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Big Data is Big News (and Big Business…)

• Mobile computing, sensornets, 
social networks, …

• Data-driven science

• How can we cost-effectively 
manage and analyze all this 
data…?
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Big Data Challenges:  The Four V’s – and one D
• Volume:  Scaling from Terabytes to Exa/Zettabytes

• Velocity: Processing massive amounts of streaming data

• Variety: Managing the complexity of multiple relational and 
non-relational data types and schemas

• Veracity: Handling inherent uncertainty and noise in the data

• Distribution: Dealing with massively distributed information 

• Our focus: Volume, Velocity, Distribution
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Velocity:  Continuous Stream Querying
There are many scenarios where we need to monitor/ 

track events over streaming data:

• Network health monitoring within a large ISP

• Collecting and monitoring environmental data with 
sensors

• Observing usage and abuse of large-scale data centers
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Stream Processing Model

• Approximate answers often suffice, e.g., trends, anomalies

• Stream synopses:  single-pass, small-space, small-time, … 

Stream 
Processing
Engine

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer whp”

Stream Synopses
(in memory)

Continuous Data StreamsR1

Rk

(PetaBytes) (MegaBytes)

Query f
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Model of a Relational Stream

(sourceIP, destinationIP)

No. of active connections
(10.1.3.4, 128.11.10,1)

…
N= 264

• Relation “signal”:  Large array vS[1…N]  with values vS[i]  initially zero
–Frequency-distribution array of S
–Multi-dimensional arrays as well (e.g., row-major)

• Relation implicitly rendered via a stream of updates 
– Update  <x, c>  implying
• vS[x] := vS[x] + c    (c can be >0, <0)

• Goal: Compute queries (functions) on such dynamic vectors     
in “small” space and time  (<< N)
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Velocity & Distribution: Continuous Distributed Streaming

• Other structures possible (e.g., hierarchical, P2P)
• Goal: Continuously track (global) query over streams at 

coordinator 
– Using small space, time, and communication
– Example queries: 
• Join aggregates, Variance, Entropy, Information Gain, …

Coordinator

m sites

local stream(s) 
seen at each 

site

S1 Sm

Monitor f(S1,…,Sm)
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Tracking Complex Aggregate Queries

• Class of queries: Generalized inner products of streams

|R⋈S| = fR × fS = åv fR[v] fS[v]

– Join/multi-join aggregates, range queries, heavy hitters, 
histograms, wavelets, …

R S

Monitor |R⋈S|

fS …fR …
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Example:  LEADS Elastic μClouds Architecture
(http://leads-project.eu)

1 Crawl

Shared micro-clouds providing storage, querying, ... services Small 
companies

2 Store
Index

3 Process
   Query
   Enrich
   ...
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Continuous Distributed Streaming
• But… local site streams continuously change!  New readings/data…

• Classes of monitoring problems
– Threshold Crossing:  Identify when f(S)>τ

– Approximate Tracking: f(S) within guaranteed accuracy bound θ 

• Tradeoff  accuracy and communication / processing cost

• Naïve solutions must continuously centralize all data 
– Enormous communication overhead!

• Instead, in-situ stream processing using local constraints !

S1 Sm

Monitor  f(S1,…,Sm)
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Communication-Efficient Monitoring

Filters
x

“push”

Filters
x

adjust

• Key Idea: “Push-based” in-situ processing
– Local filters installed at sites process local streaming updates

• Offer bounds on local-stream behavior (at coordinator)
– “Push” information to coordinator only when filter is violated
– “Safe”! Coordinator sets/adjusts local filters to guarantee 

accuracy 

– Easy for linear functions!  Exploit additivity…
– Non-linear f() …??
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Outline

• Introduction: Continuous Distributed Streaming

• The Geometric Method (GM)

• GM + Sketches, GM + Prediction Models

• Towards Convex Safe Zones (SZs)

• Future Directions & Conclusions
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Monitoring General, Non-linear Functions

• For general, non-linear f(), problem is a lot harder!
– E.g., information gain over global data distribution 

• Non-trivial to decompose the global threshold into “safe” 
local site constraints

• E.g., consider N=(N1+N2)/2 and f(N) = 6N – N2 > 1
Tricky to break into thresholds for f(N1) and f(N2)

S1 Sk

Query:  f(S1,…,Sk) > t ?
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The Geometric Method
• A general purpose geometric approach [SIGMOD’06]

– Monitor function domain rather than the range of values!

• Each site tracks a local statistics vector vi (e.g., data 
distribution)

• Global condition is  f(v) > t, where  v = åili vi     (åili = 1)
– E.g.,  v = average of local statistics vectors

• All sites share estimate e = åili vi
’ of v

based on latest update vi
’ from site i

• Each site i tracks its drift from its most recent update Δvi = vi-vi
’
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Covering the Convex Hull
• Key observation:   v = åili×(e+Δvi)    

(a convex combination of “translated” local drifts)

n v lies in the convex hull of 
the (e+Δvi) vectors 

n Convex hull is completely 
covered  by spheres with 
radii ||Δvi/2||2 centered at 
e+Δvi/2

n Each such sphere can be 
constructed independently

e

Δv1
Δv2

Δv3

Δv4Δv5
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Monochromatic Regions
• Monochromatic Region:  For all points x in the region f(x) is 

on the same side of the threshold (f(x) > t or f(x) £ t)  
• Each site independently checks its sphere is monochromatic 

– Find max and min for f() in local sphere region (may be costly)
– Send updated value of vi if not monochrome

e

Δv1
Δv2

Δv3

Δv4Δv5

f(x) > t
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Restoring Monochromicity

e

Δv1
Δv2

Δv3

Δv4Δv5

f(x) > t
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Restoring Monochromicity
• After update,  ||Δvi||2 = 0  Þ Sphere at i is 

monochromatic
– Global estimate e is updated, may cause more site updates

• Coordinator case: Can allocate local slack vectors to sites  
for “localized” resolutions

e

Δv1
Δv2

Δv3 = 0

Δv4Δv5

f(x) > t
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Outline
• Introduction: Continuous Distributed Streaming

• The Geometric Method (GM)

• GM + Sketches, GM + Prediction Models

• Towards Convex Safe Zones (SZs)

• Future Directions & Conclusions
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• Continuous approximate monitoring
– Track value of a function to within                                   

specified accuracy bound θ

• Too much local info è Local AMS sketch 
summaries 
– Bounding regions for the lower-dimensional sketching space 
– Account for sketching error ε

• Key Problems:  (1) Minimize data exchange 
volume (2) Deal with highly-nonlinear  AMS 
estimator

Geometric Query Tracking using 
AMS Sketches [VLDB’13]

e

Δv1
Δv2

Δv3

Δv4Δv5
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Monitored Function…?
AMS Estimator function for Self-Join

• Theorem(AMS96): Sketching approximates             to within an error   
of                 with probability              using                        countersδ1-³2
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• Efficiently deciding ball monochromicity for median 
– Fast greedy algorithm for determining the distance to 

the inadmissible region

• (Non-trivial!)  extension to general join aggregates

• Minimizing volume of data exchanges
– Sketches can still get pretty large!
– Can reduce to monitoring in O(log(1/δ)) dimensions

Geometric Query Monitoring using AMS Sketches         
[VLDB’13]
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Exploiting Shared Prediction Models

“push” update

• Naïve “static” prediction: Local stream assumed 
“unchanged” since last update 
– No update from site ⇒ last update (“predicted” value) is 

unchanged ⇒ global estimate vector unchanged
• Dynamic prediction models of site behavior
– Built locally at sites and shared with coordinator
– Model complex stream patterns, reduce number of updates               
– But...  more complex to maintain and communicate 

0

1
1|    - |

Monitor
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Adopting Local Prediction Models

Model Predicted vi

Linear Growth

ep(t)=∑λ𝑖vi
p(t) Predicted Global Vector:

[VLDB’05, TODS’08]

Velocity/ Acceleration

Static

vi
p(t) =

t
ts
vi(ts) 

vi
p(t) = vi(ts) 

vi
p(t) = vi(ts) + (t − ts)veli + (t − ts)2acci  

Equivalent 
to the basic 
framework
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e

u1

u2

u3

u4
u5

Prediction-based Geometric Monitoring
[SIGMOD’12, TODS’14]

f(v(t)) > T

ep

up
1

up
2

up
3

up
4up

5

v(t)

Stricter local constraints if local 
predictions remain accurate
Keep up with v(t) movement
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Outline
• Introduction: Continuous Distributed Streaming

• The Geometric Method (GM)

• GM + Sketches, GM + Prediction Models

• Towards Convex Safe Zones (SZs)

• Future Directions & Conclusions
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From Bounding Spheres to Safe Zones (SZs) 

• Safe Zone:  Any convex subset of the Admissible 
Region
– As long as translated drifts stay within SZ, we are “safe”
• By convexity

• Aim for large SZs, far from                                                        
the boundary



Safe Zone defined by GM 

p
A



Repeat for 
every point 
on the 
boundary

A

Safe Zone 
defined 
by GM 

p



GM Safe Zones can be Far from Optimal!

• For instance, when 
inadmissible region        
is convex

• Taking the intersection of 
all half-spaces is overly 
restrictive

• In this case, half-space 
H(p,r1) is clearly the   
optimal SZ!



SZs through Convex Decompositions [VLDB’15]

• Inadmissible region is 
(can be covered by) a 
union of convex sets

• Just intersect half-
spaces that separate     
p from each set
– Avoid redundancy!

ctors"support ve"  :)(),( 21 pSpS

Provably better than 
GM!
Application in sketches and
median monitoring



A “Cookbook” for Distributed Stream Monitoring?

• GM/bounding spheres is a generic, off-the-shelf  
technique

• Any function, but can be far from optimal

• SZs:  much better performance but must be designed 
for function/data at hand
– Some initial progress on automated SZ construction 

(difficult optimization problem) [TKDE’14]

– Work on generic mechanisms for composing SZs          
[working paper]



Outline
• Introduction: Continuous Distributed Streaming

• The Geometric Method (GM)

• GM + Sketches, GM + Prediction Models

• Towards Convex Safe Zones (SZs)

• Future Directions & Conclusions
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Work in CD Streaming
• Much interest in these problems in TCS and DB areas

• Many functions of (global) data distribution studied:
– Set expressions [Das,Ganguly,G,Rastogi’04]
– Quantiles and heavy hitters [Cormode,G, Muthukrishnan, Rastogi’05]
– Number of distinct elements [Cormode et al.,’06]
– Spectral properties of data matrix [Huang,G, et al.’06]
– Anomaly detection in networks [Huang ,G, et al.’07]
– Samples [Cormode et al.’10]
– Counts, frequencies, ranks [Yi et al.,’12]

• NII Shonan meeting on Large-Scale Distributed 
Computation

http://www.nii.ac.jp/shonan/seminar011/
34
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Monitoring Systems
• Much theory developed, but less progress on deployment
• Some empirical study in the lab, with recorded data
• Still, applications abound: Online Games [Heffner, Malecha’09] 

– Need to monitor many varying stats and bound communication
– Also, Distributed CEP systems (FERARI project)

• Several steps to follow:
– Build libraries of code for basic monitoring problems
– Evolve these into general purpose systems (distributed DBMSs?)

• Several questions to resolve:
– What functions to support?  General purpose, or specific?
– What keywords belong in a query language for monitoring?
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Theoretical Foundations
“Communication complexity” studies lower bounds of 

distributed one-shot computations
• Lower bounds for various problems,  e.g., count 

distinct (via reduction to abstract problems)
• Need new theory for continuous computations

– Link to distributed source coding or network coding?
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The General SZ Problem 

• Different SZs, per site
– Minkowski sum must lie 

in admissible region
• Minimize the probability 

of local violations
– NP-hard even in very 

simple cases!

1N .    .    . kN1x
kx

k
xx k++ ...11S kS

})(|{ TvfvA £=

• Heuristics for automated SZ construction
• E.g., using hierarchical clustering of sites



Challenges, challenges, challenges…  
• Distributed streaming versions of hard analytics functions 

(e.g., PageRank)?
• Geometric monitoring for Distributed CEP hierarchies?
– Deal with uncertain events (“V” for Veracity)?

• Implementing GM ideas in scalable stream-processing 
engines (e.g., Storm)?

• CD machine learning to dynamically adapt to 
data/workload conditions?
– Communication just one of our concerns

• Scalable analytics tools for streaming time series? 
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Conclusions
Continuous querying of distributed streams is a natural model
§ Interesting space/time/communication tradeoffs

§ Captures several real-world applications

GM, SZs : Generic geometric tools for monitoring complex
queries
§ Sketches [VLDB’13], dynamic prediction models [SIGMOD’12, 

TODS’14], Skyline Monitoring [ICDE’14]

§ Novel insights through Convex Geometry [TKDE’14,VLDB’15]

Much interesting algorithmic/systems work to be done!
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Thank you! 

http://www.softnet.tuc.gr/~minos/
http://lift-eu.org , http://leads-project.eu

http://ferari-project.eu , http://qualimaster.eu
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Current Big Data Projects @SoftNet

Flexible Event Processing for Big Data Architectures 
ICT STREP  (2014-7)
http://ferari-project.eu

ICT STREP  (2012-5)
http://leads-project.eu

Configurable, Autonomously-Adaptive   Real-time 
Data Processing 

ICT STREP  (2014-7)
http://qualimaster.eu

QualiMaster
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Stream Processing Model

• Approximate answers often suffice, e.g., trends, anomalies
• Requirements for stream synopses

– Single Pass: Each record examined at most once, in arrival order 
– Small Space: Log or polylog in data stream size
– Small Time: Per-record processing time must be low
– Also:  Delete-proof, Composable, …

Stream 
Processing
Engine

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data StreamsR1

Rk

(PetaBytes) (MegaBytes)

Query f
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AMS Sketches 101

• Simple randomized linear projections of data distribution
– Easily computed over stream using logarithmic space
– Linear:  Compose through simple vector addition  

}{ ix å ==
i i1 v[i]ξX

54321 ξξ2ξ2ξξ ++++}{ iy

å= i ik v[i]ψX
=sk(v)

11 1

2 2
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CD Monitoring in Scalable Network Architectures

E.g.,  DHT-based P2P networks

Single query point
§ “Unfolding” the network gives hierarchy
§ But, single point of failure (i.e., root)

Decentralized monitoring
§ Everyone participates in computation, all get the result
§ Exploit epidemics? Latency might be problematic… 
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Exploring the Prediction Model Space

The better we can capture and anticipate future stream direction, 
the less communication is needed
So far, only look at predicting each stream alone
Correlation/anti-correlation across streams should help?
§ But then, checking validity of model is expensive!

Explore tradeoff-between power (expressiveness) of model and 
complexity (number of parameters)
§ Optimization via Minimum Description Length (MDL)?     

[Rissanen 1978]
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Thank you! 

http://www.lift-eu.org/
http://www.softnet.tuc.gr/~minos/
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Geometric Query Monitoring using AMS Sketches         
[GKS VLDB’13]
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Prediction-based Geometric Threshold Monitoring [GDG 
SIGMOD’12, TODS’14]

e

u1

u2

u3

u4
u5

f(v(t)) > T
v(t)

Could we have 
predicted that v(t) 

has not crossed the 
threshold?
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u4
u5

Issues
Stricter local constraints do not guarantee less communication / 
lower false positives
“Bad” scenarios may occur

f(v(t)) > T
v(t)

ep
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up
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up
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up
4up

5

49



e

u1

u2

u3

u4
u5

Towards Strong Geometric Monitoring Models 
Containment of convex hulls: hard to maintain/verify in distributed 
settings
Designed several algorithms that try to approximately ensure containment 
with no/minimal information sharing
§ Based on combining static and prediction-based bounding regions

f(v(t)) > T
v(t)
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Some Experiments

Sliding Window

§ Up to 600 times lower cost compared to the basic GM
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Extensions: Transforms, Shifts, Safe Zones

• Subsequent developments [SKS TKDE’12]
– Same analysis of correctness holds 

when spheres are allowed to be ellipsoids
– Different reference vectors can be used 

to increase radius when close to 
threshold values

– Combining these observations
allows additional cost savings

• More general theory of “Safe Zones”
– Convex subsets of the admissible region

e

Δv1
Δv2

Δv4

Δv5
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