Probabilistic Histograms for Probabilistic Data

Graham Cormode
AT&T Labs-Research

Antonios Deligiannakis
Technical University of Crete

Minos Garofalakis
Technical University of Crete

Andrew McGregor
University of Massachusetts, Amherst
Talk Outline

♦ The need for probabilistic histograms
 - Sources and hardness of probabilistic data
 - Problem definition, interesting metrics

♦ Proposed Solution

♦ Query Processing Using Probabilistic Histograms
 - Selections, Joins, Aggregation etc

♦ Experimental study

♦ Conclusions and Future Directions
Sources of Probabilistic Data

- Increasingly data is *uncertain* and *imprecise*
 - Data collected from sensors has errors and imprecisions
 - Record linkage has confidence of matches
 - Learning yields probabilistic rules

- Recent efforts to build uncertainty into the DBMS
 - Mystiq, Orion, Trio, MCDB and MayBMS projects
 - Model uncertainty and correlations within tuples
 - Attribute values using probabilistic distribution over mutually exclusive alternatives
 - Assume independence across tuples
 - Aim to allow general purpose queries over uncertain data
 - Selections, Joins, Aggregations etc
Probabilistic Data Reduction

- Probabilistic data can be difficult to work with
 - Even simple queries can be #P hard [Dalvi, Suciu ’04]
 - joins and projections between (statistically) independent probabilistic relations
 - need to track the history of generated tuples
 - Want to avoid materializing all possible worlds

- Seek compact representations of probabilistic data
 - Data synopses which capture key properties
 - Can perform expensive operations on compact summaries
Shortcomings of Prior Approaches

♦ [CG’09] builds histograms that minimize the expectation of a given error metric
 - Domain split in buckets
 - Each bucket approximated by a single value

♦ Too much information lost in this process
 - Expected frequency of an item tells us little about its probability that it will appear i times
 • How to do joins, or selections based on frequency?

♦ Not a complete representation scheme
 - Given maximum space, input representation cannot be fully captured
Our Contribution

- A more powerful representation of uncertain data
- Represent each bucket with a PDF
 - Capture prob. of each item appearing i times

 ![Diagram of PDFs](Image)

- Complete representation
- Target several metrics
 - EMD, Kullback-Leibler divergence, Hellinger Distance
 - Max Error, Variation Distance (L1), Sum Squared Error etc
Talk Outline

♦ The need for probabilistic histograms
 - Sources and hardness of probabilistic data
 - Problem definition, interesting metrics

♦ Proposed Solution

♦ Query Processing Using Probabilistic Histograms
 - Selections, Joins, Aggregation etc

♦ Experimental study

♦ Conclusions and Future Directions
Probabilistic Data Model

- Ordered domain \mathcal{U} of data items (i.e., $\{1, 2, ..., N\}$)
- Each item in \mathcal{U} obtains values from a value domain \mathcal{V}
 - Each with different frequency \Rightarrow each item described by PDF

Example:
- PDF of item i describes prob. that i appears 0, 1, 2, ... times
- PDF of item i describes prob. that i measured value V_1, V_2 etc
Used Representation

- **Goal:** Participate \mathcal{U} domain into buckets
- Within each bucket $b = (s, e)$
 - Approximate $(e-s+1)$ pdfs with a piece-wise constant PDF $\hat{X}(b)$
- Error of above approximation
 - Let $d()$ denote a distance function of PDFs

 $$Err(b) = \bigoplus_{i=s}^{e} d(\hat{X}(b), X_i)$$

- Given a space bound, we need to determine
 - number of buckets
 - terms (i.e., pdf complexity) in each bucket
Targeted Error Metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation Distance (L1)</td>
<td>$d(X, Y) = |X - Y|1 = \sum{v \in \mathcal{V}}</td>
</tr>
<tr>
<td>Sum Squared Error</td>
<td>$d(X, Y) = |X - Y|2^2 = \sum{v \in \mathcal{V}} (\Pr[X = v] - \Pr[Y = v])^2$</td>
</tr>
<tr>
<td>Max Error (L∞)</td>
<td>$d(X, Y) = |X, Y|{\infty} = \max{v \in \mathcal{V}}</td>
</tr>
<tr>
<td>(Squared) Hellinger Distance</td>
<td>$d(X, Y) = H^2(X, Y) = \sum_{v \in \mathcal{V}} \left(\frac{\Pr[X = v]^{1/2} - \Pr[Y = v]^{1/2}}{2}\right)^2$</td>
</tr>
<tr>
<td>Kullback-Leibler Divergence (relative entropy)</td>
<td>$d(X, Y) = KL(X, Y) = \sum_{v \in \mathcal{V}} \Pr[X = v] \log_2 \frac{\Pr[X = v]}{\Pr[Y = v]}$</td>
</tr>
<tr>
<td>Earth Mover’s Distance (EMD)</td>
<td>Distance between probabilities at the value domain</td>
</tr>
</tbody>
</table>

Common Prob. metrics
General DP Scheme: Inter-Bucket

- Let $B\text{-OPT}^b[w,T]$ represent error of approximating up to $w \in \mathcal{V}$ first values of bucket b using T terms.

- Let $H\text{-OPT}[m, T]$ represent error of first m items in \mathcal{U} when using T terms.

\[H\text{-OPT}[m, T] = \min_{1 \leq k \leq m-1, 1 \leq t \leq T-1} \{ H\text{-OPT}[k, T - t] + B\text{-OPT}^{(k+1,m)}[V+1,t] \} \]

- Error approximating first w values of PDFS within bucket b.
- Using T terms for bucket b.
- Check all start positions of last bucket, terms to assign.
- Use $T-t$ terms for the first k items.
- Where the last bucket starts.
- Approximate all $V+1$ frequency values using t terms.
General DP Scheme: Intra-Bucket

- Each bucket $b=(s,e)$ summarizes PDFs of items $s,...,e$
 - Using from 1 to $V=|\mathcal{V}|$ terms

- Let $\text{VALERR}(b,u,v)$ denotes minimum possible error of approximating the frequency values in $[u,v]$ of bucket b. Then:

$$B - OPT^b[w,T] = \min_{1\leq u \leq w-1} \{ B - OPT^b[u,T-1] + \text{VALERR}(b,u+1,w) \}$$

- Intra-Bucket DP not needed for MAX Error (L_∞) distance

- Compute efficiently per metric
- Utilize pre-computations
Sum Squared Error & (Squared) Hellinger Distance

♦ Simpler cases (solved similarly). Assume bucket \(b=(s,e) \) and wanting to compute \(\text{VALERR}(b,v,w) \)

♦ (Squared) Hellinger Distance (SSE is similar)
 - Represent bucket \([s,e] \times [v,w]\) by single value \(p \), where

 \[
 p = \tilde{p} = \left(\frac{\sum_{i=s}^{e} \sum_{j=v}^{w} \sqrt{\Pr[X_i = j]} \frac{1}{(e-s+1)(w-v+1)}}{\sum_{i=s}^{e} \sum_{j=v}^{w} \sqrt{\Pr[X_i = j]}} \right)^2
 \]

 - \(\text{VALERR}(b,v,w) = \sum_{i=s}^{e} \sum_{j=v}^{w} \Pr[X_i = j] - (e-s+1)(w-v+1)\tilde{p} \)

 Computed by \(4 \ B[] \) entries

 Computed by \(4 \ A[] \) entries

 - \(\text{VALERR} \) computed in constant time using \(O(UV) \) pre-computed values, given

 \[
 A[e, w] = \sum_{i=1}^{e} \sum_{j=1}^{w} \sqrt{\Pr[X_i = j]} \quad B[e, w] = \sum_{i=1}^{e} \sum_{j=1}^{w} \Pr[X_i = j]
 \]
Variation Distance

♦ Interesting case, several variations
♦ Best representative within a bucket = median P value

\[\text{VALERR}(b, v, w) = \sum_{i=s}^{e} \sum_{j=v}^{w} \Pr[X_i = j] - 2I(i, j) \Pr[X_i = j] \]

♦ , where \(I(i, j) \) is 1 if \(\Pr[X_i = j] \leq p_{med} \), and 0 otherwise
♦ Need to calculate sum of values below median \(\Rightarrow \) two-dimensional range-sum median problem
♦ Optimal PDF generated is NOT normalized
♦ Normalized PDF produced by scaling = factor of 2 from optimal
♦ Extensions for \(\varepsilon \)-error (normalized) approximation
Other Distance Metrics

- Max-Error can be minimized efficiently using sophisticated pre-computations
 - No Intra-Bucket DP needed
 - Complexity lower than all other metrics: $O(TV N^2)$
- EMD case is more difficult (and costly) to handle
- Details in the paper...
Handling Selections and Joins

- Simple statistics such as expectation are simple
- Selections on item domain are straightforward
 - Discard irrelevant buckets - Result is itself a prob. histogram
- Selections on the value domain are more challenging
 - Correspond to extracting the distribution conditioned on selection criteria
- Range predicates are clean: result is a probabilistic histogram of approximately same size

\[
\begin{align*}
\text{Pr}[X=x \mid X \geq 3] &= \\
&= \frac{1/2}{0.3} = \frac{1}{3} \\
&= \frac{1/6}{0.1} = \frac{1}{6}
\end{align*}
\]
Handling Joins and Aggregates

- Result of joining two probabilistic relations can be represented by joining their histograms
 - Assume pdfs of each relation are independent
 - Ex: equijoin on \mathcal{V}: Form join by taking product of pdfs for each pair of bucket intersections
 - If input histograms have B_1, B_2 buckets respectively, the result has at most B_1+B_2-1 buckets
 - Each bucket has at most: T_1+T_2-1 terms

- Aggregate queries also supported
 - I.e., count(#tuples) in result
 - Details in the paper...
Experimental Study

- Evaluated on two probabilistic data sets
 - Real data from Mystiq Project (127k tuples, 27,700 items)
 - Synthetic data from MayBMS generator (30K items)

- Competitive technique considered: IDEAL-1TERM
 - One bucket per EACH item (i.e., no space bound)
 - A single term per bucket

- Investigated:
 - Scalability of PHist for each metric
 - Error compared to IDEAL-1TERM
Quality of Probabilistic Histograms

- Clear benefit when compared to IDEAL-1TERM
 - PHist able to approximate full distribution
Scalability

- Time cost is linear in T, quadratic in N
 - Variation Distance (almost cubic complexity in N) scales poorly
- Observe “knee” in right figure. Cost of buckets with $> V$ terms is same as with EXACTLY V terms \Rightarrow INNER DP uses already computed costs
Concluding Remarks

✿ Presented techniques for building probabilistic histograms over probabilistic data
 - Capture full distribution of data items, not just expectations
 - Support several minimization metrics
 - Resulting histograms can handle selection, join, aggregation queries

✿ Future Work
 - Current model assumes independence of items. Seek extensions where this assumption does not hold
 - Running time improvements
 • $(1+\varepsilon)$-approximate solutions [Guha, Koudas, Shim: ACM TODS 2006]
 • Prune search space (i.e., very large buckets) using lower bounds for bucket costs