Streaming in a Connected World:
Querying and Tracking
Distributed Data Streams

Graham Cormode
AT&T Labs - Research
graham@research.att.com

Minos Garofalakis
Yahoo! Research & UC Berkeley
minos@acm.org

Streams – A Brave New World

- **Traditional DBMS**: data stored in *finite, persistent data sets*

- **Data Streams**: distributed, continuous, unbounded, rapid, time varying, noisy, . . .

- **Data-Stream Management**: variety of modern applications
 - Network monitoring and traffic engineering
 - Sensor networks
 - Telecom call-detail records
 - Network security
 - Financial applications
 - Manufacturing processes
 - Web logs and clickstreams
 - Other massive data sets . . .
24x7 IP packet/flow data-streams at network elements
- Truly massive streams arriving at rapid rates
 - AT&T collects 600-800 Gigabytes of NetFlow data each day.
- Often shipped off-site to data warehouse for off-line analysis

Example NetFlow IP Session Data

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination</th>
<th>Duration</th>
<th>Bytes</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.6.2</td>
<td>16.2.3.7</td>
<td>12</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>16.8.7.1</td>
<td>12.4.0.3</td>
<td>16</td>
<td>24K</td>
<td>http</td>
</tr>
<tr>
<td>13.9.4.3</td>
<td>11.6.8.2</td>
<td>15</td>
<td>20K</td>
<td>http</td>
</tr>
<tr>
<td>15.2.2.9</td>
<td>17.1.2.1</td>
<td>19</td>
<td>40K</td>
<td>http</td>
</tr>
<tr>
<td>12.4.3.8</td>
<td>14.8.7.4</td>
<td>26</td>
<td>58K</td>
<td>http</td>
</tr>
<tr>
<td>10.5.1.3</td>
<td>13.0.0.1</td>
<td>27</td>
<td>100K</td>
<td>ftp</td>
</tr>
<tr>
<td>11.1.0.6</td>
<td>10.3.4.5</td>
<td>32</td>
<td>300K</td>
<td>ftp</td>
</tr>
<tr>
<td>19.7.1.2</td>
<td>16.5.5.8</td>
<td>18</td>
<td>80K</td>
<td>ftp</td>
</tr>
</tbody>
</table>

2

Network Monitoring Queries

- Off-line analysis – slow, expensive
 - SELECT COUNT (R1.source, R2.dest) FROM R1, R2 WHERE R1.dest = R2.source

- Set-Expression Query

- SQL Join Query
Real-Time Data-Stream Analysis

- Must process network streams in *real-time* and *one pass*
- Critical NM tasks: fraud, DoS attacks, SLA violations
 - Real-time traffic engineering to improve utilization
- Tradeoff communication and computation to reduce load
 - Make responses fast, minimize use of network resources
 - Secondarily, minimize space and processing cost at nodes

Sensor Networks

- Wireless sensor networks becoming ubiquitous in environmental monitoring, military applications, ...
- Many (100s, 10^3, 10^6?) sensors scattered over terrain
- Sensors observe and process a local stream of readings:
 - Measure light, temperature, pressure…
 - Detect signals, movement, radiation…
 - Record audio, images, motion…
Sensornet Querying Application

- Query sensornet through a (remote) base station
- Sensor nodes have severe resource constraints
 - Limited battery power, memory, processor, radio range…
 - Communication is the major source of battery drain
 - “transmitting a single bit of data is equivalent to 800 instructions” [Madden et al.'02]

http://www.intel.com/research/exploratory/motes.htm

Data-Stream Algorithmics Model

- Approximate answers—e.g. trend analysis, anomaly detection
- Requirements for stream synopses
 - Single Pass: Each record is examined at most once
 - Small Space: Log or polylog in data stream size
 - Small-time: Low per-record processing time (maintain synopses)
 - Also: delete-proof, composable, …
Distributed Streams Model

- Large-scale querying/monitoring: *Inherently distributed*!
 - Streams physically distributed across remote sites
 E.g., stream of UDP packets through subset of edge routers
- Challenge is “holistic” querying/monitoring
 - Queries over the union of distributed streams $Q(S_1 \cup S_2 \cup \ldots)$
 - Streaming data is spread throughout the network

- Need timely, accurate, and efficient query answers
- Additional complexity over centralized data streaming!
- Need space/time- *and communication-efficient* solutions
 - Minimize network overhead
 - Maximize network lifetime (e.g., sensor battery life)
 - Cannot afford to “centralize” all streaming data
Distributed Stream Querying Space

“One-shot” vs. Continuous Querying

- **One-shot queries**: On-demand “pull” query answer from network
 - One or few rounds of communication
 - Nodes may prepare for a class of queries
- **Continuous queries**: *Track/monitor* answer at query site *at all times*
 - Detect anomalous/outlier behavior *in (near) real-time*, i.e., “Distributed triggers”
 - Challenge is to minimize communication
 Use “push-based” techniques
 May use one-shot algs as subroutines

Minimizing communication often needs approximation and randomization

- E.g., Continuously monitor average value
 - Must send every change for exact answer
 - Only need ‘significant’ changes for approx
 (def. of “significant” specifies an algorithm)
- Probability sometimes vital to reduce communication
 - count distinct in one shot model needs randomness
 - Else must send complete data
Class of Queries of Interest
- Simple algebraic vs. holistic aggregates
 - E.g., count/max vs. quantiles/top-k
- Duplicate-sensitive vs. duplicate-insensitive
 - “Bag” vs. “set” semantics
- Complex correlation queries
 - E.g., distributed joins, set expressions, …

\[|(S_1 \cup S_2) \Box (S_5 \cup S_6)| \]
Some Disclaimers...

- We focus on aspects of *physical distribution* of streams
 - Several earlier surveys of (centralized) streaming algorithms and systems
 [Babcock et al.'02; Garofalakis et al.'02; Koudas, Srivastava '03; Muthukrishnan '03] ...

- Fairly broad coverage, but still biased view of distributed data-streaming world
 - Revolve around personal biases (line of work and interests)
 - Main focus on key algorithmic concepts, tools, and results
 - Only minimal discussion of systems/prototypes
 - A lot more out there, esp. on related world of sensor nets
 [Madden '06]

Tutorial Outline

- Introduction, Motivation, Problem Setup
- One-Shot Distributed-Stream Querying
 - Tree Based Aggregation
 - Robustness and Loss
 - Decentralized Computation and Gossiping
- Continuous Distributed-Stream Tracking
- Probabilistic Distributed Data Acquisition
- Future Directions & Open Problems
- Conclusions
Tree Based Aggregation

Network Trees

- Tree structured networks are a basic primitive
 - Much work in e.g. sensor nets on building communication trees
 - We assume that tree has been built, focus on issues with a fixed tree
Computation in Trees

- Goal is for root to compute a function of data at leaves
- Trivial solution: push all data up tree and compute at base station
 - Strains nodes near root: batteries drain, disconnecting network
 - Very wasteful: no attempt at saving communication
- Can do much better by “In-network” query processing
 - Simple example: computing \(\text{max} \)
 - Each node hears from all children, computes max and sends to parent (each node sends only one item)

Efficient In-network Computation

- What are aggregates of interest?
 - SQL Primitives: \(\text{min}, \text{max}, \text{sum}, \text{count}, \text{avg} \)
 - More complex: \(\text{count distinct}, \) point & range queries, quantiles, wavelets, histograms, sample
 - Data mining: association rules, clusterings etc.
- Some aggregates are easy – e.g., SQL primitives
- Can set up a formal framework for in network aggregation
Generate, Fuse, Evaluate Framework

- Abstract in-network aggregation. Define functions:
 - Generate, \(g(i) \): take input, produce summary (at leaves)
 - Fusion, \(f(x,y) \): merge two summaries (at internal nodes)
 - Evaluate, \(e(x) \): output result (at root)

- E.g. \(\text{max} \): \(g(i) = i \) \(f(x,y) = \max(x,y) \) \(e(x) = x \)
- E.g. \(\text{avg} \): \(g(i) = (i,1) \) \(f((i,j),(k,l)) = (i+k,j+l) \) \(e(i,j) = i/j \)

- Can specify any function with \(g(i) = [i], f(x,y) = x \cup y \)

Want to bound \(|f(x,y)| \)

Classification of Aggregates

- Different properties of aggregates (from TAG paper [Madden et al '02])
 - Duplicate sensitive – is answer same if multiple identical values are reported?
 - Example or summary – is result some value from input (\(\text{max} \)) or a small summary over the input (\(\text{sum} \))
 - Monotonicity – is \(F(X \cup Y) \) monotonic compared to \(F(X) \) and \(F(Y) \) (affects push down of selections)
 - Partial state – are \(|g(x)|, |f(x,y)| \) constant size, or growing? Is the aggregate algebraic, or holistic?
Classification of some aggregates

<table>
<thead>
<tr>
<th></th>
<th>Duplicate Sensitive</th>
<th>Example or summary</th>
<th>Monotonic</th>
<th>Partial State</th>
</tr>
</thead>
<tbody>
<tr>
<td>min, max</td>
<td>No</td>
<td>Example</td>
<td>Yes</td>
<td>algebraic</td>
</tr>
<tr>
<td>sum, count</td>
<td>Yes</td>
<td>Summary</td>
<td>Yes</td>
<td>algebraic</td>
</tr>
<tr>
<td>average</td>
<td>Yes</td>
<td>Summary</td>
<td>No</td>
<td>algebraic</td>
</tr>
<tr>
<td>median, quantiles</td>
<td>Yes</td>
<td>Example</td>
<td>No</td>
<td>holistic</td>
</tr>
<tr>
<td>count distinct</td>
<td>No</td>
<td>Summary</td>
<td>Yes</td>
<td>holistic</td>
</tr>
<tr>
<td>sample</td>
<td>Yes</td>
<td>Example(s)</td>
<td>No</td>
<td>algebraic?</td>
</tr>
<tr>
<td>histogram</td>
<td>Yes</td>
<td>Summary</td>
<td>No</td>
<td>holistic</td>
</tr>
</tbody>
</table>

adapted from [Madden et al.’02]

Cost of Different Aggregates

Simulation Results
- 2500 Nodes
- 50x50 Grid
- Depth = ~10
- Neighbors = ~20
- Uniform Dist.
Holistic Aggregates

- Holistic aggregates need the whole input to compute (no summary suffices)
 - E.g., count distinct, need to remember all distinct items to tell if new item is distinct or not
- So focus on approximating aggregates to limit data sent
 - Adopt ideas from sampling, data reduction, streams etc.
- Many techniques for in-network aggregate approximation:
 - Sketch summaries
 - Other mergable summaries
 - Building uniform samples, etc…

Sketch Summaries

- Sketch summaries are typically pseudo-random linear projections of data. Fits generate/fuse/evaluate model:
 - Suppose input is vectors x_i and aggregate is $F(\sum_i x_i)$
 - Sketch of x_i, $g(x_i)$, is a matrix product Mx_i
 - Combination of two sketches is their summation:
 $$ f(g(x_i), g(x_j)) = M(x_i + x_j) = Mx_i + Mx_j = g(x_i) + g(x_j) $$
 - Extraction function $e()$ depends on sketch, different sketches allow approximation of different aggregates.
CM Sketch

- Simple sketch idea, can be used for point queries, range queries, quantiles, join size estimation.
- Model input at each node as a vector x_i of dimension U, U is too large to send whole vectors
- Creates a small summary as an array of $w \times d$ in size
- Use d hash function to map vector entries to $[1..w]$

![CM Sketch Diagram]

CM Sketch Structure

- Each entry in vector x is mapped to one bucket per row.
- Merge two sketches by entry-wise summation
- Estimate $x_i[j]$ by taking \min_k sketch$[k,h_k(j)]$

[Cormode, Muthukrishnan ’04]
Sketch Summary

- CM sketch guarantees approximation error on point queries less than $\epsilon||x||_1$ in size $O(1/\epsilon \log 1/\delta)$
 - Probability of more error is less than $1-\delta$
 - Similar guarantees for range queries, quantiles, join size
- AMS sketches approximate self-join and join size with error less than $\epsilon||x||_2 ||y||_2$ in size $O(1/\epsilon^2 \log 1/\delta)$
 - [Alon, Matias, Szegedy ’96, Alon, Gibbons, Matias, Szegedy ’99]
- FM sketches approximate number of distinct items ($||x||_0$) with error less than $\epsilon||x||_0$ in size $O(1/\epsilon^2 \log 1/\delta)$
 - FM sketch in more detail later [Flajolet, Martin ’83]
- Bloom filters: compactly encode sets in sketch like fashion

Other approaches: Careful Merging

- Approach 1. Careful merging of summaries
 - Small summaries of a large amount of data at each site
 - E.g., Greenwald-Khanna algorithm (GK) keeps a small data structure to allow quantile queries to be answered
 - Can sometimes carefully merge summaries up the tree
 Problem: if not done properly, the merged summaries can grow very large as they approach root
 - Balance final quality of answer against number of merges by decreasing approximation quality (precision gradient)
 - See [Greenwald, Khanna ’04; Manjhi et al.’05; Manjhi, Nath, Gibbons ’05]
Other approaches: Domain Aware

- **Approach 2. Domain-aware Summaries**
 - Each site sees information drawn from discrete domain [1...U] – e.g. IP addresses, $U = 2^{32}$
 - Build summaries by imposing tree-structure on domain and keeping counts of nodes representing subtrees
 - [Agrawal et al ’04] show $O(1/\varepsilon \log U)$ size summary for quantiles and range & point queries
 - Can merge repeatedly without increasing error or summary size

Other approaches: Random Samples

- **Approach 3. Uniform random samples**
 - As in centralized databases, a uniform random sample of size $O(1/\varepsilon^2 \log 1/\delta)$ answers many queries
 - Can collect a random sample of data from each node, and merge up the tree (will show algorithms later)
 - Works for frequent items, quantile queries, histograms
 - No good for count distinct, min, max, wavelets…
Thoughts on Tree Aggregation

- Some methods too heavyweight for today’s sensor nets, but as technology improves may soon be appropriate.
- Most are well suited for, e.g., wired network monitoring.
 - Trees in wired networks often treated as flat, i.e. send directly to root without modification along the way.
- Techniques are fairly well-developed owing to work on data reduction/summarization and streams.
- Open problems and challenges:
 - Improve size of larger summaries.
 - Avoid randomized methods? Or use randomness to reduce size?

Robustness and Loss
Unreliability

- Tree aggregation techniques assumed a reliable network
 - we assumed no node failure, nor loss of any message
- Failure can dramatically affect the computation
 - E.g., sum – if a node near the root fails, then a whole subtree may be lost
- Clearly a particular problem in sensor networks
 - If messages are lost, maybe can detect and resend
 - If a node fails, may need to rebuild the whole tree and re-run protocol
 - Need to detect the failure, could cause high uncertainty

Sensor Network Issues

- Sensor nets typically based on radio communication
 - So broadcast (within range) cost the same as unicast
 - Use multi-path routing: improved reliability, reduced impact of failures, less need to repeat messages
- E.g., computation of max
 - structure network into rings of nodes in equal hop count from root
 - listen to all messages from ring below, then send max of all values heard
 - converges quickly, high path diversity
 - each node sends only once, so same cost as tree
Order and Duplicate Insensitivity

- It works because \textbf{max} is Order and Duplicate Insensitive (ODI) \cite{Nath04}
- Make use of the same \(e(), f(), g()\) framework as before
- Can prove correct if \(e(), f(), g()\) satisfy properties:
 - \(g\) gives same output for duplicates: \(i=j \Rightarrow g(i) = g(j)\)
 - \(f\) is associative and commutative:
 \[f(x,y) = f(y,x); f(x,f(y,z)) = f(f(x,y),z)\]
 - \(f\) is same-synopsis idempotent: \(f(x,x) = x\)
- Easy to check \textbf{min, max} satisfy these requirements, \textbf{sum} does not

Applying ODI idea

- Only \textbf{max} and \textbf{min} seem to be “naturally” ODI
- How to make ODI summaries for other aggregates?
- Will make use of duplicate insensitive primitives:
 - Flajolet-Martin Sketch (FM)
 - Min-wise hashing
 - Random labeling
 - Bloom Filter
FM Sketch

- Estimates number of distinct inputs (**count distinct**)
- Uses hash function mapping input items to i with prob 2^i
 - i.e. $\text{Pr}[h(x) = 1] = \frac{1}{2}$, $\text{Pr}[h(x) = 2] = \frac{1}{4}$, $\text{Pr}[h(x) = 3] = \frac{1}{8}$ …
 - Easy to construct $h()$ from a uniform hash function by counting trailing zeros
- Maintain FM Sketch = bitmap array of $L = \log U$ bits
 - Initialize bitmap to all 0s
 - For each incoming value x, set FM[$h(x)$] = 1

$x = 5 \quad h(x) = 3$

```
FM BITMAP
0 0 0 1 0 0
```

FM Analysis

- If d distinct values, expect $d/2$ map to FM[1], $d/4$ to FM[2]…

<table>
<thead>
<tr>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Let R = position of rightmost zero in FM, indicator of $\log(d)$
- Basic estimate $d = c2^R$ for scaling constant $c \approx 1.3$
- Average many copies (different hash fns) improves accuracy
FM Sketch – ODI Properties

- Fits into the Generate, Fuse, Evaluate framework.
 - Can fuse multiple FM summaries (with same hash $h()$): take bitwise-OR of the summaries
- With $O(1/\varepsilon^2 \log 1/\delta)$ copies, get $(1\pm\varepsilon)$ accuracy with probability at least $1-\delta$
 - 10 copies gets $\approx 30\%$ error, 100 copies $< 10\%$ error
 - Can pack FM into eg. 32 bits. Assume $h()$ is known to all.
- Similar ideas used in [Gibbons, Tirthapura ’01]
 - improves time cost to create summary, simplifies analysis

FM within ODI

- What if we want to count, not count distinct?
 - E.g., each site i has a count c_i, we want $\sum_i c_i$
 - Tag each item with site ID, write in unary: $(i,1), (i,2)\ldots (i,c_i)$
 - Run FM on the modified input, and run ODI protocol
- What if counts are large?
 - Writing in unary might be too slow, need to make efficient
 - [Considine et al.’05]: simulate a random variable that tells which entries in sketch are set
 - [Aduri, Tirthapura ’05]: allow range updates, treat (i,c_i) as range.
Other applications of FM in ODI

- Can take sketches and other summaries and make them ODI by replacing counters with FM sketches
 - CM sketch + FM sketch = CMFM, ODI point queries etc.
 [Cormode, Muthukrishnan '05]
 - Q-digest + FM sketch = ODI quantiles
 [Hadjieleftheriou, Byers, Kollos '05]
 - Counts and sums
 [Nath et al.'04, Considine et al.'05]

Combining ODI and Tree

- Tributaries and Deltas idea
 [Manjhi, Nath, Gibbons '05]
- Combine small synopsis of tree-based aggregation with reliability of ODI
 - Run tree synopsis at edge of network, where connectivity is limited (tributary)
 - Convert to ODI summary in dense core of network (delta)
 - Adjust crossover point adaptively
Random Samples

- Suppose each node has a (multi)set of items.
- How to find a random sample of the union of all sets?
- Use a “random tagging” trick [Nath et al.'05]:
 - For each item, attach a random label in range \([0…1]\)
 - Pick the items with the \(K\) smallest labels to send
 - Merge all received items, and pick \(K\) smallest labels

\[
\begin{align*}
\text{(a, 0.34)} & \quad \text{(a, 0.34)} \\
\text{(d, 0.57)} & \quad \text{(a, 0.34)} \\
\text{(c, 0.77)} & \quad \text{(c, 0.77)} \\
\text{(b, 0.92)} & \quad \text{K=1}
\end{align*}
\]

Uniform random samples

- Result at the coordinator:
 - A sample of size \(K\) items from the input
 - Can show that the sample is chosen uniformly at random without replacement (could make “with replacement”)
- Related to \textit{min-wise hashing}
 - Suppose we want to sample from distinct items
 - Then replace random tag with hash value on item name
 - Result: uniform sample from set of present items
- Sample can be used for quantiles, frequent items etc.
Bloom Filters

- Bloom filters compactly encode set membership
 - k hash functions map items to bit vector k times
 - Set all k entries to 1 to indicate item is present
 - Can lookup items, store set of size n in $\sim 2n$ bits

Bloom filters are ODI, and merge like FM sketches

Open Questions and Extensions

- Characterize all queries – can everything be made ODI with small summaries?
- How practical for different sensor systems?
 - Few FM sketches are very small (10s of bytes)
 - Sketch with FMss for counters grow large (100s of KBs)
 - What about the computational cost for sensors?
- Amount of randomness required, and implicit coordination needed to agree hash functions etc.?
- Other implicit requirements: unique sensor IDs?
Decentralized Computation and Gossiping

Decentralized Computations

- All methods so far have a single point of failure: if the base station (root) dies, everything collapses
- An alternative is Decentralized Computation
 - Everyone participates in computation, all get the result
 - Somewhat resilient to failures / departures
- Initially, assume anyone can talk to anyone else directly
Gossiping

- "Uniform Gossiping" is a well-studied protocol for spreading information
 - I know a secret, I tell two friends, who tell two friends …
 - Formally, each round, everyone who knows the data sends it to one of the n participants chosen at random
 - After $O(\log n)$ rounds, all n participants know the information (with high probability) [Pittel 1987]

Aggregate Computation via Gossip

- Naïve approach: use uniform gossip to share all the data, then everyone can compute the result.
 - Slightly different situation: gossiping to exchange n secrets
 - Need to store all results so far to avoid double counting
 - Messages grow large: end up sending whole input around
ODI Gossiping

- If we have an ODI summary, we can gossip with this.
 - When new summary received, merge with current summary
 - ODI properties ensure repeated merging stays accurate
- Number of messages required is same as uniform gossip
 - After $O(\log n)$ rounds everyone knows the merged summary
 - Message size and storage space is a single summary
 - $O(n \log n)$ messages in total
 - So works for FM, FM-based sketches, samples etc.

Aggregate Gossiping

- ODI gossiping doesn’t always work
 - May be too heavyweight for really restricted devices
 - Summaries may be too large in some cases
- An alternate approach due to [Kempe et al. ’03]
 - A novel way to avoid double counting: split up the counts and use “conservation of mass”.
Push-Sum

- Setting: all \(n \) participants have a value, want to compute average
- Define "**Push-Sum**" protocol
 - In round \(t \), node \(i \) receives set of \((\text{sum}_i^{t-1}, \text{count}_i^{t-1})\) pairs
 - Compute \(\text{sum}_i^t = \sum_j \text{sum}_j^{t-1} \), \(\text{count}_i^t = \sum_j \text{count}_j \)
 - Pick \(k \) uniformly from other nodes
 - Send \((\frac{1}{2} \text{sum}_i^t, \frac{1}{2} \text{count}_i^t)\) to \(k \) and to \(i \) (self)
- Round zero: send \((\text{value}, 1)\) to self
- Conservation of counts: \(\sum_i \text{sum}_i^t \) stays same
- Estimate \(\text{avg} = \frac{\text{sum}_i^t}{\text{count}_i^t} \)

Push-Sum Convergence

![Diagram of Push-Sum Convergence](image)
Convergence Speed

- Can show that after $O(\log n + \log 1/\varepsilon + \log 1/\delta)$ rounds, the protocol converges within ε
 - n = number of nodes
 - ε = (relative) error
 - δ = failure probability
- Correctness due in large part to conservation of counts
 - Sum of values remains constant throughout
 - (Assuming no loss or failure)

Resilience to Loss and Failures

- Some resilience comes for “free”
 - If node detects message was not delivered, delay 1 round then choose a different target
 - Can show that this only increases number of rounds by a small constant factor, even with many losses
 - Deals with message loss, and “dead” nodes without error
- If a node fails during the protocol, some “mass” is lost, and count conservation does not hold
 - If the mass lost is not too large, error is bounded…

\[x + y \text{ lost from computation} \]
Gossip on Vectors

- Can run **Push-Sum** independently on each entry of vector
- More strongly, generalize to **Push-Vector**:
 - Sum incoming vectors
 - Split sum: half for self, half for randomly chosen target
 - Can prove same conservation and convergence properties
- Generalize to sketches: a sketch is just a vector
 - But ϵ error on a sketch may have different impact on result
 - Require $O(\log n + \log 1/\epsilon + \log 1/\delta)$ rounds as before
 - Only store $O(1)$ sketches per site, send 1 per round

 Thoughts and Extensions

- How realistic is complete connectivity assumption?
 - In sensor nets, nodes only see a local subset
 - Variations: spatial gossip ensures nodes hear about local events with high probability [Kempe, Kleinberg, Demers '01]
- Can do better with more structured gossip, but impact of failure is higher [Kashyap et al.'06]
- Is it possible to do better when only a subset of nodes have relevant data and want to know the answer?
Tutorial Outline

- Introduction, Motivation, Problem Setup
- One-Shot Distributed-Stream Querying
- Continuous Distributed-Stream Tracking
 - Adaptive Slack Allocation
 - Predictive Local-Stream Models
 - Distributed Triggers
- Probabilistic Distributed Data Acquisition
- Future Directions & Open Problems
- Conclusions

Continuous Distributed Model

- Other structures possible (e.g., hierarchical)
- Could allow site-site communication, but mostly unneeded

Goal: Continuously track (global) query over streams at the coordinator
 - Large-scale network-event monitoring, real-time anomaly/ DDoS attack detection, power grid monitoring, …
Continuous Distributed Streams

- But... local site streams continuously change!
 - E.g., new readings are made, new data arrives
 - Assumption: Changes are somewhat smooth and gradual
- Need to guarantee an answer at the coordinator that is always correct, within some guaranteed accuracy bound
- Naïve solutions must continuously centralize all data
 - Enormous communication overhead!

![Diagram](image1.png)

Challenges

- Monitoring is Continuous...
 - Real-time tracking, rather than one-shot query/response
- ...Distributed...
 - Each remote site only observes part of the global stream(s)
 - Communication constraints: must minimize monitoring burden
- ...Streaming...
 - Each site sees a high-speed local data stream and can be resource (CPU/memory) constrained
- ...Holistic...
 - Challenge is to monitor the complete global data distribution
 - Simple aggregates (e.g., aggregate traffic) are easier
How about Periodic Polling?

- Sometimes periodic polling suffices for simple tasks
 - E.g., SNMP polls total traffic at coarse granularity
- Still need to deal with holistic nature of aggregates
- Must balance polling frequency against communication
 - Very frequent polling causes high communication, excess battery use in sensor networks
 - Infrequent polling means delays in observing events
- Need techniques to reduce communication while guaranteeing rapid response to events

Communication-Efficient Monitoring

- Exact answers are not needed
 - Approximations with accuracy guarantees suffice
 - Tradeoff accuracy and communication/processing cost
- Key Insight: “Push-based” in-network processing
 - Local filters installed at sites process local streaming updates
 - Offer bounds on local-stream behavior (at coordinator)
 - “Push” information to coordinator only when filter is violated
 - Coordinator sets/adjusts local filters to guarantee accuracy
A key idea is Slack Allocation. Because we allow approximation, there is slack: the tolerance for error between computed answer and truth.
- May be absolute: $|Y - \hat{Y}| \leq \varepsilon$: slack is ε
- Or relative: $\hat{Y}/Y \leq (1 \pm \varepsilon)$: slack is εY

For a given aggregate, show that the slack can be divided between sites.

Will see different slack division heuristics.
Top-k Monitoring

- Influential work on monitoring [Babcock, Olston’03]
 - Introduces some basic heuristics for dividing slack
 - Use local offset parameters so that all local distributions look like the global distribution
 - Attempt to fix local slack violations by negotiation with coordinator before a global readjustment
 - Showed that message delay does not affect correctness

Top-k Scenario

- Each site monitors \(n \) objects with local counts \(V_{i,j} \)
- Values change over time with updates seen at site \(j \)
- Global count \(V_i = \sum_j V_{i,j} \)
- Want to find \(\text{top}_k \), an \(\varepsilon \)-approximation to true top-\(k \) set:
 - OK provided \(i \in \text{top}_k, l \notin \text{top}_k, V_i + \varepsilon \geq V_l \)
 - Gives a little "wiggle room"
Adjustment Factors

- Define a set of ‘adjustment factors’, δ_{ij}
 - Make top-k of $V_{ij} + \delta_{ij}$ same as top-k of V_i

- Maintain invariants:
 1. For item i, adjustment factors sum to zero
 2. $\delta_{i,0}$ of non-topk item $l \leq \delta_{i,0} + \epsilon$ of topk item i
 - Invariants and local conditions used to prove correctness

Local Conditions and Resolution

Local Conditions:
At each site j check adjusted topk counts dominate non-topk

$$
\begin{align*}
\delta_{ij} & \geq \\
V_{ij} & \quad \text{i } \in \text{ topk} \\
V_{lj} & \quad \text{l } \notin \text{ topk}
\end{align*}
$$

If any local condition violated at site j, resolution is triggered

- Local resolution: site j and coordinator only try to fix
 - Try to “borrow” from $\delta_{i,0}$ and $\delta_{i,0}$ to restore condition

- Global resolution: if local resolution fails, contact all sites
 - Collect all affected V_{ij}'s, ie. topk plus violated counts
 - Compute slacks for each count, and reallocate (next)
 - Send new adjustment factors δ_{ij}', continue
Slack Division Strategies

- Define “slack” based on current counts and adjustments
- What fraction of slack to keep back for coordinator?
 - $\delta_{i,0} = 0$: No slack left to fix local violations
 - $\delta_{i,0} = 100\%$ of slack: Next violation will be soon
 - Empirical setting: $\delta_{i,0} = 50\%$ of slack when ε very small
 $\delta_{i,0} = 0$ when ε is large ($\varepsilon > V/1000$)

- How to divide remainder of slack?
 - Uniform: $1/m$ fraction to each site
 - Proportional: $V_{i,j}/V_i$ fraction to site j for i

Pros and Cons

- Result has many advantages:
 - Guaranteed correctness within approximation bounds
 - Can show convergence to correct results even with delays
 - Communication reduced by 1 order magnitude
 (compared to sending $V_{i,j}$ whenever it changes by ε/m)

- Disadvantages:
 - Reallocation gets complex: must check $O(km)$ conditions
 - Need $O(n)$ space at each site, $O(mn)$ at coordinator
 - Large ($\approx O(k)$) messages
 - Global resyncs are expensive: m messages to k sites
Other Problems: Aggregate Values

- Problem 1: Single value tracking
 Each site has one value v_i, want to compute $f(v)$, e.g., sum
 - Allow small bound of uncertainty in answer
 - Divide uncertainty (slack) between sites
 - If new value is outside bounds, re-center on new value
 - Naïve solution: allocate equal bounds to all sites
 - Values change at different rates; queries may overlap
 - Adaptive filters approach [Olston, Jiang, Widom ’03]
 - Shrink all bounds and selectively grow others: moves slack from stable values to unstable ones
 - Base growth on frequency of bounds violation, optimize

Other Problems: Set Expressions

- Problem 2: Set Expression Tracking
 $A \cup (B \cap C)$ where A, B, C defined by distributed streams
 - Key ideas [Das et al.’04]:
 - Use semantics of set expression: if b arrives in set B, but b already in set A, no need to send
 - Use cardinalities: if many copies of b seen already, no need to send if new copy of b arrives or a copy is deleted
 - Combine these to create a charging scheme for each update: if sum of charges is small, no need to send.
 - Optimizing charging is NP-hard, heuristics work well.
Other Problems: ODI Aggregates

- Problem 3: ODI aggregates
e.g., count distinct in continuous distributed model

- Two important parameters emerge:
 - How to divide the slack
 - What the site sends to coordinator

- In [Cormode et al.’06]:
 - Share slack evenly: hard to do otherwise for this aggregate
 - Sharing sketch of global distribution saves communication
 - Better to be lazy: send sketch in reply, don’t broadcast

General Lessons

- Break a global (holistic) aggregate into “safe” local conditions, so local conditions ⇒ global correctness
- Set local parameters to help the tracking
- Use the approximation to define slack, divide slack between sites (and the coordinator)
- Avoid global reconciliation as much as possible, try to patch things up locally
Predictive Local-Stream Models

More Sophisticated Local Predictors

- Slack allocation methods use simple “static” prediction
 - Site value implicitly assumed constant since last update
 - No update from site ⇒ last update (“predicted” value) is within required slack bounds ⇒ global error bound

- Dynamic, more sophisticated prediction models for local site behavior?
 - Model complex stream patterns, reduce number of updates to coordinator
 - But... more complex to maintain and communicate (to coordinator)
Tracking Complex Aggregate Queries

- Continuous distributed tracking of complex aggregate queries using AMS sketches and local prediction models [Comode, Garofalakis’05]
- **Class of queries:** Generalized inner products of streams

\[
|R \bowtie S| = f_R \cdot f_S = \sum_v f_R[v] f_S[v] \quad (\pm \varepsilon ||f_R||_2 ||f_S||_2)
\]

- Join/multi-join aggregates, range queries, heavy hitters, histograms, wavelets, …

Local Sketches and Sketch Prediction

- Use (AMS) sketches to summarize local site distributions
 - Synopsis=small collection of random linear projections \(sk(f_{R,i}) \)
 - **Linear transform:** Simply add to get global stream sketch

- Minimize updates to coordinator through **Sketch Prediction**
 - Try to predict how local-stream distributions (and their sketches) will evolve over time
 - Concise **sketch-prediction models**, built locally at remote sites and communicated to coordinator
 - **Shared knowledge** on expected stream behavior over time: Achieve “stability”
Sketch Prediction

- **Predicted Distribution** f_{Ri}^P → **Predicted Sketch** $\text{sk}^P(f_{Ri})$
 - Prediction used at coordinator for query answering
- **True Distribution (at site)** f_{Ri} → **True Sketch (at site)** $\text{sk}(f_{Ri})$
 - Prediction error tracked locally by sites (local constraints)

Query Tracking Scheme

Tracking. At site j keep sketch of stream so far, $\text{sk}(f_{Ri,j})$
- Track local deviation between stream and prediction:
 \[|| \text{sk}(f_{Ri,j}) - \text{sk}^P(f_{Ri,j}) ||_2 \leq \theta'k \ || \text{sk}(f_{Ri,j}) ||_2 \]
- Send current sketch (and other info) if violated

Querying. At coordinator, query error $\leq (\epsilon + 2\theta)||f_{Ri}||_2||f_{SI}||_2$
- $\epsilon =$ local-sketch summarization error (at remote sites)
- $\theta =$ upper bound on local-stream deviation from prediction ("Lag" between remote-site and coordinator view)

- **Key Insight:** With local deviations bounded, the predicted sketches at coordinator are **guaranteed accurate**
Sketch-Prediction Models

- **Simple, concise** models of local-stream behavior
 - Sent to coordinator to keep site/coordinator “in-sync”
 - Many possible alternatives

- **Static model**: No change in distribution since last update
 - Naïve, “no change” assumption:
 - No model info sent to coordinator, $sk^p(f(t)) = sk(f(t_{prev}))$

\[
\begin{align*}
 f(t_{prev}) & \rightarrow f^p(t) \\
 f(t_{prev}) & \rightarrow f^p(t) = f(t_{prev}) + \Delta t \cdot v
\end{align*}
\]

Sketch-Prediction Models

- **Velocity model**: Predict change through “velocity” vectors from recent local history (simple linear model)
 - Velocity model: $f^p(t) = f(t_{prev}) + \Delta t \cdot v$
 - By sketch linearity, $sk^p(f(t)) = sk(f(t_{prev})) + \Delta t \cdot sk(v)$
 - Just need to communicate one extra sketch
 - Can extend with acceleration component

\[
\begin{align*}
 f(t_{prev}) & \rightarrow f^p(t) = f(t_{prev}) + \Delta t \cdot v
\end{align*}
\]
Sketch-Prediction Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Info</th>
<th>Predicted Sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>\emptyset</td>
<td>$sk^p(f(t)) = sk(f(t_{prev}))$</td>
</tr>
<tr>
<td>Velocity</td>
<td>$sk(v)$</td>
<td>$sk^p(f(t)) = sk(f(t_{prev})) + \Delta t \cdot sk(v)$</td>
</tr>
</tbody>
</table>

- 1 – 2 orders of magnitude savings over sending all data

Lessons, Thoughts, and Extensions

- Dynamic prediction models are a natural choice for continuous in-network processing
 - Can capture complex temporal (and spatial) patterns to reduce communication

- Many model choices possible
 - Need to carefully balance power & conciseness
 - Principled way for model selection?

- General-purpose solution (generality of AMS sketch)
 - Better solutions for special queries
 E.g., continuous quantiles [Cormode et al.’05]
Distributed Triggers

- Only interested in values of the “global query” above a certain threshold T
 - Network anomaly detection (e.g., DDoS attacks)
 - Total number of connections to a destination, “fire” when it exceeds a threshold
 - Air / water quality monitoring, total number of cars on highway
 - Fire when count/average exceeds a certain amount
- Introduced in HotNets paper [Jain, Hellerstein et al.’04]
Tracking Distributed Triggers

- Problem “easier” than approximate query tracking
 - Only want accurate \(f() \) values when they’re close to threshold
 - *Exploit threshold for intelligent slack allocation to sites*
- Push-based in-network operation even more relevant
 - Optimize operation for “common case”

Tracking Thresholded Counts

- Monitor a distributed aggregate count
- Guarantee a user-specified accuracy \(\delta \) only if the count exceeds a pre-specified threshold \(T \) [Kerlapura et al.’06]
 - E.g., \(N_i \) = number of observed connections to 128.105.7.31 and \(N = \sum_i N_i \)

\[
0 \leq \hat{N} < T \quad \text{when} \quad N < T \quad \text{and} \quad (1 - \delta)N \leq \hat{N} < N \quad \text{when} \quad N \geq T
\]

“\(\delta \)-deficient counts”
Thresholded Counts Approach

- Site i maintains a set of local thresholds $t_{i,j}$, $j = 0, 1, 2, \ldots$
- Local filter at site i: $t_{i,f(i)} \leq N_i < t_{i,f(i)+1}$
 - Local count between adjacent thresholds
 - Contact coordinator with new “level” $f(i)$ when violated
- Global estimate at coordinator $\hat{N} = \sum_i t_{i,f(i)}$
- For δ-deficient estimate, choose local threshold sequences $t_{i,j}$ such that
 \[\sum_i (t_{i,f(i)+1} - t_{i,f(i)}) < \delta \sum_i t_{i,f(i)} \quad \text{whenever} \quad \sum_i t_{i,f(i)+1} > T \]

```
"large" to minimize communication!
"small" to ensure global error bound!
```
Blended Threshold Assignment

- Uniform: overly tight filters when $N > T$
- Proportional: overly tight filters when $N \ll T$
- **Blended Assignment**: combines best features of both:
 \[t_{i,j+1} = (1+\alpha\delta) \cdot t_{i,j} + (1-\alpha) \cdot \delta T/m \quad \text{where} \quad \alpha \in [0,1] \]
 - $\alpha = 0 \Rightarrow$ Uniform assignment
 - $\alpha = 1 \Rightarrow$ Proportional assignment
- Optimal value of α exists for given N (expected or distribution)
 - Determined through, e.g., gradient descent

Adaptive Thresholding

- So far, static threshold sequences
 - Every site only has “local” view and just pushes updates to coordinator
- Coordinator has global view of current count estimate
 - Can adaptively adjust the local site thresholds (based on estimate and T)
 - E.g., dynamically switch from uniform to proportional growth strategy as estimate approaches/exceeds T
What about Non-Linear Functions?

- For general, non-linear $f()$, the problem becomes a lot harder!
 - E.g., information gain or entropy over global data distribution
 - Non-trivial to decompose the global threshold into "safe" local site constraints
 - E.g., consider $N = (N_1 + N_2)/2$ and $f(N) = 6N - N^2 > 1$
 Impossible to break into thresholds for $f(N_1)$ and $f(N_2)$

Monitoring General Threshold Functions

- Interesting geometric approach [Scharfman et al.'06]
- Each site tracks a local statistics vector v_i (e.g., data distribution)
 - Global condition is $f(v) > T$, where $v = \sum \lambda_i v_i$ ($\sum \lambda_i = 1$)
 - v = convex combination of local statistics vectors
- All sites have an estimate $e = \sum \lambda_i v_i'$ of v based on latest update v_i' from site i
- Each site i continuously tracks its drift from its most recent update $\Delta v_i = v_i - v_i'$
Monitoring General Threshold Functions

- Key observation: \(v = \sum_i \lambda_i (e + \Delta v_i) \)
 (a convex combination of “translated” local drifts)
- \(v \) lies in the convex hull of the \((e + \Delta v_i)\) vectors
- Convex hull is completely covered by the balls with radii \(||\Delta v_i/2||_2 \)
 centered at \(e + \Delta v_i/2 \)
- Each such ball can be constructed independently

Monochromatic Region: For all points \(x \) in the region \(f(x) \) is on the same side of the threshold (\(f(x) > T \) or \(f(x) \leq T \))

- Each site independently checks its ball is monochromatic
 - Find max and min for \(f() \) in local ball region (may be costly)
 - Broadcast updated value of \(v_i \) if not monochrome
Monitoring General Threshold Functions

- After broadcast, $||\Delta v||_2 = 0 \Rightarrow$ Ball at i is monochromatic
 - Global estimate e is updated, which may cause more site update broadcasts
- Coordinator case: Can allocate local slack vectors to sites to enable “localized” resolutions
 - Drift (=radius) depends on slack (adjusted locally for subsets)

\[f(x) > T \]
Extension: Filtering for PCA Tracking

- Threshold total energy of the low PCA coefficients of $\mathbf{Y} = \mathbf{Y}_0$
 - Robust indicator of network-wide anomalies [Lakhina et al.'04]
 - Non-linear matrix operator over combined time-series
- Can combine local filtering ideas with **stochastic matrix perturbation theory** [Huang et al.'06]

Lessons, Thoughts and Extensions

- Key idea in *trigger tracking*: The threshold is your friend!
 - Exploit for more intelligent (looser, *yet “safe”*) local filtering
- Also, optimize for the common case!
 - Threshold violations are typically “outside the norm”
 - “Push-based” model makes even more sense here
 - Local filters eliminate most/all of the “normal” traffic
- Use richer, dynamic prediction models for triggers?
 - Perhaps adapt depending on distance from threshold?
- More realistic network models?
- Geometric ideas for approximate query tracking?
 - Connections to approximate join-tracking scheme?
Tutorial Outline

- Introduction, Motivation, Problem Setup
- One-Shot Distributed-Stream Querying
- Continuous Distributed-Stream Tracking
- Probabilistic Distributed Data Acquisition
- Future Directions & Open Problems
- Conclusions

Model-Driven Data Acquisition

- *Not only aggregates* – Approximate, bounded-error acquisition of individual sensor values [Deshpande et al. ‘04]
 - \((\epsilon, \delta)\)-approximate acquisition: \(|Y - \hat{Y}| \leq \epsilon\) with prob. \(> 1 - \delta\)

- Regular readings entails large amounts of data, noisy or incomplete data, inefficient, low battery life, ...

- **Intuition:** Sensors give (noisy, incomplete) samples of real-world processes

- Use *dynamic probabilistic model* of real-world process to
 - Robustly complement & interpret obtained readings
 - Drive efficient acquisitional query processing
Query Processing in TinyDB

Declarative Query
```
select nodeID, temp
where nodeID in {1..6}
```

Query Results
```
1, 22.73, 
... 
6, 22.1.
```

Observation Plan
```
([temp, 1], [temp, 2], 
... , [temp, 6])
```

Data
```
nodeID Time temp
--- --- ---
1 10am 21
2 10am 22
... ...
```

Virtual Table seen by the User
```
```

Model-Based Data Acquisition: BBQ

Declarative Query
```
Select nodeID,
temp ± .1C, conf(.95)
where nodeID in {1..6}
```

Probabilistic Model
```
A dynamic probabilistic model of how the data (or the underlying physical process) behaves
- Models the evolution over time
- Captures inter-attribute correlations
- Domain-dependent
```

Query Results
```
1, 22.73, 100%
... 
6, 22.1, 99%
```
BBQ Details

Probabilistic model captures the joint pdf $p(X_1,\ldots, X_n)$

- **Spatial/temporal correlations**
 - Sensor-to-sensor
 - Attribute-to-attribute
 E.g., voltage & temperature
- **Dynamic**: pdf evolves over time
 - BBQ: Time-varying multivariate Gaussians

Given user query Q and accuracy guarantees (ϵ, δ)

- Try to answer Q directly from the current model
- If not possible, use model to find efficient *observation plan*
- Observations update the model & generate (ϵ,δ) answer

BBQ Probabilistic Queries

- **Classes of probabilistic queries**
 - Range predicates: Is $X_i \in [a_i, b_i]$ with prob. > $1-\delta$
 - Value estimates: Find X'_i such that $\Pr[|X_i - X'_i| < \epsilon] > 1 - \delta$
 - Aggregate estimates: (ϵ,δ)-estimate $\text{avg/sup}(X_{i1}, X_{i2}, \ldots X_{ik})$

Acquire readings if model cannot answer Q at δ conf. level

- **Key model operations are**
 - Marginalization: $p(X_i) = \int p(X_1,\ldots, X_n) \ dx$
 - Conditioning: $p(X_1,\ldots, X_n | \text{observations})$
 - Integration: $\int_a^b p(X_1,\ldots, X_n) \ dx$, also expectation $X'_i = \mathbb{E}[X_i]$

All significantly simplified for Gaussians!
BBQ Query Processing

Joint pdf at time = \(t \):

\[p(X_1^t, \ldots, X_n^t) \]

Is \(\mathbb{P}(X_2 \in [-\varepsilon, \mu_2 + \varepsilon]) \) below 1-\(\delta \)?

Yes

Return \(\mu \)

No

Must sense more data

Example: Observe \(X_1 = 18 \)

Incorporate into model

Higher prob., can now answer query

Evolving the Model over Time

Joint pdf at time = \(t \):

\[p(X_1^t, \ldots, X_n^t | X_1^t = 18) \]

Joint pdf at time = \(t \):

\[p(X_1^{t+1}, \ldots, X_n^{t+1} | X_1^t = 18) \]

In general, a two-step process:

\[
p(X^t | obs^{1 \ldots t}) \xrightarrow{\text{Trans. Model}} p(X^{t+1} | obs^{1 \ldots t}) \xrightarrow{\text{Condition}} p(X^{t+1} | obs^{1 \ldots (t+1)})
\]

- **Bayesian filtering** (for Gaussians this yields Kalman filters)
Optimizing Data Acquisition

- Energy/communication-efficient observation plans
 - Non-uniform data acquisition costs and network communication costs
 - Exploit data correlations and knowledge of topology
- Minimize Cost(obs) over all \(obs \subseteq \{1, \ldots, n\} \) so expected confidence in query answer given \(obs \) (from model) > 1–\(\delta \)
- NP-hard to optimize in general

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Energy per example (mJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar Radiation</td>
<td>0.525</td>
</tr>
<tr>
<td>Barometric Pressure</td>
<td>0.003</td>
</tr>
<tr>
<td>Humidity and Temp. Voltage</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Conditional Plans for Data Acquisition

- Observation plans ignore the attribute values observed
 - Attribute subset chosen is observed in its entirety
 - The observed attribute values give a lot more information
- Conditional observation plans (outlined in [Deshpande et al.'05])
 - Change the plan depending on observed attribute values (not necessarily in the query)
 - Not yet explored for probabilistic query answers

\[
\text{SELECT * FROM sensors WHERE light<100Lux and temp>20^\circ C}
\]
Continuous Model-Driven Acquisition

Dynamic Replicated Prob Models (Ken) [Chu et al.'06]
- Model shared and sync’d across base-station and sensornet
- Nodes continuously check & maintain model accuracy based on ground truth
 - Push vs. Pull (BBQ)

Problem: In-network model maintenance
- Exploit spatial data correlations
- Model updates decided in-network and sent to base-station
- Always keep model (ε, δ)-approximate

```
select nodeID,
temp ± 0.1C, conf(0.95)
where nodeID in {1..6}
epoch 2 min
```

```
Query Processor

Probabilistic Model

model updates

in-sync

Probabilistic Model
```

In-Network Model Maintenance

- Mapping model maintenance onto network topology
 - At each step, nodes check (ε, δ) accuracy, send updates to base

- Choice of model drastically affects communication cost
 - Must centralize correlated data for model check/update
 - Can be expensive!

- Effect of degree of spatial correlations:
 - Single-node models $\prod p(X_i)$
 - No spatial correlations
 - Cheap – check is local!
 - Full-network model $p(X_1, \ldots, X_n)$
 - Full spatial correlations
 - Expensive – centralize all data!
In-Network Model Maintenance

- Single-node models $p(X_i)$
 - No spatial correlations
 -
 - *Cheap – check is local!*
- Full-network model $p(X_1,\ldots,X_n)$
 - Full spatial correlations
 -
 - *Expensive – centralize all data!*

- **Problem:** Find dynamic probabilistic model and in-network maintenance schedule to minimize overall communication
 - Map maintenance/update operations to network topology

- Key idea for “practical” in-network models
 - Exploit *limited-radius* spatial correlations of measurements
 - Localize model checks/updates to small regions

Disjoint-Cliques Models

- **Idea:** Partition joint pdf into a set of small, localized “cliques” of random variables
 - Each clique maintained and updated *independently* at “clique root” nodes

 - Finding optimal DC model is NP-hard
 - Natural analogy to *Facility Location*
Distributed Data Stream Systems/Prototypes

Main algorithmic idea in the tutorial: Trade-off space/time and communication with approximation quality.

Unfortunately, approximate query processing tools are still not widely adopted in current Stream Processing engines.
- Despite obvious relevance, especially for streaming data.

In the sensor network context:
- Simple in-network aggregation techniques (e.g., for average, count, etc.) are widely used.
 E.g., TAG/TinyDB [Madden et al'02]
- More complex tools for approximate in-network data processing/collection have yet to gain wider acceptance.
Distributed SP Engine Prototypes

- Telegraph/TelegraphCQ [Chandrasekaran et al.’03], Borealis/Medusa [Balazinska et al.’05], P2 [Loo et al.’06]
- Query processing typically viewed as a large dataflow
 - Network of connected, pipelined query operators
 - Schedule a large dataflow over a distributed system
 - Objectives: Load-balancing, availability, early results, …

Approximate answers and error guarantees not considered
- General relational queries, push/pull-ing tuples through the query network
- Load-shedding techniques to manage overload
 - No hard error guarantees
- Network costs (bandwidth/latency) considered in some recent work [Pietzuch et al.’06]
Other Systems & Prototypes

- **PIER** – Scaling to large, dynamic site populations using DHTs [Huebsch et al.’03]
 - See also the *Seaweed* paper [Narayanan et al.’06]

- **Gigascope** – Streaming DB engine for large-scale network/application monitoring
 - Optimized for high-rate data streams (“line speeds”)
 - Exploits approximate query processing tools (sampling, sketches, …) for tracking streams at endpoints
 - Distribution issues not addressed (yet…)

Tutorial Outline

- Introduction, Motivation, Problem Setup
- One-Shot Distributed-Stream Querying
- Continuous Distributed-Stream Tracking
- Probabilistic Distributed Data Acquisition
- Future Directions & Open Problems
- Conclusions
Extensions for P2P Networks

- Much work focused on specifics of sensor and wired nets
- P2P and Grid computing present alternate models
 - Structure of multi-hop overlay networks
 - “Controlled failure” model: nodes explicitly leave and join
- Allows us to think beyond model of “highly resource constrained” sensors.
- Implementations such as OpenDHT over PlanetLab [Rhea et al.’05]

Delay-Tolerant Networks

- How to cope when connectivity is intermittent?
 - Roaming devices, exploring outer and inner space, network infrastructure for emerging regions (e.g., rural India), …
 - Round trip times may be very long and varying
 - Radio to Mars is many minutes
 - Connectivity to remote villages varies [Jain, Fall, Patra ’05]
- Goal is to minimize the number of communications and maximize timeliness
 - Size of communication is secondary
Authenticated Stream Aggregation

- Wide-area query processing
 - Possible malicious aggregators
 - Can suppress or add spurious information
- Authenticate query results at the querier?
 - Perhaps, to within some approximation error
- Initial steps in [Garofalakis et al.’06]

Other Classes of Queries

- Mostly talked about specific, well-defined aggregates
- What about set-valued query answers?
 - No principled, “universal” approximation error metric
- A general distributed query language (dist-streamSQL?)
 - Define a language so a query optimizer can find a plan that guarantees good performance, small communication?
- Other tasks, e.g., data mining, machine learning, over distributed streams?
 - ML/AI communities are already starting to consider communication-efficient distributed learning
Theoretical Foundations

“Communication complexity” studies lower bounds of distributed **one-shot** computations

- Gives lower bounds for various problems, e.g., *count distinct* (via reduction to abstract problems)
- Need new theory for continuous computations
 - Based on info. theory and models of how streams evolve?
 - Link to distributed source coding or network coding?

![Slepian-Wolf theorem](http://www.networkcoding.info/)

Richer Prediction models

- The better we can capture and anticipate future stream direction, the less communication is needed
- So far, only look at predicting each stream alone
- Correlation/anti-correlation across streams should help?
 - But then, checking validity of model is expensive!
- Explore tradeoff-between power (expressiveness) of model and complexity (number of parameters)
 - Optimization via Minimum Description Length (MDL)?
 [Rissanen 1978]
Conclusions

- Many new problems posed by developing technologies
- Common features of *distributed streams* allow for general techniques/principles instead of “point” solutions
 - In-network query processing
 - Local filtering at sites, trading-off approximation with processing/network costs, …
 - Models of “normal” operation
 - Static, dynamic (“predictive”), probabilistic, …
 - Exploiting network locality and avoiding global resyncs
- Many new directions unstudied, more will emerge as new technologies arise
- *Lots of exciting research to be done!* 😊

References (1)

[Aduri, Tirthapura ’05] P. Aduri and S. Tirthapura. Range-efficient Counting of F_0 over Massive Data Streams. In IEEE International Conference on Data Engineering, 2005

References (2)

References (3)

[Jain, Fall, Patra ’05] S. Jain, K. Fall, R. Patra, Routing in a Delay Tolerant Network. In IEEE Infocom, 2005

References (4)

References (5)

