly

› And many more…

Key Tool: Geometric Monitoring

› Generic tool

› DFM problem much simpler for linear functions

› One may derive more efficient solutions for specific functions

Basic Tool: Geometric Monitoring (GM) - Setup

› Track if f(v(t))>T

› Works for any f() over the (weighted) average of local vi(t)

Coordinator

N sites

vi(t):local vector(s)
maintained at each

site at time t

S1 SN

Continuous Tracking of
f(v(t))>T or f(v(t))<T

v(t)=
 v i(t)
N
i=1

N

Local data
stream(s)

Basic GM Scheme [Sharfman et al, SIGMOD’06]

ΔV5
ΔV4

ΔV3

ΔV2

e

ΔV1

A
re

a
w

h
er

e
f(

v)
>T

  e(t): Last known average vector

 Sites check f() within

 Β(e+ Δvi/2, ||Δvi||/2)

 If union of Β(e+ Δvi/2, ||Δvi||/2)
crosses the threshold, v(t) may
have crossed the threshold

v(t)

Key Points

› Monitoring done in a distributive way

› Sites perform local tests to see if f() may have crossed T

› Test: find min/max of f() over a sphere (costly!)

› Many improvements have followed…

GM Scheme – Key Advances

Key Problems & Solutions (at a glance)

› Make the local test much simpler and more efficient

› Safe Zones [Keren et al, TKDE’12]

› Check if e+ Δvi is inside a “safe” convex region

› Convex Decomposition + Convex Bounds [Lazerson et al,

PVLDB’15, KDD’16]

› Methodology to help find a good safe zone

GM Scheme – Key Advances (cont)

Key Problems & Solutions (cont.)

› Prediction Models [Giatrakos et al, SIGMOD’12, TODS’14]

› If we can predict the values of the local vectors, can we

do better?

› Sampling [Giatrakos et al, SIGMOD’16]

› For many sites, chances of communication increases 

use sampling

› Sketches [Garofalakis et al, PVLDB’13]

› How to combine GM with sketches if vectors are too large

Key Ingredients for Distributed CER in Big Data

› Tools/Optimizations for reducing data exchange

between clusters

› Push-pull paradigm (for regular event operators)

› Distributed Function Monitoring/GM

› Architectures that support these tools

› An optimizer: decide best way to distribute business logic

given tools & architecture

Distributed CER

per Cluster

Local

Event

Streams

Architectures for Distributed CER in Big Data

› No current support for desired tools for CER

› Push-pull paradigm, Distributed Function Monitoring/GM

› How hard is it to develop them? Simplest approach

› Take a CER engine for distributed (intra-cluster) CER

› Move Distributed Function Monitoring outside the CER

engine

› Easier to write custom code this way

AND

AND

e1

e2

e3

Architectures for Distributed CER in Big Data (cont.)

› How hard is it to develop them? Simplest approach

› The CER engine must emit an event on pull requests

› Event must be handled outside the CER engine

› Emitting events is simple and done for output events

› Pull requests can only occur on state transitions

› Not too much code to add

› Hardest task: out of order data

› Let’s see an example…

AND

AND

e1

e2

e3

The FERARI Approach [Flouris et al, SIGMOD’16]

An Architecture for CER in Big Data Applications

Full-fledged, End-to-end
CER solution

› Distributed CER per

site (using STORM)

› Adaptive

› Distributed

- In-Network

- In-Situ

Processing

FERARI [Flouris et al, SIGMOD’16]: Inside each Cluster
(implementation using STORM)

Statistics for Optimizer

Pull Requests

Handle partitioned states

Out-of-order processing

• Inter-site

communication

• Push/Pull Msgs

• Events etc

• Recall pushed

data per site

Storage of derived events

that may be sent remotely

Satisfies pull requests

Stores GM related data

GM monitoring

Distributed Machine

Learning Operators

10
2

In-Network Processing  Operator Placement Problem
Goals:

› exploit data Variety,

› push computation to sites

Optimizer Inputs

TR

BL BR

TL

Inputs
› Business Logic

› Network Parameters

› Event Frequency Statistics

› Optimization Goals

Network of Sites Operator Graph

TR

BL BR

TL

In-Network Processing  Operator Placement Problem in
Traditional Streaming Settings

› Key Concept: exploit data Variety, push computation to sites

Distributed Complex Event Recognition

Network of Sites

Operator Graph

The FERARI Approach [Flouris et al, SIGMOD’16]

An Architecture for CER in Big Data Applications

Full-fledged, End-to-end
CER solution

› Distributed CER per

site (using STORM)

› Adaptive

› Distributed

- In-Network

- In-Situ

Processing

FERARI Optimizer

Optimizer mostly independent
of underlying CER engine

CER Optimizer

runtime

statistics

Annotated

CER Model

logical plan

physical

plan

event

stream

analyzer

Site Configurations

cost

Consider multiple equivalent

logical plans by query rewriting

For each logical plan

consider different

physical plans

(placement of

operators).

Pick Best

Generate Site

Configurations

JSON, GM,

communication

Check

whether to

adapt plan

Outlook

Future Exciting Research Domains

› IoT Domain

› 100,000s of nodes

› Heterogeneous capabilities

› Not data centers

› How to detect complex events?

› In-situ processing extremely crucial

› Automatic Learning & Adaptation of CER patterns

› Patterns of interest change over time

› Effective Support for Complex Analytics Operators

› E.g., time series analysis, machine learning

› G. Cugola, A. Margara. Processing Flows of Information: From

Data Stream to Complex Event Processing. ACM Computing

Surveys, 2012.

› E. Alevizos, A. Skarlatidis, A. Artikis, G. Paliouras. Probabilistic

Complex Event Recognition: A Survey. ACM Computing

Surveys, 2017.

› G. Cugola, A. Margara. Low latency complex event processing

on parallel hardware. J. Parallel Distrib. Comput., 2012.

› T. Heinze, V. Pappalardo, Z. Jerzak, C. Fetzer. Auto-scaling

techniques for elastic data stream processing. In DEBS, 2014.

› R. Mayer, B. Koldehofe, K. Rothermel. Meeting predictable

buffer limits in the parallel execution of event processing

operators. In IEEE BigData, 2014.

› I. Kolchinsky, I. Sharfman, A. Schuster. Lazy evaluation

methods for detecting complex events. In DEBS, 2015.

Additional Readings (beyond what is in tutorial’s abstract)

› N. Giatrakos, A. Deligiannakis, M. Garofalakis. Scalable

Approximate Query Tracking over Highly Distributed Data

Streams. In SIGMOD, 2016.

› D. Keren, I. Sharfman, A. Schuster, A. Livne: Shape Sensitive

Geometric Monitoring. IEEE Trans. Knowl. Data Eng., 2012.

› A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M.

Garofalakis, V. Samoladas: Monitoring Distributed Streams

using Convex Decompositions. PVLDB, 2015.

› A. Lazerson, D. Keren, A. Schuster: Lightweight Monitoring of

Distributed Streams. In KDD, 2016.

› M. Garofalakis, D. Keren, V. Samoladas: Sketch-based

Geometric Monitoring of Distributed Stream Queries. PVLDB,

2013.

Additional Readings (beyond what is in tutorial’s abstract)

