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APPROXIMATE QUERY PROCESSING
USING WAVELETS

FIELD OF THE INVENTION

The present invention relates generally to querying elec-
tronic documents and, more particularly, to approximate
query processing of electronic documents.

BACKGROUND OF THE INVENTION

Presently, there are vast amounts of electronically stored
data, with additional electronic data available daily. As the
amount of electronically stored data swells, it will become
increasingly difficult to search the electronic data for desired
information. Accordingly, faster querying methods for
examining electronic data are desirable.

Approximate query processing has recently emerged as a
viable solution for dealing with large amounts of electronic
data, high query complexities, and stringent response time
requirements. Typically, users pose complex queries to a
Database Management System (DBMS) which require com-
plex operations to be performed over Gigabytes or Terabytes
of disk-resident data and, thus, take a long time to execute
to completion. Often an exact answer may not be required,
and a user may prefer a fast, approximate answer. For
example, during a drill-down query sequence in data mining,
initial queries frequently have the sole purpose of determin-
ing the truly interesting queries and regions of the database.
Providing (reasonably accurate) approximate answers to
these initial queries gives users the ability to focus their
examinations quickly and effectively, without consuming
large amounts of system resources. An approximate answer
can also provide useful feedback on the quality of a query,
allowing users to make informed decisions on whether they
would like to spend more time and resources to execute their
queries to completion. For queries requesting a numerical
answer (e.g., total revenues or annual percentage), often the
full precision of the exact answer is not needed and the first
few digits of precision will suffice (e.g., the leading few
digits of a total in the millions or the nearest percentile of a
percentage.)

One prior art approximate querying method involves
sampling. Sampling is based on the use of uniform, random
samples to create synopses of the electronic data. The
synopses are then queried to produce approximate query
answers. Known methods based on sampling involve que-
rying synopses in an attempt to extract desired information
from the electronic data. Random samples of a data collec-
tion typically provide accurate estimates for aggregate
operators (i.e., count, sum, average, etc.) However, random
samples for non-aggregate operators (i.e., select, project,
join, etc.) may provide undesirable results. For example,
sampling techniques suffer from two inherent limitations
which restrict their application as a general-purpose approxi-
mate query processing tool. First, it is known that a join
operator applied on two uniform random samples results in
a non-uniform sample of the join result. Thus, join opera-
tions lead to degradations in the quality of the approximate
answer. Second, for a non-aggregate query, execution over
random samples of the data will produce very small subsets
of the exact query answer. For example, since sampling
produces small subsets of the original data, the desired
results may be discarded in the process of generating the
samples. Therefore, since sampling is performed prior to
querying, a non-aggregate query operator such as select
applied on the small subsets of data will produce limited
results, if any.
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Another known approximate querying method involves
the use of histograms. In a histogram method, data is
grouped by ranges. By using histograms, synopses of the
data can be created which leads to improved querying
speeds. However, it is known that histogram-based
approaches become problematic when dealing with high-
dimensional data sets that are typical of modern systems.
The reason is that as the dimensionality of the data increases,
both the storage overhead (i.e., number of memory
locations) and the construction cost of the histograms that
can achieve reasonable error rates increase exponentially.

Accordingly, approximate querying processing methods
which efficiently provide fast and accurate query results for
aggregate and non-aggregate queries would be useful.

SUMMARY OF THE INVENTION

The present invention relates to approximate query meth-
ods for querying electronic data. The approximate query
method of the present invention comprises: generating
wavelet-coefficient synopses of the electronic data; querying
the wavelet-coefficient synopses using modified standard
(aggregate and non-aggregate) SQL operators implemented
using novel query processing algorithms to obtain a wavelet-
coefficient result; and rendering the wavelet-coefficient
result to obtain an approximate result.

In the present invention, the querying occurs entirely in
the wavelet-coefficient domain; that is, both the input(s) and
the output of the query operators are compact collections of
wavelet coefficients which capture the underlying data. This
delays the expansion of the wavelet-coefficient synopses to
the end of the querying process, thus allowing for extremely
fast approximate querying.

The wavelet-coefficient synopses is generated by decom-
posing the electronic data into wavelet coefficients. A small
set of the wavelet coefficients is then retained (using a
threshold scheme) to create a compact, wavelet-coefficient
synopses of the original data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A s a block diagram depicting support regions and
signs for sixteen non-standard two-dimensional Haar basis
functions, in which the coefficient magnitudes are multiplied
by +1 (-1) for a +(-) sign, respectively, appears, and is
multiplied by 0 in blank areas, in accordance with the
present invention;

FIG. 1B is a block diagram representing quadrant sign
information for coefficients using (per-dimension) sign vec-
tors;

FIG. 2 is a block diagram depicting the computation of
coefficients at different resolution levels during wavelet
decomposition (ALGORITHM COMPUTEWAVELET);

FIG. 3 is a block diagram of valid semantics for process-
ing query operators over the wavelet-coefficient domain
(T,, . .., T, can be base relations or intermediate query
results);

FIG. 4A is a block diagram representing the processing of
selection operations in the wavelet-coefficient domain in
accordance with the present invention;

FIG. 4B is a block diagram of the processing of projection
operations in the wavelet-coefficient domain in accordance
with the present invention;

FIG. 5A is a block diagram representing the processing
join operations in the wavelet-coefficient domain in accor-
dance with the present invention;

FIG. 5B is a block diagram representing computing sign
information for join output coefficients in accordance with
the present invention;
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FIG. 6A is a block diagram representing a two-
dimensional array;

FIG. 6B is a block diagram representing the partitioning
of the two-dimensional array in FIG. 6 A by algorithm render
in accordance with the present invention;

FIG. 7A is a graph of the select queries error sensitivity
to cell density in accordance with the present invention;

FIG. 7B is a graph of the select queries error sensitivity
to queries selectivity in accordance with the present inven-
tion;

FIG. 8A is a graph of select queries error sensitivity to
allocated space in accordance with the present invention;

FIG. 8B is a graph representing select queries error
sensitivity to skewing within the regions in accordance with
the present invention;

FIG. 9A is a graph of the effects of allocated space for
select-sum queries in accordance with the present invention;

FIG. 9B is a graph of the effects of allocated space in
select-join-sum queries in accordance with the present
invention;

FIG. 10A is a chart of select-join-sum query execution
times in accordance with the present invention;

FIG. 10B is a graph of select query errors on real life data
in accordance with the present invention;

FIG. 11A is a graph of errors for select-sum queries on
real life data;

FIG. 11B is a graph of errors for select-join-sum queries
on real life data in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The present invention relates to querying electronic data
to derive approximate results. In the present invention,
electronic data is queried using a method comprising the
following steps: generating wavelet-coefficient synopses of
the electronic data; querying the wavelet-coefficient synop-
ses using modified standard (aggregate and non-aggregate)
SQL operators implemented using novel query processing
algorithms to obtain a wavelet-coefficient result; and ren-
dering the wavelet-coefficient result to obtain an approxi-
mate result. In a preferred embodiment, the electronic data
is relational data housed in one or more relational databases
and the approximate result is an approximate relational
result.

In the present invention, the wavelet-coefficient synopses
are generated by decomposing the electronic data to be
queried into wavelet-coefficients. The wavelet-coefficients
are then subjected to a thresholding scheme to develop
wavelet-coefficient synopses of the electronic data. The
wavelet-coefficient synopses are a very compact represen-
tation of the data to be queried. Since the data is compact,
it can be queried very quickly. In a preferred embodiment,
multi-dimensional Haar wavelets are employed to generate
the wavelet-coefficients, however, other types of wavelets
could be employed.

I. Wavelet Coefficient Synopses

In the present invention, wavelet-coefficient synopses of
electronic data are generated by decomposing the electronic
data into wavelet-coefficients using a wavelet decomposi-
tion scheme and subjecting the wavelet-coefficients to a
thresholding scheme.

Wavelets are a useful mathematical tool for efficiently
decomposing data. Wavelet decomposition comprises a
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4

coarse overall approximation together with detail coeffi-
cients that influence the data. The wavelet decomposition
has excellent energy compaction and de-correlation
properties, which can be used to effectively generate com-
pact representations that exploit the structure of data. In
addition, wavelet transforms can be computed in linear time,
thereby enabling the creation of very efficient algorithms. In
a preferred embodiment, multi-dimensional Haar wavelet
decomposition is used. Haar wavelets are conceptually
simple, very fast to compute, and perform well in a variety
of applications. Although Haar wavelets are used, other
types of wavelets may be used in accordance with the
present invention.

Multi-Dimensional Haar Wavelets-Coefficients Semantics
and Representation: Consider a wavelet coefficient W gen-
erated during the multi-dimensional Haar decomposition of
a d-dimensional data array A. From a mathematical
standpoint, this coefficient is essentially a multiplicative
factor for an appropriate Haar basis function when the data
in A is expressed using the d-dimensional Haar basis.
Abstractly, the d-dimensional Haar basis function corre-
sponding to a coefficient W is defined by (a) a d-dimensional
rectangular support region in A that essentially captures the
region of A’s cells that W contributes to during
reconstruction, and (b) the quadrant sign information that
defines the sign (+or -) of W’s contribution (i.e., +W or -W)
to any cell contained in a given quadrant of its support
rectangle. (Note that the wavelet decomposition process
guarantees that this sign can only change across quadrants of
the support region.) As an example, FIG. 1(a) depicts the
support regions and signs of the sixteen nonstandard, two-
dimensional Haar basis functions for coefficients in the
corresponding locations of a 4x4 wavelet transform array W.
The blank areas for each coefficient correspond to regions of
the data array whose reconstruction is independent of the
coefficient, i.e., the coefficient’s contribution is 0. Thus, W
[0, 0] is the overall average that contributes positively (i.e.,
“+W [0, 0]") to the reconstruction of all values in the
original array, whereas W [3, 3] is a detail coefficient that
contributes (with the signs depicted in FIG. 2(a)) only to
values in the array’s upper right quadrant.

To simplify the description, the distinction between a
coefficient and its corresponding basis function is removed
by representing a Haar wavelet coefficient with the triple
W=(R, S, v), where:

1. W.R is the d-dimensional support hyper-rectangle of W
enclosing all the cells in the data array A to which W
contributes (i.e., the support of the corresponding basis
function). This hyper-rectangle is represented by its
low and high boundary values (i.e., starting and ending
array cells) along each dimension j, 1=j=d. The low
and high boundaries along dimension j are denoted by
W.R.boundary[j]lo and W.R.boundary[j]hi, respec-
tively. Thus, the coefficient W contributes to each data
cell Ali,, , 1y] satisfying the condition
W.R.boundary[j].lo=i,=W.R.boundary[j].hi for all
dimensions j, 1=j=d. Note that the space required to
store the support hyper-rectangle of a coefficient is 2
log N bits, where N denotes the total number of cells
(i.e., the product of the dimension sizes) of A.

2. WSS stores the sign information for all d-dimensional
quadrants of W.R. Note that storing the quadrant sign
information directly would mean a space requirement
of O(29), i.e., proportional to the number of quadrants
of a d-dimensional hyper-rectangle. Instead, a more
space-efficient representation of the quadrant sign
information is used (using only 2d bits) that exploits the
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regularity of nonstandard multi-dimensional Haar basis
functions. The basic observation here is that a non-
standard d-dimensional Haar basis is formed by scaled
and translated products of d one-dimensional Haar
basis functions. Thus, the idea is to store a 2-bit sign
vector for each dimension j, that captures the sign
variation of the appropriate one-dimensional basis
function along that dimension. The two elements of the
sign vector of coefficient W along dimension j are
denoted by W.S.sign[j].1o and W.S.sign[j].hi, and con-
tain the sign that corresponds to the lower and upper
half of dimension j, respectively. Note that, by the
properties of Haar bases, any coefficient generated
during the decomposition of an input array, can only
have two possible sign vector values along any dimen-
sion: ++ and +-, however, arbitrary join and select
operators can introduce all possibilities (e.g., —+ or ——)
for the contents of the sign vector of an intermediate
result coefficient. Given the sign vectors along each
dimension, the sign for each d-dimensional quadrant
can be computed as the product of the d sign vector
entries that map to that quadrant (i.e., following exactly
the basis construction process). More formally, let
q=[by, bs, . . ., b,] be the binary address of a
d-dimensional quadrant of W.R with b=0 (b=1) sig-
nifying that q projects onto the lower (upper) half of
W.R’s boundary along dimension j. Then, treating a
sign of +(-) as being equivalent to +1 (resp., —1), the
sign of quadrant q can be defined as Hd]-=1(b]-*W.S.sign
[j]-hi+b;*W.S sign[j].10), where b; denotes the comple-
ment of bit b;. Consequently, using the d sign vectors
(ie., only 2d bits of space) allows the capture of the
quadrant sign information for d-dimensional Haar
wavelet coefficients. The quadrant addressing conven-
tion and sign computation methodology are depicted in
FIG. 1(b) for two example coefficient hyper-rectangles
from the two-dimensional basis of FIG. 1(a).

3. W.v is the (scalar) magnitude of coefficient W. This is
exactly the quantity that W contributes (either posi-
tively or negatively, depending on W. S) to all data
array cells enclosed in W.R.

Thus, the view of a d-dimensional Haar wavelet coeffi-
cient is that of a d-dimensional hyper-rectangle with a
(non-zero) magnitude and a sign that may change across
quadrants. Note that by the properties of the nonstandard
Haar decomposition, given any pair of coefficients, their
hyper-rectangles are either going to be completely disjoint
or one is completely contained in the other, that is, coeffi-
cient hyper-rectangles cannot partially overlap. It is this
containment relationships coupled with the sign-vector rep-
resentation of quadrant signs that enables join operations to
be performed directly over the wavelet-coefficient synopses.
These containment relationships also define the level of
resolution of d-dimensional Haar wavelet coefficients (and
the appropriate normalization constants to produce an
orthonormal basis). More specifically, the level of all coef-
ficients that span the entire data domain is defined as 0 and
the level of any other coefficient as the level of the minimal
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enclosing coefficient incremented by one. FIG. 2(a) depicts
the two levels of resolution (1=0, 1) for a two-dimensional
Haar basis function (and the corresponding coefficients).

A Single-Pass Algorithm for Computing the Wavelet
Decomposition of a Relational Table: Consider a relational
table R with d attributes X, X,, . . . X,. A straightforward
way of obtaining a wavelet-based synopsis of R would be to
take the traditional two-dimensional array view of a rela-
tional table (with attributes on the x-axis and tuples on the
y-axis), apply a two-dimensional wavelet decomposition on
R, and retain a few large coefficients. It is highly unlikely,
however, that this solution will produce a high-quality
compression of the underlying data. The reason is that
wavelets (like most compression mechanisms) work by
exploiting clusters of constant or similar values, which are
almost impossible when grouping together attributes that
can have vastly different domains (e.g., consider an age
attribute adjacent to a salary) attribute. Similar problems
occur in the vertical grouping as well, since even sorting by
some attribute(s) cannot eliminate large “spikes” for others.
The algorithm of the present invention addresses these
problems by taking a slightly different view of the d-attribute
relational table R. The idea is that the information in R can
be represented as a (sparse) d-dimensional array A, whose
j”* dimension is indexed by the values of attribute X, and
whose cells contain the count of tuples in R having the
corresponding combination of attribute values. Note that A,
is essentially the (d-dimensional) joint frequency distribu-
tion of all the attributes of R.

In a preferred embodiment of the present invention, an
efficient, single-pass algorithm is employed for constructing
the multi-dimensional wavelet decomposition of Ag. The
decomposition algorithm can efficiently work off of a tra-
ditional “multiset-of-tuples” view of R. The scheme for
coefficient thresholding (that is, truncating the number of
coefficients retained for R based on the amount of available
space) and how these coefficients can be rendered to recon-
struct an approximate version of R is described.

Notation: The notational conventions used in the presenta-
tion of the preferred decomposition algorithm and for dis-
cussion are presented. Let D={D,, D,, ..., D,} denote the
set of dimensions of Ag, where dimension D; corresponds to
the value domain of attribute X;. Without loss of generality,
it is assumed that each dimension D; is indexed by the set of
integers {0, 1, . . ., [D|-1}, where |D/| denotes the size of
dimension D;. To summarize, the view of a relational table
R is that of a d-dimensional array A, of size N=I1¢_,|D|
with the cell Ag[i;, i, . . . , 1] containing the count of tuples
in R having X=i; for each attribute 1=j=d. Note that the
joint frequency array Ay typically will be very sparse,
especially for the high-dimensional data sets. N, is defined
to be the number of populated (i.e., nonzero) cells of Ay
(typically, N <<N).

Table 1 outlines the notation used in the wavelet con-
struction algorithm and later in the detailed description with
a brief description of its semantics.

TABLE 1

Symbol

Notation

Semantics

Number of attributes (i.e., dimensionality) of the input relational
table
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TABLE 1-continued
Notation
Symbol Semantics
R, Ag Relational table and corresponding d-dimensional joint frequency
array
X, Dy ™ attribute of relation R and corresponding domain of values
@=j=4d
D={D,, ..., D4} Set of all data dimensions of the (generic) array R
Ag iy iz -« -5 1g] Count of tuples in R with X; = i(i; € {0, . . ., [Djf-1}), V1=j=d
N=IL[Dj| Size (i.e., number of cells) of Ay
N, Number of nonzero cells of Ag (N, << N)
Walis iy« -y gl Coefficient located at coordinates [iy, iy, . . . , ig] of the wavelet

transform array Wy
W.R.boundary[j].{lo,hi}
coefficient W (1 £ j = d)
W.S.sign[j].{lo, hi}
coefficient W (1 £ j = d)
W.S.signchange[j]

Support hyper-rectangle boundaries along dimension D; for
Sign vector information along dimension D; for the wavelet

Sign-change value along dimension D; for the wavelet coefficient

Wla=j=d
Wy Scalar magnitude of the wavelet coefficient W
1 Current level of resolution of the wavelet decomposition

Sign-change value vector W.S.signchange[j] captures the
value along dimension j (between W.R.boundary[j].lo and
W.R.boundary[j].hi) at which a transition in the value of the
sign vector W.S.sign[j] occurs, for each 1=j=d. That is,
W.S.sign[jl.lo (W.S.sign[j].hi) applies to the range
[W.R.boundary[j].lo, . . . , W.Ssignchange[j]-1] (resp.,
W.S.signchange[j], . . . , W.R.boundary[j].hi). As a
convention, W.S.signchange[j] is set to equal W.R.boundary
[j]1o when there is no “true” sign change along dimension
j, 1.e., W.S.sign[j] contains [ +,+] or [-,—]. Note that, for base
Haar coefficients with a true sign change along dimensions,
j, W.S.signchange[j] is simply the midpoint between
W.R.boundary[j].lo and W.R.boundary[j].hi (FIG. 1). This
property, however, no longer holds when arbitrary selections
and joins are executed over the wavelet coefficients. As a
consequence, sign-change values should be stored explicitly
in order to support general query processing operations in an
efficient manner.

Decomposition Algorithm

An efficient decomposition algorithm for constructing the
multi-dimensional wavelet decomposition of A, in accor-
dance with a preferred embodiment of the present invention
is described. The algorithm exploits the interaction of the
nonstandard wavelet decomposition and the “chunk-based”
techniques that have recently been proposed for organizing
high-dimensional data to perform the decomposition in a
single pass over a relational table having very low memory
requirements. More specifically, the algorithm assumes that
the joint frequency array Ay has been split into
d-dimensional chunks that can fit entirely in main memory,
with the contents of each chunk stored contiguously on disk.
It is also shown that the extra memory required by the
wavelet decomposition algorithm (in addition to the memory
needed to store the chunk itself) is at most O(2“*log
(maxj{lel}))'

The single-pass algorithm is based on the following key
observation.

The wavelet decomposition of a d-dimensional array Ag
can be computed by independently computing the
wavelet decomposition for each of the 27
d-dimensional sub-arrays corresponding to Az’s quad-
rants and then performing pair-wise averaging and
differencing on the computed 27 averages of Ag’s
quadrants.

The final averaging and differencing step generates the
coefficients at the lowest level of resolution (i.e., at level 0).
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Furthermore, once the wavelet transform for a quadrant of
Ay has been computed, only its overall average needs to be
kept in memory for the final averaging and differencing step.
An efficient algorithm is devised by using the above obser-
vation to recursively compute the wavelet decomposition
(consisting of coefficients at resolution level 1 and higher)
for each quadrant Q of Ay in terms of Q’s own quadrants,
and so on. The resolution level of coefficients generated
increases with the depth of recursion. Also, at points during
the computation, memory of the averages for all quadrants
of Q are needed only if Q’s wavelet decomposition has not
yet been completed (i.e., the final averaging and differencing
step for Q has not been performed). Thus, the algorithm is
memory efficient since there can be at most one such
“active” quadrant/sub-array Q for each level of resolution.
Finally, the algorithm can run in a single pass over A; by
considering each sub-array that fits in memory as a separate
chunk that is stored contiguously on disk and loading the
entire chunk into memory only once, when its wavelet
decomposition is to be computed.

A preferred single-pass wavelet decomposition algorithm
(termed COMPUTEWAVELET) is depicted in Table 2
below. To simplify the description, the COMPUTEWAVE-
LET pseudo-code assumes that all dimensions of the data
array A, are of equal size, ie., |D,|=[D,|= . . . =|D =2
Besides the input joint frequency array (Ag) and the loga-
rithm of the dimension size (m), COMPUTEWAVELET
takes two additional arguments: (a) the root (i.e., “lower-
left” endpoint) coordinates of the d-dimensional sub-array
for which the wavelet transform is to be computed (i,
is, . . ., 1), and (b) the current level of resolution for the
wavelet coefficients (1). (Note that, for a given level of
resolution 1, the extent (along each dimension) of the
d-dimensional array rooted at (i, i, . . . , ;) being processed
is exactly 2"7'. The algorithm computes the wavelet-
coefficients for the elements in the input sub-array and
returns the overall average (step 13). COMPUTEWAVELET
exploits chunked array organizations by working in a
“depth-first” manner (all the computation required for
decomposing an array chunk is done the first time the chunk
is loaded into memory.) The idea is to recursively apply the
wavelet decomposition on all the 29 quadrants of the input
array, producing the corresponding wavelet transforms for
the next level of resolution (i.e., 1+1). The overall averages
for each of the 2¢ quadrants are collected in a 2x . . . x2=2¢
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temporary hyper-box T (Steps 2—4), where they are then
pair-wise averaged and differenced to produce the overall
average and detail coefficients for the level-1 decomposition
of the input sub-array (Step 5). Finally, these level-1 wavelet
coefficients are distributed to the appropriate locations of the
wavelet transform array W, at which point their support
hyper-rectangles and dimension sign vectors are also set
(Steps 6-12). Thus, once a d-dimensional chunk of Ay is
loaded into memory, COMPUTEWAVELET computes the
(nonstandard) wavelet coefficients at all levels for that chunk
with no additional I/O’s. This property ensures that the
computation is completed in a single pass over the array
data. The initial invocation of COMPUTEWAVELET is
done with root iy, i,, 1,)=(0, 0, . . ., 0) and level 1=0.

TABLE 2

10

10

single pass over the “multiset-of-tuples” view of R. (This
promotes efficiency, since the multi-dimensional array rep-
resentation of R is typically extremely sparse, that is,
N,<<N.) The idea is to appropriately organize the tuples of
R in a way that ensures that the tuple data is read and
processed in the same order as that induced by the chunked
storage and retrieval of the array Ax. An alternative method
of achieving the same effect for the decomposition algorithm
is to assume that the tuples of R have been sorted using
z-order for mapping the d-dimensional space of Ag onto a
total linear order. A property of the z-order linearization is
that all data cells belonging to regions generated by recur-
sively dividing different dimensions in half are guaranteed to
be contiguous in the z-order. This property ensures that the

COMPUTEWAVELET: A single-pass wavelet decomposition algorithm.

procedure COMPUTEWAVELET(Ag, m, (i, iy, . .
begin
1. if 1 2 m return Ag [iy, .

I D)

-5 ddl
fort; ==0,1...forty:=0,1
Ty, - .

end...end

fort; ==0,1...forty:=0,1

Wp [t 28+ (277, ooty 20+ (/2% D) )v =Ty, - - -, ]

. forji=1,...,d
9. Wi [t - 20 + (112279, . . ., tg - 28 + (12 D] R.boundary [j] ==
10. We lt - 20+ [/22, .o, by 28+ (127 D] Susign [j1 5= @ =
11. We [t - 20 + ({227, .. ., tg - 28 + (ig/2™Y)].S.sighchange [f] :
12. end
13. end...end
14. return T[O, . . ., 0]
end

., tq] := COMPUTEWAVELET(Ag, m, (i; + t; - 2271,

2
3
4.
5. perform pairwise averaging and differencing on the 2 x . . . x 2 = 2% hyper-box T
6
7
8

LS

Qg+ tg 22N, 1+ 1)

[ij, ip + 27" -1]
=0) [+ +] : [+ -]
=(==0)24:§+2""

Example: FIGS. 2(a), (b) and (c) illustrate the computation
of a few of the detail coefficients for resolution levels 0, 1
and 2, respectively, for the 8x8 data array A. For each level
1, the sub-array of A that is input to COMPUTEWAVELET
is enclosed in a bold rectangle and its four quadrants are
labeled with one of “a,” . . ., “1.” After collecting the
averages for the four quadrants in T (by recursively invoking
itself on each of the four quadrants), COMPUTEWAVELET
performs averaging and differencing on them and finally
distributes them in the wavelet transform array W, as shown
in the figure. FIG. 2(b) illustrates the recursive invocation of
COMPUTEWAVELET on quadrant “b” of the data array A
(which returns the average for quadrant “b”) while FIG. 2(¢)
represents its invocation on quadrant “g.” Finally, FIG. 4(b)
also depicts the order in which the wavelet decompositions
for each of the 2x2 sub-arrays of A are computed by
COMPUTEWAVELET.

With respect to the memory requirements of the
algorithm, the only extra memory required by COMPUTE-
WAVELET (in addition to that needed to store the data
chunk itself) is the memory for storing the temporary
“averaging hyper-boxes” T. Each such hyper-box consists of
exactly 2¢ entries and the number of distinct hyper-boxes
that can be “active” at any given point in time during the
operation of COMPUTEWAVELET is bounded by the depth
of the recursion, or equivalently, the number of distinct
levels of coefficient resolution. Thus, the extra memory
required by COMUTEWAVELET is at most O (2%-m)(when
[Dy|= . . . [DJ=2") or O(2%log(max{|D|})) (for the general
case of unequal dimension extents).

Even though the discussion has been based on the
chunked sparse array Ay for conceptual simplicity, the
wavelet decomposition algorithm can in fact work off a
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data tuples contained in any d-dimensional chunk of A
generated by recursive subdivisions of Ay into quadrants are
stored contiguously when R is sorted in z-order. The wavelet
decomposition algorithm works in a single pass over R,
assuming that the tuples of R have been stored on disk using
a “chunked file” or the z-order linearization. An additional
sorting step may be required if this assumption does not
hold. If this sorting step is required, a logarithmic number of
passes over the data is needed. FIG. 2(b) depicts the order in
which COMPUTEWAVELET scans the data array Ag dur-
ing a two-dimensional wavelet decomposition process, dem-
onstrating the direct correspondence between the order in
which the algorithm accesses the tuples of R and z-order.
Both the hyper-rectangle and the sign information for any
coefficient generated during the execution of COMPUTE-
WAVELET over a base relation R can be easily derived from
the location of the coefficient in the wavelet transform array
Wy, based on the regular recursive structure of the decom-
position process. Thus, in order to conserve space, hyper-
rectangle boundaries and sign vectors are not explicitly
stored in the wavelet-coefficient synopses of base relations.
(All that is needed are the coefficients’” coordinates in Wy.)
However, this information is stored explicitly for interme-
diate collections of wavelet coefficients generated during
query processing.
Coefficient Thresholding: Given a limited amount of storage
for maintaining the wavelet decomposition of a relational
table R, only a certain number C of the wavelet coefficients
stored in W, can be retained. (The remaining coefficients are
implicitly set to 0. ) Typically, C<<N,, which implies that the
chosen C wavelet coefficients form a highly compressed
approximate representation of the original relational data.
The goal of coefficient thresholding is to determine the
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“best” subset of C coefficients to retain, retaining coeffi-
cients which exceed a predefined threshold and disregarding
the other coefficients, so that the error in the approximation
is minimized.

The thresholding scheme employed in a preferred
embodiment is to retain the C largest wavelet coefficients in
absolute normalized value. It is known that (for any
orthonormal wavelet basis) this thresholding method is
optimal with respect to minimizing the overall mean squared
error (i.€., L* error norm) in the data compression. Given
that the goal is to support effective and accurate general
query processing over such wavelet-compressed relational
tables, the L* error norm will provide a reasonable aggregate
metric of the accuracy of the approximation over all the
individual tuples of R.

Symbol W, denotes the set of wavelet coefficients

retained from the decomposition of R (i.e., the wavelet-
coefficient synopsis of R).
Unequal Dimension Extents and Coefficient Normalization:
If the sizes of the dimensions of A; are not equal, then the
recursive invocation of COMPUTEWAVELET for quadrant
[ti, - . ., t ] (Step 3) takes place only if the inequality
i+t#27~11<|D | is satisfied for each j=1, . . ., d. That means
that, initially, quadrants along certain smaller dimensions are
not considered by COMPUTEWAVELET; however, once
quadrant sizes become smaller than the dimension size,
computation of coefficients in quadrants for such smaller
dimensions is initiated. Consequently, the pairwise averag-
ing and differencing computation (Step 5) is performed only
along those dimensions that are “active” in the current level
of the wavelet decomposition. The support hyper-rectangles
and dimension sign vectors for such active dimensions are
computed as described in Steps 8-10, whereas for an “inac-
tive” dimension j the hyper-rectangle boundaries are set at
boundary[j]:=(0, |D,|-1) (the entire dimension extent) and
the sign vector is set at signs[j]=[+,+].

The coefficient values computed by COMPUTEWAVE-
LET are normalized to ensure that the Haar basis functions
are orthonormal and the coefficients are appropriately
weighted according to their importance in reconstructing the
original data. This is important when thresholding coeffi-
cients based on a given (limited) amount of storage space.
When all dimensions are of equal extents (ie., |D,|=
D,|=. .. =D32 2™, coefficient values can be normalized
by simply dividing each coefficient by (V(21))%, where 1 is
the level of resolution for the coefficient. For one-
dimensional wavelets, this normalization ensures the
orthonormality of the Haar basis. The following lemma
shows how to extend the normalization process for non-
standard Haar coefficients to the case of unequal dimension
extents.

Lemma: Let W be any wavelet coefficient generated by
pairwise averaging and differencing during the nonstandard
d-dimensional Haar decomposition of A=|Dy|x . . . x|D.
Also, let W.R.length[j]:=W.R.boundary[j].hi-W.R .boundary
[j]1o +1 denote the extent of W along dimension j, for each
1=j=d. Then dividing the value W.v of each coefficient W

by the factor
[ 1\ 7
;N W.R.ength] j]

gives an orthonormal basis.

II. Querying in the Wavelet-coefficent Domain

In a preferred embodiment of the invention, a query
algorithm uses a modified algebra for querying wavelet-
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coefficient synopses. The basic operators of the modified
algebra correspond directly to conventional relational alge-
bra and SQL operators, including the (non-aggregate) select,
project, and join operators as well as aggregate operators
like count, sum, and average. However, the operators of the
algebra in the preferred algebra are defined over the wavelet-
coefficient domain; that is, the input(s) and output of each
operator are sets of wavelet coefficients (rather than rela-
tional tables). The query algebra for wavelet coefficients
provides efficient approximate query processing over
wavelet-coefficient data synopses. Executing the query Q in
the compressed wavelet-coefficient domain (essentially,
postponing the rendering step until the final query result)
offers tremendous advantages colloguial in the execution
costs of (approximate) queries. Therefore, the operators (op)
of the query processing algebra are defined over the wavelet-
coefficient synopses, with the semantics depicted pictorially
in the transition diagram of FIG. 3. The operator semantics
ensure the valid execution of a query Q in the wavelet-
coefficient domain. The idea is to ensure that for any
operator (op), the approximate relation resulting from pro-
cessing op in the wavelet-coefficient domain and rendering
the resulting coefficients (i.e., the “right-then-down” path in
FIG. 3) is identical to that obtained by first rendering the
input(s) of op and then executing the corresponding rela-
tional operator on the resulting approximate relations (i.e.,
the “down-then-right” path). This can be translated to the
equivalence of render(op(T;, . . ., T)) to op(render (T4, . . .,
T,)), for each operator. Defining the operator algebra to
satisfy these semantics allows the fast execution of any
relational query Q entirely over the wavelet-coefficient
domain, while ensuring that the (rendered) final result is
identical to that obtained by executing Q on the approximate
input relations.

Each operator takes one or more set(s) of multi-

dimensional wavelet coefficients as an input and appropri-
ately combines and/or updates the components (i.e., hyper-
rectangle, sign information, and magnitude) of these
coefficients to produce a “valid” set of output coefficients
(FIG. 3). All of the operators operate entirely in the wavelet-
coefficient domain. Note that, while the wavelet coefficients
(generated by COMPUTEWAVELET) for base relational
tables have a very regular structure, the same is not neces-
sarily true for the set of coefficients output by an arbitrary
select or join operator. Nevertheless, the intermediate results
of the algebra operators are referred to as “wavelet coeffi-
cients” since they are characterized by the exact same
components as base-relation coefficients (e.g., hyper-
rectangle, sign-vector) and maintain the exact same seman-
tics with respect to the underlying approximate
(intermediate) relation (i.e., the rendering process remains
unchanged).
Selection Operator (Select): A selection operator in accor-
dance with a preferred embodiment of the present invention
has the general form select,,,., (W), where pred represents
a generic conjunctive predicate on a subset of the d attributes
in T, that is, pred=(1,, =X, =h,,)" . . . "(1;,£X;.=h,;), where
1, and h,; denote the low and high boundaries of the selected
range along each selection dimension Dy, j=1, 2, . . ., k,
k=d. This is essentially a k-dimensional range selection,
where the queried range is specified along k dimensions
D'={D,;, D,,, . . ., D;} and left unspecified along the
remaining (d-k) dimensions (D-D". Since D={D,,D,, .. .,
D,}, for each unspecified dimension D,e(D-D"), the selec-
tion range spans the full index domain along the dimension,
that is, 1,=0 and h,=[D/|-1, for each D,e(D-D").

The select operator effectively filters out the portions of
the wavelet coefficients in W that do not overlap with the
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k-dimensional selection range, and thus do not contribute to
cells in the selected hyper-rectangle. This process is illus-
trated pictorially in FIG. 4(a). More formally, let WeW,.
denote any wavelet coefficient in the input set of the select
operator. The approximate query execution engine processes
the selection over W as follows. If W’s support hyper-
rectangle W.R overlaps the k-dimensional selection hyper-
rectangle, that is, if for every dimension D €D', the follow-
ing condition is satisfied.

1,;=W.R.boundary[i,].lo=h,; or W.R.boundary[i].
lo=1,=W.R boundary[i;] hi,
then

1. For all dimensions D eD' do

1.1. Set W.R.boundary[i;].lo:=max{1,, W.R.boundary
[i,].1o} and W.R.boundary[i ].hi:=min{h
W.R.boundary[i;].hi}.

1.2. If W.R boundary[i,].hi<W.S signchange[i,] then set
W.S.signchange[i;]:=W.R.boundary[i;].lo and
W.S.sign[i;]:=[ W.S.sign[i,].lo, W.S.sign[i,].1o].

1.3. Else if W.R.boundary[i,]lo=W.S signchangel[i,]
then set W.S.signchange[i,]:=W.R.boundary[i;].lo
and W.S.sign[i;]:=[ W.S sign[i;].hi, W.S.sign[i,].hi].

2. Add the (updated) W to the set of output coefficients,
that is, set Wg:=W U{W}, where S=select,,,, (T).

Note that the select processing algorithm chooses (and

appropriately updates) only the coefficients in W, that
overlap with the k-dimensional selection hyper-rectangle.
For each such coefficient, the algorithm (a) updates the
hyper-rectangle boundaries according to the specified selec-
tion range (Step 1.1), and (b) updates the sign information,
if such an update is necessary (Steps 1.2-1.3). The sign
information along the queried dimension D,; needs to be
updated only if the selection range along D, is completely
contained in either the low (1.2) or the high (1.3) sign-vector
range of the coefficient along D,. In both cases, the sign-
vector of the coefficient is updated to contain only the single
sign present in the selection range and the coefficient’s
sign-change is set to its leftmost boundary value (since there
is no change of sign along D, after the selection). The
sign-vector and sign-change of the result coefficient remain
untouched (i.e., identical to those of the input coefficient)
when the selection range spans the original sign-change
value.
Example: Consider the wavelet coefficient W in FIG. 4(a)
and let its hyper-rectangle ranges be defined as
W,.R.boundary[1]=[9, 15] and W.R.boundary[2]=[2, 7].
Further, the sign information for W, is captured by
W,.Ssign[1]=[+,-], W5.Ssign[2]=[+,-] (FIG. 1(b)),
W,.S.signchange[1]=12, and W,.S.signchange[2]=4. The
updates to W5 are illustrated when a select operator with the
2-dimensional selection hyper-rectangle shown in FIG. 4(a)
is applied. The boundaries of the selection hyper-rectangle
along dimension D, and D, are [1,,h;]=[4,13] and [1,,h,]=
[5,10], respectively.

Since W;’s hyper-rectangle overlaps with the selection
hyper-rectangle, it is processed by the select operator as
follows. First, in Step 1.1, the hyper-rectangle boundaries of
W, are updated to W;.R.boundary[1]:=[9,13] and
W, R.boundary[2]:=[5, 7] (i.e., the region that overlaps with
the select ranges along D; and D,). Since W, .S.signchange
[1]=12 which is between 9 and 13 (the new boundaries along
D,), the sign information along D, is not updated. Along
dimension D,, however, there is W,.S.signchange[2]=4
which is less than W4.R.boundary[2].lo=5, and so Step 1.3
updates the sign information along D, to W,.S.sign[2]:=
[-,-] and W,.Ssignchange[2]:=5(i.e., the low boundary
along D,).
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Projection Operator (Project): A projection operator in
accordance with a preferred embodiment of the present
invention has the general form project X,q, . . . , X (Wy),
where the k projection attributes X;,, . . ., X, form a subset
of the d attributes of T. Letting D'={D;,, . . . , D;} denote
the k=d projection dimensions, projecting out the d-k
dimensions in (D-D") is of interest. A general method for
projecting out a single dimension D;D-D' is given. This
method can then be applied repeatedly to project out all of
the dimensions in D-D', one dimension at a time.

Consider T’s corresponding multi-dimensional array A;.
Projecting a dimension D; out of A is essentially equivalent
to summing up the counts for all the array cells in each
one-dimensional “row” of Az along dimension D, and then
assigning this aggregated count to the single cell corre-
sponding to that row in the remaining dimensions (D—{D;}).
Consider any d-dimensional wavelet-coefficient W in the
project operators input set W,. W contributes a value of W.v
to every cell in its support hyper-rectangle W.R.
Furthermore, the sign of this contribution for every one-
dimensional row along dimension D; is determined as either
W.S.sign[j].hi (if the cell lies “above” W.S.signchange[j]) or
W.S.sign[jl.lo (otherwise). Thus, the coefficient W can be
worked on directly to project out dimension D, by simply
adjusting the coefficient’s magnitude with an appropriate
multiplicative constant W.v.=W.v*p,, where:

p=(W.R.boundary[j].hi-W.S.signchange[/]+1) *W.S sign[j].hi +

(W.S.signchange[j | W.R.boundary[].lo)* W.S.sign[/].lo. @

Atwo-dimensional example of projecting out a dimension in
the wavelet-coefficient domain is depicted in FIG. 4(b).
Multiplying W.v with p; (Equation (1)) effectively projects
out dimension D; from W by summing up W’s contribution
on each one-dimensional row along dimension D;. Besides
adjusting W.v, dimension D, needs to be discarded from the
hyper-rectangle and sign information for W, since it is now
a (d-1)-dimension coefficient (on dimensions D—{D,}). If
the coefficient’s sign-change lies in the middle of its support
range along dimension D; (e.g., see FIG. 1(a)), then its
adjusted magnitude will be 0, which means that it can safely
be discarded from the output set of the projection operation.
Repeating the process for each wavelet coefficient WeW .
and each dimension D;eD-D' gives the set of output wavelet
coefficients W, where S=project,(T). Equivalently, given a
coefficient W, we can set W.v:=W.v I, 5, , p; (Where p; is
as defined in Equation (1)) and discard dimensions D-D'
from W’s representation.
Example: Consider the wavelet coefficient W in FIG. 4(b).
Assume that the hyper-rectangle and sign information for W
along dimension D, are as follows: W.R.boundary[2]=[4,
11], W.S.sign[2]=[-,+], and W.S signchage[2]=10. Also, let
the magnitude of W be W.v=2. Then, projecting W on
dimension D; causes W.v to be updated to W.v:=2*((11-
10+1)-(10-4))=-8.
Join Operator (Join): A join operator in accordance with a
preferred embodiment of the present invention has the
general form join,,. (W5, WT,), where T, and T, are
(approximate) relations of arity d; and d,, respectively, and
pred is a conjunctive k-ary equi-join predicate of the form
(Xy1=X51)" . " (X p=X5), where X; (D) (=1, . . ., d))
denotes the j* attribute (resp., dimension) of T, (i=1, 2).
(Without loss of generality, the join attributes are assumed to
be the first kEmin{d,, d,} attributes of each joining
relation.) Note that the result of the join operation W is a set
of (d;+d,-K)-dimensional wavelet coefficients; that is, the
join operation returns coefficients of (possibly) different
arity than any of its inputs.
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To see how the join processing algorithm works, consider
the multi-dimensional arrays A, and A, corresponding to
the join operator’s input arguments. Let (i';, . . ., i'y) and
(i*,, . . . ,1%,,) denote the coordinates of two cells belonging
to Az, and A, respectively. If the indexes of the two cells
match on the join dimensions, i.e., i*,=i*,, . . . , i',=i%,, then
the cell in the join result array A with coordinates (i's, . . . ,
iy, %415 - - - 5 1°4) is populated with the product of the
count values contained in the two joined cells. Since the cell
counts for A, are derived by appropriately summing the
contributions of the wavelet coefficients in W, and a
numeric product can be distributed over a summation, the
join operator can be processed entirely in the wavelet-
coefficient domain by considering all pairs of coefficients
from W, and W,. Briefly, for any two coefficients from
W, and W, that overlap in the join dimensions (i.e.,
contribute to joining data cells) an output coefficient is
defined with a magnitude equal to the product of the two
“joining” coefficients and a support hyper-rectangle with
ranges that are (a) equal to the overlap of the two coefficients
for the k (common) join dimensions, and (b) equal to the
original coefficient range along any of the d;+d,—(2*k)
remaining dimensions. The sign information for an output
coefficient along any of the k join dimensions is derived by
appropriately multiplexing the sign-vectors of the “joining”
coefficients along that dimension, taking care to ensure that
only signs along the overlapping portion are taken into
account. (The sign information along non-join dimensions
remains unchanged.) An example of this process in two
dimensions (d,=d,=2, k=1) is depicted in FIG. 5(a).

The approximate query execution strategy for joins can be
described as follows: (To simplify the notation, the “%”
superscripts are ignored and the join dimensions are denoted
as Dy, ..., Dy, and the remaining d,+d,—-(2*k) dimensions
as D15 -« -, Dyihun_s ) For each pair of wavelet coefficients
W.eW,, and W,eW,,, if the coefficients’ support hyper-
rectangles overlap in the k join dimensions; that is, if for
every dimension D,, i=1, . . . k, the following condition is
satisfied:

W, .R.boundary.lo[i]ZW,.R.boundary.lo[i]
=W, R.boundary.hi[i] or
W,.R.boundary.lo[i]ZW,.R.boundary.lo[i]

=W.,.R.boundary.hi[i],
then the corresponding output coefficient WeW is defined
in the following steps.

1. For all join dimensions D,, i=1, . . . , k do
1.1. Set W.R.boundary[i].lo:=max{W, R boundary[i].

lo, W,.R.boundary[i].lo} and W.R.boundary[i].hi:=
min{W,.R boundary[i].hi, W,.R.boundary[i].hi}.
1.2. For j=1,2/*let s; be a temporary sign-vector vari-
able */
1.2.1. If W.R.boundary[i].hi<W;.S.signchange[i]
then set s;:=[W,.S.sign[i].lo, W,.S.sign[i].lo].
1.2.2. Else if W.R.boundary[i]lo=W .S signchange
[i] then set s:=[W,.S.sign[i].hi, W,.S.sign[i].hi].
1.2.3. Else set s,:=W,. S.sign[i].
1.3. Set W.S.sign[1]:=[s;.lo*s,.10, s;.hi*s,. hi].
1.4. If W.S.sign[i].lo==W.S.sign[i].hi then set
W.S.signchange[i]:=W.R.boundary[i].lo.
1.5 Else set W.S.signchange[i]:=max;_; »
{W,.S.signchange[i]: W,.S. signchange[i]e
[WR boundary[i].lo, W.R. boundary[l] hi]}.

2. For each (non-join) dimension D,, i=k+1, . . ., d; do:
Set W.R.boundary[i]:=W,.R.boundary[i], W.S.sign[i]:
=W, .S.sign[i], and W.S.signchange[i]:=
W, .S.signchange[i].

3. For each (non-join) dimension D;, i=d,, . .
d,+d,-k; do: Set WRboundary[l] —W R. boundary
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[i-d,+k],W.S.sign[i]:=W,.S.sign[i—d; +k],
W,,.S.signchange[i]:=W,.S signchange[i—d, +k].

4. Set Wv:=W_ v*W,v and Wu:=W,U{W}, where

S=j Oinpred(le’ WTZ)

Note that the bulk of the join processing algorithm
concentrates on the correct settings for the output coefficient
W along the k join dimensions (Step 1), since the problem
becomes trivial for the d;+d,—(2*k) remaining dimensions
(Steps 2-3). Given a pair of “joining” input coefficients and
a join dimension D,, the algorithm starts out by setting the
hyper-rectangle range of the output coefficient W along D,
equal to the overlap of the two input coefficients along D
(Step 1.1). Next, W’s sign information along join dimension
D, (Steps 1.2-1.3) is computed, which is slightly more
involved. (T; and T, are (possibly) the results of earlier
select and/or join operators, which means that their rectangle
boundaries and signs along D; can be arbitrary.) The idea is
to determine, for each of the two input coefficients W, and
W,, where the boundaries of the join range lie with respect
to the coefficient’s sign-change value along dimension D,.
Given an input coefficient W(J=1,2), if the join range along
D; is completely contained in either the low (1.2.1) or the
high (1.2.2) sign-vector range of W, along D,, then a
temporary sign-vector s; is appropriately set (with the same
sign in both entries). Otherwise, i.e., if the join range spans
W.’s sign-change (1.2.3), then s, is set to W,’s sign-vector
along D,. Thus, s, captures the sign of coefficient W, in the
joining range, and multiplying s, and s, (element-wise)
yields the sign-vector for the output coefficient W along
dimension D; (Step 1.3). If the resulting sign vector for W
does not contain a true sign change (i.c., the low and high
components of W.S.sign[i] are the same), then W’s sign-
change value along dimension D, is set equal to the low
boundary of W.R along D,, according to the convention
(Step 1.4). Otherwise, the sign-change value for the output
coefficient W along D, is set equal to the maximum of the
input coefficients’ sign-change values that are contained in
the join range (i.e., W.R’s boundaries) along D, (Step 1.5).

In FIG. 5(b), three common scenarios for the computation
of W’s sign information along the join dimension D, are
illustrated. More specifically, the left-hand side of the figure
shows three possibilities for the sign information of the input
coefficients W, and W, along the join range of dimension D,
(with crosses denoting sign changes). The right-hand side
depicts the resulting sign information for the output coeffi-
cient W along the same range. Observe that with respect to
the sign-information computation in Steps 1.3—1.5, the join
range along any join dimension D; can contain at most one
true sign-change. Meaning that if the sign for input coeffi-
cient W, actually changes in the join range along D,, then
this sign-change value is unique, that is, the two input
coefficients cannot have true sign-changes at distinct points
of the join range. This follows from the complete contain-
ment property of the base coefficient ranges along dimension
D; (Section 2.1.2). (Note that the algorithm for select retains
the value of a true sign change for a base coefficient if it is
contained in the selection range, and sets it equal to the value
of the left boundary otherwise.) This range containment
along D, basically ensures that if W, and W, both contain a
true sign-change in the join range (i.e., their overlap) along
D,, then that will occur at exactly the same value for both (as
illustrated in FIG. 5(.1)). Thus, in Step 1.3, W,’s and W,’s
sign-vectors in the join range can be multiplied to derive
W’s sign-vector. If, on the other hand, one of W, and W, has
a true sign change in the join range (as shown in FIG.
5(b.2)), then the max operation of Step 1.5 will correctly set
the sign-change of W along D, to the true sign-change value
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(since the other sign-change will either be the left boundary
or outside the join range). Finally, if neither W, nor W,, have
a true sign change in the join range, then the high and low
components of W’s sign vector will be identical and Step 1.4
will set W’s sign-change value correctly.

Example: Consider the wavelet coefficients W, and W, in
FIG. 5. Let the boundaries and sign information of W, and
W, along the join dimension D, be as follows:
W, .R.boundary[1]=[4,15], W,.R.boundary[1]=[8,15],
W, Ssign[1]=[-,+], W,.S.sign[1]=[-,+], W,.S.signchange
[1]=8, and W,.S.signchange[1]=12. In the following, the
computation of the hyper-rectangle and sign information for
join dimension D, for the coefficient W that is output by the
algorithm when W, and W, are “joined” is illustrated. Note
that for the non-join dimensions D, and Dy, this information
for W is identical to that of W, and W, (respectively), so we
focus solely on the join dimension D;.

First, in Step 1.1, W.R.boundary[1] is set to [8, 15], i.e.,
the overlap range between W, and W, along D,. In Step
1.2.2, since W.R.boundary[1].10o=8 is greater than or equal to
W, .S.signchange[1]=8, set s,=[+,+]. In Step 1.2.3, since
W,,.S.signchange[1]=12 lies in between W.R’s boundaries,
set s,=[—,+]. Thus in Step 1.3, W.S.sign[1] is set to the
product of s; and s, which is [—,+]. Finally, in step 1.5,
W.S.signchange[1] is set to the maximum of the sign change
values for W, and W, along dimension D,, or
W.S.signchange[1]:=max{8,12}=12.

Aggregate Operators (i.e., Count. Sum. Average. etc.): In the
present invention, conventional aggregation operators, like
count, sum, and average, are realized by the approximate
query execution engine in the wavelet-coefficient domain.
The input to each aggregate operator is a set of wavelet
coefficients W. If the aggregation is not qualified with a
GROUP-BY clause, then the output of the operator is a
simple scalar value for the aggregate. In the more general
case, where a GROUP-BY clause over dimensions
D'={D,, . . ., D,} has been specified, the output of the
aggregate operator consists of a k-dimensional array span-
ning the dimensions in D', whose entries contain the com-
puted aggregate value for each cell.

Count Operator (count): A count operator in accordance with
a preferred embodiment of the present invention has the
general form count, (W), where the k GROUP-BY dimen-
sions D'={D,,, . .., D, } form a (possibly empty) subset of
the d attributes of T. Counting is the most straightforward
aggregate operation to implement in the framework, since
each cell in the approximate multi-dimensional array already
stores the count in-formation for that cell. Thus, processing
count,(Wy) is done by simply projecting each input coef-
ficient onto the GROUP-BY dimensions D' and rendering
the result into a multi-dimensional array of counts, as
follows:

1. Let Wg:=project,(Wy).

2. Let Ag:=render(W,) and output the cells in the |D-

dimensional array Ag with non-zero counts.
Sum Operator (sum): A summation operator in accordance
with a preferred embodiment of the present invention has the
general form sump,(Wy, D)), where D'={D,, . . . , D}
denotes the set of GROUP-BY dimensions and D;eD’
corresponds to the attribute of T whose values are summed.
In a preferred embodiment, the sum operator is implemented
in three steps. First, the input coefficients W are projected
on dimensions D'U{D;,}. Second, for each coefficient W
output by the first step and for each row of cells along the
summation attribute D;, the sum of the product of the
coefficient’s magnitude W.v and the index of the cell along
D, is computed. To simplify the exposition, it is assumed that
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the (integer) cell index values along dimension D; are
identical to the domain values for the corresponding
attribute X; of T. If that is not the case, then a reverse
mapping from the D; index values to the corresponding
values of X, is needed to sum the attribute values along the
boundaries of a coefficient. The sum (essentially, an integral
along D;) is then assigned to the coefficient’s magnitude W.v
and the summing dimension D; is discarded. Thus, at the end
of this step, W.v stores the contribution of W to the sum-
mation value for every |D'|-dimensional cell in W.R. Third,
the resulting set of wavelet coefficients is rendered to
produce the output multi-dimensional array on dimensions
D'. More formally, the sum,(W, D)) query processing
algorithm comprises the following steps.

1. Let Wg=projectprpy (Wy)
2. For each wavelet coefficient WEW do
2.1. Set W.v according to the following equation:

W.S.signchange[ j]-1
W =W |W.S.sign[jl.lo-
k=W.R.boundaryl j].lo

k+

W.R.boundary[j| hi
W.S.sign[jl.hi-
k=W.S signchange[ j|

The summation of index values along D; in the above

formula can be expressed in closed form using straight-

forward algebraic methods.

2.2. Discard dimension D; from the hyper-rectangle and
sign information for W.

3. Let Ag=render(W) and output the cells in the |D'|-
dimensional array Ag with non-zero values for the
summation.

Average Operator (average): An averaging operator in
accordance with a preferred embodiment of the present
invention is designated by average, (W, D;) (where D' is
the set of GROUP-BY dimensions and D;¢D' corresponds
to the averaged attribute of T) is implemented by combining
the computation of sum, (W, D) and count,(W;). The
attribute sums and tuple counts for every cell over the data
dimensions in the GROUP-BY attributes D' is computed.
The resulting coefficients are rendered and the average value
(i.e., the ratio of sum over count) is output for every cell with
a non-zero sum and count.

III. Rendering

Reconstructing the Approximate Relation: A final step for a
lossy data compression scheme is to reconstruct an approxi-
mate version of the original data from a compressed repre-
sentation. This translates to rendering a given set of wavelet
coefficients W¢={W=(R,, S,, v,)} corresponding to a rela-
tional table S, to produce an “approximate version” of S
denoted by render(Wy). Note that S can be either a base
relation or the result of a query on base relations, since all
the query processing is done directly over the wavelet
coefficient domain, rendering the final result can be done at
the root of the query plan or as a post-processing step.

The purpose of the rendering step is to efficiently expand
the input set of d-dimensional wavelet coefficients W into
a corresponding (approximate) d-dimensional array of
counts Ag. In the preferred embodiment, an efficient algo-
rithm (termed render) for rendering an input set of multi-
dimensional wavelet coefficients is proposed. (Note that
render can be seen cither as a (final) query processing
operator or as a post-processing step for the query.) The
render algorithm exploits the fact that the number of coef-
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ficients in Wy is typically much smaller than the number of
array cells N. This implies that Ag consists of large, con-
tiguous multi-dimensional regions, where all the cells in
each region contain exactly the same count. (In fact, because
of the sparsity of the data, many of these regions will have
counts of 0. ) Furthermore, the total number of such
“uniform-count” regions in Ag is typically considerably
smaller that N. Thus, the basic idea of the efficient rendering
algorithm is to partition the multi-dimensional array A, one
dimension at a time, into such uniform-count data regions
and output the (single) count value corresponding to each
such region (the same for all enclosed cells).

A preferred render algorithm (depicted in Table 3) recur-
sively partitions the d-dimensional data array Ag, one

10

20

the partitioning generates one-dimensional uniform-count
ranges along D,. Once the partitioning points along dimen-
sion D, have been determined, they are used to partition the
hyper-rectangles of the wavelet coefficients in COEFF along
D, (Steps 16-27). Algorithm render is then recursively
invoked with the set of (partial) coefficients in each partition
of D, to further partition the coefficients along the remaining
dimensions D,,;, . . . , D, Once the array has been
partitioned along all dimensions in D (i.e., render is invoked
with parameter i>d), a coefficient W in the input set of
coefficients COEFF is guaranteed to have a constant con-
tribution to every cell in the corresponding d-dimensional
partition. This essentially means that a d-dimensional
uniform-count partition in Ag has been discovered, and the
partition boundaries and the corresponding tuple count
(Steps 2—6) can be output.

dlmen.smn at a time and in thf.: dimension order D, . . 5Dg 15 G, 6(b) depicts the partitioning of a two-dimensional
Algorithm render takes two input arguments: (a) the index g4 array generated by render for the input set consisting of
(1) of the next dimension D, along which the array A is to the four wavelet coeflicients shown in FIG. 6(a).

be partitioned, and (b) the set of wavelet coefficients The time complexity of render can be shown to be
(COEFF) in the currently processed partition of Ag O(|W4|*P), where P is the number of uniform-count parti-
(generated by the earlier partitioning along dimensions . tions in A;. (As observed, P is typically much smaller than

Dy, ..., D, ;). The initial invocation of render is done with
i=1 and COEFF=Wj.

TABLE 3

N.) Further, render is extremely memory-efficient, requiring
only O(|W|*d) space.

render: An efficient algorithm for rendering multi-dimensional wavelet coefficients.

procedure render(COEFF, i)

begin

1. if@i>d{

2. count := 0

3. for each coefficient W in COEFF

4. sign = Ilp;.p, sign;
/* sign; == W.S.sign[j]lo if W.R.boundary[j].lo < W.S.signchange[j]; else, sign;
= W.S.sign[j]hi */

S. count := count + sign * W.v

6. output (W.R.boundary, count) /* W is any coefficient in COEFF */

7. return

8.

9. Q=@ /* elements ¢ in priority queue Q are sorted in increasing order of e.key */
10. for each coefficient W in COEFF

11. insert element e into Q where e.key := W.R.boundary[i]llo — 1 and e.val := W

12. insert element e into Q where e.key := W.R.boundary[i]lhi - 1 and e.val := W

13. if (W.R.boundary[i]lo < W.S.signchange[i] £ W.R.boundary[i].hi)

14. insert element e into Q where e.key := W.S.signchange[i] - 1 and e.val := W

15. Prev := w0, TEMP1 =@
16. while (Q is not empty) do {
17. TEMP2 := @&, topkey := e.key for element e at head of Q

18. dequeue all elements e with e.key = topekey at the head of Q and insert e.val into
TEMP 1

19. for each coefficient W in TEMP1

20. delete W from TEMP1 if W.R.boundary[i].hi < prev + 1

21. if W.R.boundary[i] overlaps with the interval [prev + 1, topkey] along dimension D;

22. W =W

23. W'.R.boundary[i].lo := prev + 1, W'.R.boundary[i] hi := topkey

24. insert W' into TEMP2

25. render(TEMP2, i + 1)

26. prev := topkey

27. )

end

When partitioning render Ag into “uniform count” ranges
along dimension D,, the points that should be considered are
those where the cell counts along D, could potentially
change. These are the points where a new coefficient W
starts contributing (W.R.boundary[i].lo), stops contributing
(W.R.boundary[i].hi), or the sign of its contribution changes
(W.S.signchange[i]). Algorithm render identifies these
points along dimension D; for each coefficient in COEFF
and stores them in sorted order in a priority queue Q (Steps
10-14). For any pair of consecutive partitioning points along
D;, the contribution of each coefficient in COEFF (and,
therefore, their sum) is guaranteed to be constant for any row
of cells along D, between the two points. Thus, abstractly,
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IV. Experimental Results

An extensive empirical study was conducted using the
query processing tools in accordance with a preferred
embodiment of the present invention. The objective of the
study was twofold. (1) to establish the effectiveness of the
wavelet-based approach to approximate query processing,
and (2) to demonstrate the benefits of the methodology
compared to earlier approaches based on sampling and
histograms. The experiments consider a wide range of
queries executed on both synthetic and real-life data sets.
The major findings of the study can be summarized as
follows:



US 6,760,724 B1

21

Improved Answer Quality: The quality/accuracy of the
approximate answers obtained from the wavelet-based
query processor is, in general, better than that obtained by
either sampling or histograms for a wide range of data sets
and select, project, join, and aggregate queries.

Low Synopsis Construction Costs: The single-pass wavelet
decomposition algorithm is extremely fast and scales lin-
early with the size of the multi-dimensional array. (In
contrast, histogram construction costs increase explosively
with the dimensionality of the data.)

Fast Query Execution: Query execution-time speedups of
more than two orders of magnitude are made possible by the
approximate query processing algorithms. Furthermore, the
query execution times are competitive with those obtained
by histogram-based methods. Thus, the experimental results
validate that wavelets are a viable, effective tool for general-
purpose approximate query processing in DSS environ-
ments. All experiments reported in this section were per-
formed on a Sun Ultra-2/200 machine with 512 MB of main
memory, running Solaris 2.5.

Experimental Testbed and Methodoloyy

Approximate Query Answering Techniques: Three approxi-
mate query answering techniques were considered in the
study.

Sampling: A random sample of the non-zero cells in the
multi-dimensional array representation for each base rela-
tion is selected, and the counts for the cells are appropriately
scaled. Thus, if the total count of all cells in the array is t and
the sum of the counts of cells in the sample is s, then the
count of every cell in the sample is multiplied by (t*v)/s.
These scaled counts give the tuple counts for the corre-
sponding approximate relation.

Histograms: Each base relation is approximated by a multi-
dimensional MaxDiff(V,A) histogram. MaxDiff(V,A) histo-
grams results in higher-quality approximate query answers
compared to other histogram classes (e.g., EquiDepth or
EquiWidth). Selects, joins, and aggregate operators on his-
tograms are processed. Selects are applied directly to the
histogram for a relation and a join between two relations is
done by first partially expanding the histograms to generate
the tuple-value distribution of each relation. An indexed
nested-loop join is then performed on the resulting tuples.
Wavelets: Wavelet-coefficient synopses are constructed on
the base relations (using algorithm COMPUTEWAVELET)
and query processing is performed entirely in the wavelet-
coefficient domain. In the join implementation, overlapping
pairs of coefficients are determined using a simple nested-
loop join. Furthermore, during the rendering step for non-
aggregate queries, cells with negative counts are not
included in the final answer to the query.

Since there are d dimensions in the multi-dimensional
array for a d-attribute relation, ¢ random samples require
c*(d+1) units of space (d units to store the index of the cell
and 1 unit to store the cell count.) Storing ¢ wavelet
coefficients also requires the same amount of space, since d
units are needed to specify the position of the coefficient in
the wavelet transform array and 1 unit is needed to specify
the value for the coefficient. (Note that the hyper-rectangle
and sign information for a base coefficient can easily be
derived from its location in the wavelet transform array.) On
the other hand, each histogram bucket requires 3*d+1 units
of space, 2*d units to specify the low and high boundaries
for the bucket along each of the d dimensions, d units to
specify the number of distinct values along each dimension,
and 1 unit to specify the average frequency for the bucket.
Thus, for a given amount of space corresponding to ¢
samples/wavelet coefficients, b=c histogram buckets are
stored to ensure a fair comparison between the methods.
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Queries: The workload used to evaluate the various approxi-
mation techniques consists of four main query types: (1)
SELECT Queries, ranges are specified for (a subset of) the
attributes in a relation and all tuples that satisfy the con-
junctive range predicate are returned as part of the query
result, (2) SELECT-SUM Queries, the total sum of a par-
ticular attribute’s values is computed for all tuples that
satisfy a conjunctive range predicate over (a subset of) the
attributes; (3) SELECT-JOIN Queries, after performing
selections on two input relations, an equi-join on a single
join dimension is performed and the resulting tuples are
output; and, (4) SELECT-JOIN-SUM Queries, the total sum
of an attribute’s values is computed over all the tuples
resulting from a SELECT-JOIN.

For each of the above query types, experiments were
conducted with multiple different choices for (a) select
ranges, and (b) select, join, and sum attributes. The results
presented in the next section are indicative of the overall
observed behavior of the schemes. Furthermore, the queries
presented in this paper are fairly representative of typical
queries over data sets.

Answer-Quality Metrics: In the experiments with aggre-
gate queries (e.g., SELECT-SUM queries), the relative error
in the aggregate value as a measure of the accuracy of the
query answer is used. That is, if actual _aggr is the result of
executing the aggregation query on the actual base relations,
while approx__aggr is the result of running it on the corre-
sponding synopses, then the accuracy of the approximate
answer is given by

actual_aggr— approx_aggr

actual_aggr

Deciding on an error metric for non-aggregate queries is
slightly more involved. The problem is that non-aggregate
queries do not return a single value, but rather a set of tuples
(with associated counts). Capturing the “distance” between
such an answer and the actual query result requires that how
these two (multi)sets of tuples differ in both (a) the tuple
frequencies, and (b) the actual values in the tuples be taken
into account. (Thus, simplistic solutions like “symmetric
difference” are insufficient.) A variant of the Earth Mover’s
Distance (EMD) error metric was chosen, since it offers
computational efficiency and natural handling of non-
integral counts. A discussion of EMD can be found in “A
Metric for Distributing with Applications to Image
Databases,” by Y. Rubner, C. Tomasi, and L. Guibas, in
“Proceedings of the 1998 IEEE International Conference on
Computer Vision, Bombay, India, 1998,” incorporated
herein by reference.

The EMD error metric is proposed for computing the
dissimilarity between two distributions of points and applied
to computing distances between images in a database. The
idea is to formulate the distance between two (multi)sets as
a bipartite network flow problem, where the objective func-
tion incorporates the distance in the values of matched
elements and the flow captures the distribution of element
counts.

Results

Synthetic Data Sets and Queries: A synthetic data gen-
erator populates regions of cells in the multi-dimensional
array. The input parameters to the generator along with their
description and default values are as illustrated in Table 4.
The generator assigns non-zero counts to cells in r rectan-
gular regions each of whose volume is randomly chosen
between v,,,;, and v, .. (the volume of a region is the number
of cells contained in it). The regions themselves are uni-
formly distributed in the multi-dimensional array. The sum
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of the counts for all the cells in the array is specified by the
parameter t. Portion t*(1-n_) of the count is partitioned
across the r regions using a Zipfian distribution with value
2. Within each region, each cell is assigned a count using a
Zipfian distribution with values between z,,,,, and z,,,., and
based on L, distance of the cell from the center of the region.
Thus, the closer a cell is to the center of its region, the larger
its count value. Finally, noise is introduced into the data set
by randomly choosing cells such that the noise cells con-
stitute a fraction n,, of the total number of non-zero cells. The
noise count t*n, is then uniformly distributed across the
noise cells.

TABLE 4
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The results indicate that for a broad range of parameter
settings, wavelets outperform both sampling and
histograms—in some cases, by more than an order of
magnitude.

SELECT Queries: Effect of Cell Density and Query Selec-
tivity

Cell Density: FIG. 7(a) depicts graphs for EMD error as
V.. the maximum volume of regions is varied between
1000 (1% density) and 5000 (5% density) (v,,,, is fixed at
1000). As the number of non-zero cells in the multi-
dimensional array increases, the number of coefficients,
samples and histogram buckets needed to approximate the

Input Parameters to Synthetic Data Generator

Parameter Description Default Value
d Number of dimensions 2

8 Size of each dimension (equal for all dimensions) 1024

r Number of regions 10

vmin, vmax Minimum and maximum volume of each region 2500, 2500
z Skew across regions 0.5

zmin, zmax Minimum and maximum skew within each region 1.0, 1.0

nv, nc Noise volume and noise count 0.05, 0.05
t Total count 1000000

c Number of coefficients/samples retained 1250

b Number of histogram buckets 420

sel Selectivity in terms of volume 4%

Note that with the default parameter settings described in

Table 4, there are a total of a million cells of which about
25000 have non-zero counts. Thus, the density of the multi-
dimensional array is approximately 2.5%. Further, in the
default case, the approximate representations of the relations
occupy only 5% of the space occupied by the original
relation—this is because 1250 samples/coefficients are
retained out of 25000 non zero cells which translates to a
compression ratio of 20. The same is true for histograms.
Finally, the default selectivity of range queries on the
multi-dimensional array is set to 4%—the SELECT query
range along each dimension was set to (512,720).
Time to Compute the Wavelet Transform: In order to dem-
onstrate the effectiveness of the single pass algorithm for
computing the wavelet transform of a multi-dimensional
array, in Table 5, the running times of the algorithm are
presented as the number of cells in the multi-dimensional
array is increased from 250,000 to 16 million. The density
of the multi-dimensional array is kept constant at 2.5% by
appropriately scaling the number of cells with non-zero
counts in the array. From the table, it follows that the
wavelet computation time scales linearly with the total
number of cells in the array.

TABLE 5

Wavelet Transform Computation Times

Number of Cells in

Multi-dimensional Array 250,000 1000,000 4000,000 16,000,000

Execution Time 6.3 26.3 109.9 445.4

(in seconds)

SELECT Queries: In the first set of experiments, a sensi-
tivity analysis of the EMD error for SELECT queries to
parameters like storage space, skew in cell counts within a
region, cell density, and query selectivity is carried out. In
each experiment, the parameter of interest was varied while
the remaining parameters were fixed at their default values.
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underlying data also increases. As a consequence, in general,
the EMD error is more when regions have larger volumes.
Note the sudden jump in the EMD error for histograms when
the volume becomes 5000. This is because the histogram
buckets overestimate the total of the cell counts in the query
region by almost 50%. In contrast, the error in the sum of the
cell counts within the query range with wavelets is less than
0.1%.

Selectivity of Query: FIG. 7(b) illustrates the EMD errors
for the three techniques as the selectivity of range queries is
increased from 2% to 25%. Since the number of tuples in
both the accurate as well as the approximate answer
increase, the EMD error increases as the selectivity of the
query is increased (the EMD error is the sum of the pairwise
distances between elements in the two sets of answers
weighted by the flows between them).

Storage Space: FIG. 8(a) depicts the behavior of the EMD
error for the three approximation methods as the space
allocated to each is increased from 2% to 20% of the
relation. For a given value of the number of wavelet coef-
ficients ¢ along the x axis, histograms are allocated space for
approximately c¢/3 buckets. As expected, the EMD error for
all the cases reduces as the amount of space is increased.
Note that for 500 coefficients, the EMD error for histograms
is almost five times worse that the corresponding error for
wavelets. This is because the few histogram buckets are
unable to accurately capture the skew within each region (in
the default setting, the zipf parameter for the skew within a
region is 1).

Skew Within Region: FIG. 8(b) depicts a plot of the EMD
error as z,,,,, the zipf parameter that controls the maximum
skew within each region is increased from O to 2.0 (z,,,, is
fixed at 0). Histograms perform the best for values of z max
between 0 and 0.5 when the cell counts within each region
are more or less uniformly distributed. However, once the
maximum skew increases beyond 0.5, the histogram buckets
cannot capture the data distribution in each region accu-
rately. Consequently, there is a spike in the EMD error for
a skew corresponding to a zipf value of 1.5.
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SELECT-SUM Queries: FIG. 9(a) depicts the performance
of the various techniques for SELECT-SUM queries as the
allocated space is increased from 2% to 20% of the relation.
Both wavelets and histograms exhibit excellent performance
compared to random sampling, the relative errors are
extremely low for both techniques—0.2% and 0.6%, respec-
tively. This is quite different from the EMD error curves for
the three schemes (see FIG. 8(a)). Therefore, although
histograms and wavelets are excellent at approximating
aggregate frequencies, they are not as good at capturing the
distribution of values accurately. SELECT-JOIN and
SELECT-JOIN-SUM Queries For join queries, in FIG. 9(b),
do not show the errors for sampling since in almost all cases,
the final result contained zero tuples. Also, only the relative
error results for SELECT-JOIN-SUM queries are plotted,
since the EMD error graphs for SELECT-JOIN queries were
similar.

When the number of coefficients retained is 500, the
relative error with wavelets is more than four times better
than the error for histograms—this is because the few
histogram buckets are not as accurate as wavelets in
approximating the underlying data distribution. For
histograms, the relative error decreases for 1000 and 2000
coefficients, but show an abrupt increase when the number
of coefficients is 5000. This is because at 5000 coefficients
a large bucket appeared in the query region (that was
previously absent) to capture the underlying noise in the data
set. Cells in this bucket contributed to the dramatic increase
in the join result size, and subsequently, the relative error.

It should be pointed out that although the performance of

histograms is erratic for the query region in FIG. 9(b),
histogram errors are found to be more stable on other query
regions. Even for such regions, however, the errors observed
for histograms were, in most cases, more than an order of
magnitude worse than those for wavelets. Note that the
relative error for wavelets is extremely low (less than 1%)
even when the coefficients take up space that is about 4% of
the relation.
Query Execution Times: In order to compare the query
processing times for the various approaches, the time (in
seconds) for executing a SELECT-JOIN-SUM query using
each approach was measured. The time for random sampling
were not considered since the join results with samples did
not generate any tuples, except for large sample sizes. The
running time of the join query on the original base relations
(using an indexed nested-loop join) to produce an exact
answer was 3.6 seconds. In practice, it is expected that this
time will be much higher since the entire relations fit in main
memory. As is evident from FIG. 10(a), the wavelet-based
technique is more than two orders of magnitude faster than
running the queries on the entire base relations. Also, note
that the performance of histograms is much worse than
wavelets—the reason for this is that when performing joins,
the histograms are first partially expanded to generate the
approximate relations and, subsequently, the relations are
joined. The problem is that the intermediate relations can
become fairly large and may even contain more tuples than
the original relations. For example, with 500 coefficients, the
expanded histogram contains almost 5 times as many tuples
as the base relations. The sizes of the approximate relations
decrease as the numbers of buckets increase, and thus
execution times for histograms fall for larger number of
buckets. In contrast, in the wavelet approach, join process-
ing is carried out exclusively in the compressed domain, that
is, joins are performed directly on the wavelet coefficients
without ever materializing intermediate relations. The tuples
in the final query answer are generated at the very end as part
of the rendering step and this is the primary reason for the
superior performance of the wavelet approach.
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Real-life Data Sets: Real-life data sets were obtained from
the US Census Bureau. The Current Population Survey
(CPS) data source, containing the Person Data Files of the
March Questionnaire Supplement, was employed. In
addition, the 1992 data file for the select and select sum
queries, and the 1992 and 1994 data files for the join and join
sum queries were used. For both files, the data was projected
on the following 4 attributes whose domain values were
previously coded: age (with value domain O to 17), educa-
tional attainment (with value domain 0 to 46), income (with
value domain O to 41) and hours per week (with value
domain O to 13). Along with each tuple in the projection, a
count was stored which represents the number of times it
appears in the file. The maximum domain values were
rounded off to the nearest power of 2 resulting in domain
sizes of 32, 64, 64 and 16 for the 4 dimensions, and a total
of 2 million cells in the array. The 1992 and the 1994
collections had 16271 and 16024 cells with non-zero counts,
respectively, resulting in a density of approximately 0.001.
However, even though the density is very low, large dense
regions within the arrays were observed—these dense
regions spanned the entire domains of the age and income
dimensions.

For all the queries, the following select range was used:
5=age<10 and 10=income<15 that was found to be repre-
sentative of several considered select ranges (the remaining
2 dimensions were left unspecified). The selectivity of the
query was 1056/16271=6%. For the sum queries, the sum
operation was performed on the age dimension. For the join
query, the join was performed on the age dimension between
the 1992 and 1994 data files. SELECT Queries: FIGS. 10(b)
and 11(a) depict a plot of the EMD error and relative error
for SELECT and SELECT-SUM queries, respectively, as the
space allocated for the approximations is increased from 3%
to 25% of the relation. From the graphs, it follows that
wavelets result in the least value for the EMD error, while
sampling has the highest EMD error. For select sum queries,
wavelets exhibit more than an order of magnitude improve-
ment in relative error compared to both histograms and
sampling (the relative error for wavelets is between 0.5%
and 3%). Thus, the results for the select queries indicate that
wavelets are effective at accurately capturing both the value
as well as the frequency distribution of the underlying
real-life data set. JOIN Queries: FIG. 11(b) only depicts the
results of the SELECT-JOIN-SUM queries, since the EMD
error graphs for SELECT-JOIN queries were similar. Over
the entire range of coefficients, wavelets outperform sam-
pling and histograms, in most cases by more than an order
of magnitude. With the real-life data set, even after the join,
the relative aggregate error using wavelets is very low and
ranges between 1% to 6%. The relative error of all the
techniques improve as the amount of allocated space is
increased. Note that compared to the synthetic data sets,
where the result of a join with sampling contained zero
tuples in most cases, for the real-life data sets, sampling
performs quite well. This is because the size of the domain
of the age attribute on which the join is performed is only 18,
which is quite small. Consequently, the join query result
using samples is no longer empty.

V. Conclusion

Approximate query processing is emerging as an essential
tool for numerous data-intensive applications requiring
interactive response times. Most work in this area, however,
has been of a limited scope, and conventional approaches
based on sampling or histograms appear to be inherently
limited when it comes to complex approximate queries over
high-dimensional data sets. We have proposed the use of
multi-dimensional wavelets as an effective tool for general-
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purpose approximate query processing in modern, high-
dimensional applications. The approach of the present
invention is based on building wavelet-coefficient synopses
of the data and using these synopses to provide approximate
answers to queries. We have demonstrated the construction
efficiency of this technique by proposing a novel wavelet
decomposition algorithm that under some scenarios com-
putes these synopses in a single pass over the data having
minimal memory requirements. We have also developed
novel query processing algorithms that operate directly on
the wavelet-coefficient synopses of relational data, allowing
processing of arbitrarily complex queries entirely in the
wavelet-coefficient domain. This ensures extremely fast
response times since the approximate query execution
engine of the present invention can do the bulk of its
processing over compact sets of wavelet coefficients, essen-
tially postponing the expansion into relational tuples until
the end-result of the query. Finally, we have conducted an
extensive experimental study with synthetic as well as
real-life data sets to determine the effectiveness of the
wavelet-based approach compared to sampling and histo-
grams. Our results demonstrate that the wavelet-based query
processor (a) provides approximate answers of better quality
than either sampling or histograms, and (b) offers query
execution-time speedups of more than two orders of mag-
nitude and is significantly faster than histogram-based meth-
ods for join queries. Furthermore, our single-pass wavelet
decomposition algorithm is shown to be extremely fast and
scale linearly with the size of the multi-dimensional array.

Having thus described a few particular embodiments of
the invention, various alterations, modifications, and
improvements will readily occur to those skilled in the art.
For example, the invention may be embodied in software,
hardware, or other means for storing instructions executed
by a processor. Such alterations, modifications and improve-
ments as are made obvious by this disclosure are intended to
be part of this description though not expressly stated herein,
and are intended to be within the spirit and scope of the
invention. Accordingly, the foregoing description is by way
of example only, and not limiting. The invention is limited
only as defined in the following claims and equivalents
thereto.

What is claimed is:

1. A computer implemented method for querying elec-
tronic data to generate approximate answers to queries
comprising the steps of:

generating multi-dimensional wavelet-coefficient synop-

ses of at least one relational array;

querying said multi-dimensional wavelet-coefficient syn-

opses of said at least one relational array to obtain a
wavelet-coefficient result; and

deriving an approximate result from said wavelet-

coefficient result.

2. The method of claim 1, wherein said generating step
comprises:

decomposing said at least one relational array into multi-

dimensional wavelet-coefficients; and

retaining a portion of said multi-dimensional wavelet-

coefficients which exceed a predefined threshold to
produce said multi-dimensional wavelet-coefficient
Synopses.

3. The method of claim 2, wherein said decomposing step
comprises:

decomposing said at least one relational array into multi-

dimensional Haar wavelet-coefficients.

4. The method of claim 3, wherein said decomposing step
is performed in a single pass over said at least one relational
array.

5. The method of claim 1, wherein said wavelet-
coefficient synopses are multi-dimensional Haar wavelet-
coefficient synopses.
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6. The method of claim 5, wherein said generating step
comprises:

decomposing said at least one relational array into a
plurality of sub-arrays;

recursively computing multi-dimensional Haar wavelet-
coefficients for each of said plurality of sub-arrays; and

composing the recursively computed multi-dimensional

Haar wavelet-coefficients for said plurality of sub-

arrays into said multi-dimensional Haar wavelet-

coefficient synopses.

7. The method of claim 1, wherein said querying step is
performed directly on said wavelet-coefficient synopses of
said at least one relational array.

8. The method of claim 7, wherein said querying step
comprises using query processing algorithms that operate
directly on said wavelet coefficient synopses.

9. The method of claim 8, wherein the input and output of
each of said query processing algorithms are sets of wavelet
coefficients.

10. The method of claim 1, wherein said deriving step
comprises rendering said approximate result from said
wavelet-coefficient result.

11. The method of claim 10, wherein said approximate
result is in relational form.

12. The method of claim 1, wherein said querying step
comprises at least the step of performing aggregate and
non-aggregate SQL operations directly on said wavelet-
coefficient synopses of said at least one relational array in
the wavelet coefficient domain.

13. A computer implemented query method for querying
electronic data comprising the steps of:

generating multi-dimensional wavelet-coefficient synop-

ses of relational data;

querying said multi-dimensional wavelet-coefficient syn-

opses to obtain a wavelet-coefficient result; and

expanding said wavelet-coefficient result into an approxi-
mate relational result.

14. The method of claim 13, wherein said generating step
comprises computing said wavelet-coefficient synopses in a
single pass over said relational data.

15. The method of claim 14, wherein said wavelet-
coefficient synopses are multi-dimensional Haar wavelet-
coefficient synopses.

16. The method of claim 13, wherein said querying step
comprises at least the step of performing aggregate and
non-aggregate SQL operations directly on said wavelet-
coefficient synopses of said at least one relational array in
the wavelet coefficient domain.

17. A device for querying electronic data to generate
approximate answers to queries comprising:

a processing unit having:

a first program for generating multi-dimensional
wavelet-coefficient synopses of at least one rela-
tional array;

a second program for querying said wavelet-coefficient
synopses of said at least one relational array to obtain
a wavelet-coefficient result; and

a third program for deriving an approximate result from
said wavelet-coefficient result; and

a processor for executing the programs; and

an output device for displaying said approximate result.

18. The system of claim 17, wherein said second program
performs aggregate and non-aggregate SQL operations
directly on said wavelet-coefficient synopses of said at least
one relational array in the wavelet coefficient domain.
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