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PROCEDURE SITE UPDATE (j, i, v, £ 1,€,8,6, k{)

INPUT: SITE INDEX j, STREAM INDEX /, INSERTED/DELETED VALUE ve [U];
SKETCH ERROR, CONFIDENCE, AND LOCAL-DEVIATION PARAMETERS ¢, 6 ,8;
"DISTRIBUTION FACTOR" k ; FOR STREAM /.

1. UPDATE SKETCH (sk( f; ), <i v, #1>)
2. UPDATE PREDICTED SKETCH (skP(f; j(t)))
3. IFlIsk(f; j ) —skP(f; j()) 1l > =1l sk

Vki

/lupdate current and
//predicted sketches
(fi j)I THEN

4. COMPUTE SKETCH-PREDICTION MODEL predModel (f; ;)
5. SEND{ijsk(f; ), predModel (f;;)} TO COORDINATOR

PROCEDURE ESTIMATE JOIN(id (f1),id({(f2)
INPUT: GLOBAL-STREAM IDENTIFIERS id(f4),id(f2).
OUTPUT: APPROXIMATE ANSWER TO JOIN-SIZE QUERY fq - f2

1.FOR i:=1TO 2DO
2. SETSkP(f;(t) :=0
3. FOR EACH ; € sites (f;) DO

4. kP, (t):= skP (f; (1) + SkP (£ j(t)

5. RETURN skP(fq(t))- skP{fa(t))




US 7,756,805 B2
Page 2

OTHER PUBLICATIONS

N. Alon, Y. Matias, and M, Szegedy. “The Space Complexity of
Approximating the Frequency Moments”. ACM STOC, 1996.
Babcock and C. Olston. “Distributed Top-K Monitoring”. ACM
SIGMOD, 2003.

M. Charikar, K. Chen, and M. Farach-Colton. “Finding Frequent
Items in Data Streams”. ICALP, 2002.

G. Cormode and S.Muthukrishnan. “An improved data stream sum-
mary: The count-min sketch and its applications”. LATIN, 2004.

G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi.
“Holistic Aggregates in a Networked World: Distributed Tracking of
Approximate Quantiles”. ACM SIGMOD, 2005.

Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. “Gigascope:
A Stream Database for Network Applications”. ACM SIGMOND,
2003.

A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. “Distributed
Set-Expression Cardinality Estimation”. VLDB, 2004.

M. Datar, A. Gionis, P. Indyk, and R. Motwani. “Maintaining Stream
Statistics over Sliding Windows”. ACM-SIAM SODA, 2002.

A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W.
Hong. “Model-Driven Data Acquisition in Sensor Networks”.
VLDB, 2004.

A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. “Processing
Complex Aggregate Queries over Data Streams”. ACM SIGMOD,
2002.

S. Ganguly, M. Garofalakis, and R. Rastogi. “Processing Data-
Stream Join Aggregates Using Skimmed Sketches”. EDBT, 2004.
P. B. Gibbons. “Distinct Sampling for Highly-Accurate Answers to
Distinct Values Queries and Event Reports”. VLDB, 2001.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. “Surf-
ing Wavelets on Streams: One-pass Summaries for Approximate
Aggregate Queries”. VLDB, 2001.

M. B. Greenwald and S. Khanna. “Space-Efficient Online Computa-
tion of Quantile Summaries”. ACM SIGMOD, 2001.

M. B. Greenwald and S. Khanna. “Power-Conserving Computation
of Order-Statistics over Sensor Networks”. ACM PODS, 2004.
Internet traffic archive. (http://ita.ee.lbl.gov/), Accessed Jan. 9, 2006.
S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. “The
Design of an Acquisitional Query Processor for Sensor Networks”.
ACM SIGMOD, 2003.

A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. “Finding
(Recently) Frequent Items in Distributed Data Streams”. IEEE
ICDE, 2005.

G. Singh Manku and R. Motwani. “Approximate Frequency Counts
over Data Streams”. VLDB, 2002.

C. Olston, J. Jiang, and J. Widom. “Adaptive Filters for Continuous
Queries over Distributed Data Streams”. ACM SIGMOD, 2003.

N. Thaper, S. Guha, P. Indyk, and N. Koudas. “Dynamic Multidimen-
sional Histograms”. ACM SIGMOD, 2002.

G. Cormode, M. Garofalakis. “Sketching Streams Through the Net:
Distributed Approximate Query Tracking”. Proceedings of the 31st
VLDB Conference, Trondheim, Norway, 2005.

G. Cormode and S.Muthukrishnan. “What’s Hot and What’s Not:
Tracking Most Frequent Items Dynamically”. ACM PODS, 2003.
A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. “How
to Summarize the Universe: Dynamic Maintenance of Quantiles”.
VLDB, 2002.

N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. “Medians
and beyond: New aggregation techniques for sensor networks”. ACM
SenSys, 2004.

M. Thorup and Y. Zhang. “Tabulation Based 4-Universal Hashing
with Applications to Second Moment Estimation”. ACM-SIAM
SODA, 2004.

Pending patent application, U.S. Appl. No. 11/302,387, filed Dec. 13,
2005.

* cited by examiner



US 7,756,805 B2

Sheet 1 of 10

Jul. 13, 2010

U.S. Patent

1 'Ol

901 ~—{ SWV3YLS 31vddn TvOO01

SNV3YLS 31vadn w201 [~ 90}

NOP/\ v‘w.\\ [ T T | v\\.\\

A 3LIS

S3OVSSIN
31vadn - 31Vv1S

dO1VYNIQHO0D

0l ~

NN, S

SWVY3YLS Tva0T1o

. I, [—zcol
| 31IS
(') 0 Yo g0l
YIAMSNY JLVYWIXO¥ddY
("0 'y) O A¥3IND ¥3SN |(— 0L




US 7,756,805 B2

Sheet 2 of 10

Jul. 13, 2010

U.S. Patent

¢ 9ld

HOL3IMS Nyl oPN

20z

S3LIS AG d3aXMOVHL
dO¥¥3 NOILOId3¥d

/\/2\

HOL3MS
d31901d3yd mow

Sz/

NOILNGIELSIa INYL \. 80¢
NOILNGIYLSIa
a31901d34d #om

W




U.S. Patent Jul. 13,2010 Sheet 3 of 10 US 7,756,805 B2

PROCEDURE SITE UPDATE (j, i, v, £1,¢,§,6, k;)

INPUT: SITE INDEX j, STREAM INDEX i, INSERTED/DELETED VALUE ve [U];
SKETCH ERROR, CONFIDENCE, AND LOCAL-DEVIATION PARAMETERS ¢, §,6;
"DISTRIBUTION FACTOR" k j FOR STREAM 1.

1. UPDATE SKETCH (sk( fj j), <i v, £1>) /update current and

2. UPDATE PREDICTED SKETCH (skp(f, i(t))) /predicted sketches

3.IFlisk(f; ) —skP(f; j(t)) >\/k I sk(f,j)ll THEN

4. COMPUTE SKETCH-PREDICTION MODEL predModel (f; ;)
5. SEND {ijsk(fj ), predModel (f; )} TO COORDINATOR

PROCEDURE ESTIMATE JOIN(id(fq),id(f2))

INPUT: GLOBAL-STREAM IDENTIFIERS id(f4),id(f2).
OUTPUT: APPROXIMATE ANSWER TO JOIN-SIZE QUERY £ * f3
1.FOR i:=1TO 2DO

2. SETskP(f;(t) : =

3. FOREACH j ¢ sites (f;) DO

a. skP (f;(t):=skP (f;(t)+skP(f; j(t)

5. RETURN skP(f4(t)) - skP(fa(t))

FIG. 3

®\h1 -
h

[ *ue )
g V) |

i

+E 5(V)

+uk d(V)

FIG. 4



U.S. Patent Jul. 13,2010 Sheet 4 of 10 US 7,756,805 B2
MODEL INFO. PREDICTED SKETCH
STATIC 0 sk (f; j(tprev))
LINEAR-GROWTH 0 oy SK (£ j (tprev))
VELOCITY/ sk (v; ;) sk (fi j(tprev)) + Atsk (vj )
ACCELERATION +(At)?sk(aj;)

FIG. 5

PROCEDURE SITE UPDATE (j, u,i)
INPUT: SITE INDEX j: UPDATE u TO POSITION i
1. UPDATE ss, sv, sa FROM vy, i, f, g, S|]

2. A =t-t;

3.FOR/=1TOdDO

4. est% =

5. UPDATE skx 2
6.1F (MEDIAN, est% > 92/kMEDIAN, skx%) THEN
7.  COMPUTE NEW sij , sk f

8.  SEND NEW MODEL TO COORDINATOR;

9. RECOMPUTE aag, va, vv;

10. t'=t;

ss;+2 Asvy+2 Azsa, + A2 (aal+2Ava,+A2 w);

FIG. 6
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METHOD FOR DISTRIBUTED TRACKING
OF APPROXIMATE JOIN SIZE AND
RELATED SUMMARIES

FIELD OF THE INVENTION

The present invention generally relates to the fields of
database management, Internet management, network man-
agement and monitoring applications and, in particular,
relates to tracking complex, aggregate queries in a distributed
streams setting.

BACKGROUND OF THE INVENTION

Traditional database systems optimize for performance on
one-shot query processing, yet emerging large-scale monitor-
ing applications require continuous tracking of complex data-
analysis queries over collections of physically distributed
streams. Given the nature of these large-scale monitoring
applications, their importance for security as well as daily
operations and their general applicability, surprisingly little is
known about solutions for many basic distributed monitoring
problems. It would be beneficial to track distributed approxi-
mate queries in a manner that is simultaneously space/time-
efficient and communication-efficient.

SUMMARY

Exemplary embodiments of the present invention continu-
ously track approximate, quality answers to a broad, general
class of complex aggregate queries over a collection of dis-
tributed data streams.

One embodiment is a method for tracking, where a number
of monitoring sites monitor local update streams. The local
update streams are part of a global data distribution in a
distributed system. Each monitoring site sends a state update
message to a coordinator, only when a local distribution dif-
fers from a predicted distribution by more than a predeter-
mined amount. The state update message includes a predicted
sketch. The coordinator provides an approximation based on
the state update messages from the monitoring sites. In one
embodiment, each monitoring site tracks any deviation of the
local distribution from the predicted distribution using a
sketch prediction model, such as a static model, a linear-
growth model, or a velocity/acceleration model. The moni-
toring sites may perform substantially continuously monitor-
ing. The approximation may be an answer in response to a
user query or may be computed substantially continuously.

Another embodiment is a system for tracking, including a
number of monitoring sites and a coordinator. The monitoring
sites monitor local update streams that are part of a global data
distribution in a distributed system. Each monitoring site
sends a state update message that includes a predicted sketch,
only when a local distribution differs from a predicted distri-
bution by more than a predetermined amount. The coordina-
tor provides an approximation based on the state update mes-
sages from the monitoring sites. Each monitoring site may
track any deviation of the local distribution from the predicted
distribution using a sketch prediction model, such as a static
model, a linear-growth model, or a velocity/acceleration
model. The monitoring sites may perform substantially con-
tinuously monitoring. The approximation may be an answer
in response to a user query or may be computed substantially
continuously.

Another embodiment is a computer readable medium stor-
ing instructions for performing a method of tracking, where
monitoring sites monitor local update streams that are part of
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a global data distribution in a distributed system. A state
update message is sent from each monitoring site to a coor-
dinator, only when a local distribution differs from a pre-
dicted distribution by more than a predetermined amount.
The state update message includes a predicted sketch. Each
monitoring site may track any deviation of the local distribu-
tion from the predicted distribution using a sketch prediction
model, such as a static model, a linear-growth model, or a
velocity/acceleration model. The monitoring sites may per-
form substantially continuously monitoring.

Another embodiment is a computer readable medium stor-
ing instructions for performing a method of tracking, where a
state update message is received from each of a number of
monitoring sites, only when a local distribution differs from a
predicted distribution by more than a predetermined amount.
The state update message includes a predicted sketch. Each
state update message reflects local update streams that are
part of a global data distribution system. A coordinator pro-
vides an approximation based on the state update messages
from the monitoring sites. The approximation may be an
answer in response to a user query or may be computed
substantially continuously.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which:

FIG. 1 is a block diagram showing an exemplary embodi-
ment of a distributed stream processing architecture;

FIG. 2 shows a high-level schematic of prediction error
from an exemplary embodiment of sketch-prediction-based
tracking;

FIG. 3 shows an exemplary embodiment of pseudo code
for processing stream updates and tracking local constraints
at remote sites as well as providing approximate answers at
the coordinator;

FIG. 4 illustrates the structure of an exemplary fast-AGMS
sketch;

FIG. 5 is a table summarizing information for exemplary
embodiments of the three prediction schemes: the static
model, the linear growth model, and the velocity/acceleration
model;

FIG. 6 shows pseudo code for an exemplary embodiment
of a fast procedure for tracking updates at remote sites;

FIG. 7A is a chart of the tradeoff between parameters € and
0 for the hypertext transfer protocol (HTTP) data set in an
experimental study;

FIG. 7B is a chart of the tradeoff between parameters € and
0 for the simple network management protocol (SNMP) data
set in the experimental study;

FIG. 8A is a chart of the effect of varying the window size
used to estimate the “velocity” sketch for the HTTP data setin
the experimental study;

FIG. 8B is a chart of the effect of varying the window size
used to estimate the “velocity” sketch for the SNMP data set
in the experimental study;

FIG.9A is a chart of the communication cost as the number
of'updates increased for the HTTP data set in the experimen-
tal study;

FIG. 9B is a chart of the communication cost as the number
of'updates increased for the SNMP data set in the experimen-
tal study;

FIG. 10A is a chart of an evaluation of the quality with a
fixed 6 and a varying € in the experimental study;
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FIG. 10B is a chart of an estimation of quality due to
tracking delay with sketch error subtracted as 6 varies in the
experimental study;

FIG. 11A is a chart of timing cost for the HTTP data set,
comparing fast tracking methods to performing sketch esti-
mation every step, for static and acceleration models in the
experimental study;

FIG. 11B is a chart of timing cost for the SNMP data set,
comparing fast tracking methods to performing sketch esti-
mation every step, for static and acceleration models in the
experimental study; and

FIG. 12 is a high-level block diagram showing a computer.
To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will primarily be described within
the general context of exemplary embodiments of methods
for distributed approximate query tracking. However, those
skilled in the art and informed by the teachings herein will
realize that the invention is generally applicable to any kind of
database management, Internet management, or network
management, and any kind of monitoring application, such as
distributed data centers/web caches, sensor networks, power
grid monitoring, monitoring habitat and environmental
parameters, tracking objects, monitoring intrusions, trend
analysis, monitoring customer usage patterns, etc.

While traditional database systems optimize for perfor-
mance on one-shot query processing, emerging large-scale
monitoring applications require continuous tracking of com-
plex, data-analysis queries over collections of physically dis-
tributed streams. Thus, effective solutions have to be simul-
taneously space/time efficient (at each remote monitor site),
communication efficient, (across the underlying communica-
tion network) and provide continuous, quality approximate
query answers.

Exemplary embodiments of the present invention provide
continuous tracking of a broad class of complex, aggregate
queries in a distributed-streams setting. Exemplary embodi-
ments maintain approximate query answers with error guar-
antees, while simultaneously optimizing the storage space
and processing time at each remote site and the communica-
tion cost across the network. One embodiment is a method of
distributed approximate query tracking that relies on tracking
general-purpose randomized sketch summaries of local
streams at remote sites along with concise prediction models
of'local site behavior in order to produce highly communica-
tion-efficient and space/time-efficient solutions. Another
embodiment is a powerful, approximate query tracking
framework that readily incorporates several complex analysis
queries, including distributed join and multi-join aggregates
and approximate wavelet representations, thus giving the first
known low-overhead tracking solution for such queries in the
distributed-streams model. Experiments with real data vali-
dated this approach, revealing significant savings over prior
art solutions as well as analytical worst-case guarantees.

Introduction

Traditional data management applications typically
require database support for a variety of one-shot queries,
including lookups, sophisticated slice-and-dice operations,
data mining tasks and so on. In a one-shot query, data pro-
cessing is done in response to a posed query. This hasled to a
successful industry of database engines optimized for sup-
porting complex, one-shot structured query language (SQL)
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queries over large amounts of data, Recent years, however,
have witnessed the emergence of a new class of large-scale,
event-monitoring applications that pose novel data manage-
ment challenges. In one class of applications, monitoring a
large-scale system is a crucial aspect of system operation and
maintenance.

As an example, consider a network operations center
(NOC) for an internet protocol (IP) backbone network of a
large internet service provider (ISP). Such centers are typi-
cally impressive computing facilities that monitor fast sets of
events at different layers of the network infrastructure that
range from fiber cable utilizations to packet forwarding at
routers to virtual private networks (VPNS) and higher-level
transport constructs. The center continuously tracks and cor-
relates usage information from a multitude of monitoring
points in order to quickly detect and react to hot spots, floods,
failures of links or protocols, intrusions, and attacks.

A different class of applications is one in which monitoring
is the goal in itself, such as a wireless network of seismic,
acoustic, and physiological sensors that are deployed for
habitat, environmental, and health monitoring. An objective
for such systems is to continuously monitor and correlate
sensor measurements for trend analysis, detecting moving
objects, intrusions, or other adverse events. Similar issues
arise in other systems, such as satellite-based systems that do
atmospheric monitoring for weather patterns.

Such monitoring applications have a number of common
characteristics. First, monitoring is continuous, that is, real-
time tracking of measurements or events is performed, not
merely one-shot responses to sporadic queries. Second,
monitoring is inherently distributed, that is, the underlying
infrastructure comprises a number of remote sites (each with
its own local data source) that can exchange information
through a communication network. This also means that there
are typically communication constraints owing to either net-
work capacity restrictions (e.g., in IP-network monitoring,
where the volumes of collected utilization and traffic data can
be large) or power and bandwidth restrictions (e.g., in wire-
less sensor networks, where communication overhead is a
factor in determining sensor battery life). Furthermore, each
remote site may see a high-speed stream of data and has its
own local resource limitations, such as storage space or pro-
cessing time constraints. This is true for IP routers, which
cannot store a log of all observed packet traffic at high net-
work speeds, as well as for wireless sensor nodes, which, even
though they may not observe large data volumes and typically
have little memory onboard.

Another aspect of large-scale event monitoring is the need
for effectively tracking queries that combine and/or correlate
information (e.g., IP traffic or sensor measurements)
observed across the collection of remote sites. For instance,
tracking the result size of a join over the streams of fault/alarm
data from two or more IP routers (e.g., with a join condition
based on their observed timestamp values) can allow network
administrators to effectively detect correlated fault events at
the routers and, perhaps, also pinpoint the root causes of
specific faults in real time. A join is the “workhorse” corre-
lation operator, as known to one of skill in the relational field.
Another example is the tracking of a two- or three-dimen-
sional histogram summary of the traffic-volume distribution
observed across the edge routers of'a large ISP network (along
axes such as time, source/destination IP address, etc.).
Clearly, such a histogram could provide a valuable visualiza-
tion tool for effective circuit provisioning, detection of
anomalies, denial of service (DoS) attacks, and so on. Inter-
estingly, when tracking statistical properties of large-scale
systems, answers that are precise to the last decimal are
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typically not needed; instead, approximate query answers
(with reasonable guarantees on the approximation error) are
often sufficient, because typically indicators or patterns,
rather than precisely defined events are sought. This allows an
effective tradeoff between efficiency and approximation
quality.

Exemplary embodiments of the present invention include
methods for continuously tracking approximate, quality
answers to a broad, general class of complex aggregate que-
ries over a collection of distributed data streams. These exem-
plary embodiments have many advantages over the prior art,
including communication-efficient and space-efficient
approximate query tracking, time-efficient sketch-tracking
algorithms, and extensions to other distributed streaming
models.

Exemplary embodiments include the first known algo-
rithms for tracking a broad class of complex, data-analysis
queries over a distributed collection of streams to a specified
accuracy. These tracking algorithms achieve communication
and space efficiency through a combination of general-pur-
pose, randomized sketches for summarizing local streams
and concise, sketch-prediction models for capturing the
update-stream behavior at local sites. Prediction models
allow the exemplary embodiments to achieve a natural notion
of stability, rendering communication unnecessary as long as
local data distributions remain stable or at least predictable.
The result is a powerful, general-purpose, approximate,
query-tracking framework that readily incorporates several
complex, data-analysis queries, including join and multi-join
aggregates and approximate wavelet/histogram representa-
tions in one or more dimensions. Exemplary embodiments
provide the first principled, low-overhead tracing solution for
such queries in the distributed-streams model. In fact, the
worst-case communication cost for simple cases of the pro-
tocols is comparable to that of a one-shot computation, while
the space-requirement is not much higher than that of cen-
tralized, one-shot estimation methods for data streams.

Exemplary embodiments include time-efficient, sketch-
tracking algorithms and extensions to distributed streaming
models. For massive, rapid-rate data streams (e.g., monitor-
ing high-capacity network links), the time needed to process
each update (e.g., to maintain a sketch summary of the
stream) becomes a critical concern. Traditional approaches
that need to “touch” every part of the sketch summary can
quickly become infeasible. The problem is further com-
pounded in tracking schemes that need to track continuously
the divergence of the sketch from an evolving sketch predic-
tion. This problem is addressed by a novel structure for ran-
domized sketches that allows small update and tracking
times, regardless of the size of the sketch, while offering the
same or improved space/accuracy tradeoffs, Furthermore, the
distributed-tracking schemes are extended to (1) different
data-streaming models that place more emphasis on recent
updates to the stream (using either sliding-window or expo-
nential-decay mechanisms) and (2) more complex, hierarchi-
cal-monitoring architectures, where the communication net-
work is arranged as a tree-structured hierarchy of nodes, such
as a sensornet routing tree.

Experimental results validated the approach of exemplary
embodiments. A set of experiments was performed over real-
life data to verify the benefits of exemplary embodiments in
practical scenarios. The results demonstrated that the algo-
rithms result in dramatic savings in communication, reducing
overall communication costs by a factor of more than 20 for
an approximation error of only about 10%. The use of sophis-
ticated, yet concise, sketch-prediction models obtained the
best results. Furthermore, novel schemes for fast, local sketch
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updates and tracking allowed each remote site to process
many hundreds of thousands of updates per second, which
matched even the highest-speed data streams.

FIG. 1 is a block diagram showing an exemplary embodi-
ment of a distributed stream-processing architecture 100.
This exemplary embodiment is a distributed-computing envi-
ronment that includes a collection of a number, k, of remote
sites 102 and a designated coordinator site 104. Streams of
data updates 106 arrive continuously at remote sites 102,
while the coordinator site 104 is responsible for generating
approximate answers 108 to (possibly continuous) user que-
ries 110 posed over the unions of remotely-observed streams
(across all sites). This exemplary embodiment does not allow
direct communication between remote sites 102; instead, as
illustrated in FIG. 1, a remote site 102 exchanges messages
only with the coordinator 104, providing it with state infor-
mation on its (locally-observed) streams. This exemplary
embodiment may be applied to a large class of applications,
including network monitoring where a NOC is responsible
for processing network traffic statistics (e.g., link bandwidth
utilization, IP source-destination byte counts) collected at
switches, routers, and/or element management systems
(EMSs) distributed across the network.

Bach remote site 102 je{1, . . ., k} observes local update
streams that incrementally render a collection of up to s
distinct frequency distribution vectors (equivalently, multi-
sets) T, , . ... I, over data elements from corresponding
integer domains [U,I={0, . . ., U,-1}, for i=1, . . ., s, where
f; [v] denotes the frequency of element ve[U,] observed
locally at remote site j. For example, in the case of IP routers
monitoring the number of transmission control protocol
(TCP) connections and user datagram protocol (UDP) pack-
ets exchanged between source and destination IP address,
[U,]=[U,] denotes the domain of 64-bit (source, destination)
IP address pairs and 1, ,f, ; captures the frequency of specific
(source, destination) pairs observed in TCP connections and
UDP packets routed through router j. The term f, ; denotes
both the ith update stream 106 at site j 102 as well as the
underlying element multi-set/frequency distribution. Each
stream update 106 at remote site j 102 is a triple of the form
<i,v,x1>, denoting an insertion (+1) or deletion (-1) of ele-
ment ve[U,] in the f; ; frequency distribution (i.e., a change of
=1 in v’s net frequency in f; ). All frequency distribution
vectors f,; in the distributed streaming architecture 100
change dynamically over time. When necessary, this depen-
dence is made explicit using f, (t) to denote the state of the
vector at time t (assuming a consistent notion of “global time”
in the distributed system). The unqualified notation f; ; typi-
cally refers to the current state of the frequency vector.

Handling delete operations substantially enriches the dis-
tributed streaming model. For instance, it facilitates tracking
over sliding windows of the streams by simply issuing
implicit delete operations for expired stream items no longer
in the window of interest at remote sites. Other exemplary
embodiments include extensions to more complex, distrib-
uted-tracking architectures, where the underlying communi-
cation network is structured as a multi-level tree hierarchy,
such as the routing trees typically built over sensornet deploy-
ments.

Problem Formulation

For eachie{l, ..., s}, define the global frequency distri-
bution vector £, for the ith update stream as the summation of
the corresponding local, per site vectors; that is,
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In general, the local sub-streams for a stream f; may only be
observed at a subset of the k remote sites. That subset is
denoted by sites(f;) and k,=Isites(f,), hence k,=k. A goal is to
solve the problem of effectively answering user queries over
this collection of global frequency distributions f}, . . ., f, at
the coordinator site. For a continuous querying environment
(as opposed to the traditional one-time query environment)
the coordinator 104 needs to continuously maintain (or track)
the approximate answers to user queries as the local update
streams f, ; evolving at individual remote sites 102. More
specifically, a broad class of user queries Q=Q(f,, . . ., f,)over
the global frequency vectors is defined to include (1) inner-
and tensor-product queries; (2) L,-Norm queries; (3) range
queries, point queries, and heavy hitters; and (4) histogram
and wavelet representations.

The first class of queries is inner- and tensor-product que-
ries (i.e., join and multi-join aggregates). Given a pair of
global frequency vectors, f,,f,, over the same data domain,
[U], the inner-product query

U-1
O, p)=fi-fo= . Al S
v=0

is the result size of an (equi)join query over the corresponding
streams (i.e., If; >><1f,1). More generally, tensor product que-
ries

Ofidifows - - VTSl - - -

over multiple domain-compatible frequency vectors f.f,,
f,., . . . capture the result size of the corresponding multi-join
query f,B><f;B><1f . ... Here, the notion of a “frequency
vector” is generalized to capture a possibly multi-dimen-
sional frequency distribution (i.e., a tensor). For instance, in

the three-way join query

fiehoefi= ) 3 Al Hlu vl A1),

the f, vector captures the joint distribution of the two
attributes of stream f, participating in the join. Without loss of
generality, such multi-dimensional frequency tensors are
viewed as vectors (e.g., assuming some standard linearization
of'the tensor entries, such as row-major). As known to one of
skill in the relational field, join and multi-join queries are
basically the “workhorse” operations for correlating two or
more data sets. Thus, they play a role in data analysis over
multiple data collections. In one exemplary embodiment, join
and multi-join result sizes (i.e., count aggregates) can be
extended to other aggregate functions in a relatively straight-
forward manner as known to one of skill in the art.

The second class of queries is L,-Norm query (a/k/a self-
join size) for a (global) stream £, is defined as the square of the
L, norm (||1]) of the corresponding frequency vector; that is
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The self-join size represents demographic information about
a data collection; for instance, its value is an indication of the
degree of skew in the data.

The third class of queries is range queries, point queries,
and heavy hitters. A range query with parameters [a,b] over a
frequency distribution f, is the sum of the values of the distri-
bution in the given range; that is

b
R(fia, by =) filvl

v=a

A point query is a special case of a range query when a=b. The
heavy hitters are those points veU, satisfying R(f,,u,v)Z¢-R
(£,0,U,-1). The frequency of the heavy hitters exceeds a
¢-fraction of the overall number of stream elements for a
given ¢<lI.

The fourth and last class of queries is histogram and wave-
let representations. A histogram query, H(f,,B), or wavelet
query, W(f,,B), over a frequency distribution f; asks for a
B-bucket histogram representation or a B-term (Haar) wave-
let representation of the f; vector, respectively. The goal is to
minimize the error of the resulting approximate representa-
tion, which is typically defined as the L, norm of the differ-
ence between the H(f,,B) or W({,,B) approximation and either
the true distribution f, or the best possible B-term representa-
tion of f,.

Approximate Query Answering

The distributed nature of the local streams comprising the
global frequency distributions {f;} raises difficult algorithmic
challenges for the approximate query tracking problems.
Naive schemes that accurately track query answers by forcing
remote sites to ship every remote stream update to the coor-
dinator are impractical. They are impractical because they not
only impose an inordinate burden on the underlying commu-
nication infrastructure (especially for high-rate data streams
and large numbers of remote sites), but also because they limit
the battery life of power-constrained remote devices, such as
wireless sensor nodes. Exemplary embodiments provide con-
tinuous tracking of approximate query answers at the coordi-
nator site with strong guarantees on the quality of the approxi-
mation. This allows an effective tradeoff between
communication efficiency and query-approximation accu-
racy in a precise, quantitative manner. In other words, larger
error tolerance for the approximate answers at the coordinator
yields smaller communication overheads, ensuring continu-
ous approximate tracking.

Randomized Sketching of Streams

Techniques based on small-space pseudo-random sketch
summaries of data have proved to be effective tools for deal-
ing with massive, rapid-rate data streams in a centralized
setting. Such sketching techniques represent a streaming fre-
quency vector f using a smaller sketch vector that is denoted
by sk(f) that can be maintained as the updates are streaming
by and incrementally rendering f. Typically, the entries of the
sketch vector sk(f) are defined as random variables with some
desirable properties that can provide probabilistic guarantees
for the quality of the data approximation. These techniques
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can be extended to various randomized stream-sketching
methods, such as Alon, Gibbons, Matias, and Szegedy
(AGMS) and Count-Min sketches, as known by one of skill in
the art.

The ith entry in an AGMS sketch sk(f) is defined as the
random variable

E[v], where {E[v]:ve[U]}, is a family of four-wise indepen-
dent binary random variables that are uniformly distributed in
{-1,+1} with mutually independent families used across dif-
ferent entries of the sketch. Using appropriate pseudo-ran-
dom hash functions, each such family can be efficiently con-
structed on-line in small (i.e, O(log U)) space. By
construction, each entry of sk(f) is essentially a randomized
linear projection (i.e., an inner product) of the f vector that
uses the corresponding & family and can be maintained over
the input update stream. Start with each counter sk(f)[i]=0
and, for each I set

kAU =sk(Ni]+E:/v] (KP[i] =sk(Ai]-E:/+])

whenever an insertion (or deletion) of v is observed in the
stream.

Another property of such sketch structures is linearity.
Given two “parallel” sketches, sk(f)) and (1), that were built
using the same & families and the scalars o and {3, then

sk(afi+Bf5)=ask(f )+Psk(f).

The sketch of a linear combination of streams is the linear
combination of their individual sketches. The following theo-
rem summarizes some of the basic estimation properties of
AGMS sketches for centralized streams, which are employed
in exemplary embodiments. The notation xe(y+z) is equiva-
lent to Ix-yl=lzl.

Theorem 1
Let sk(f)) and sk(f,) denote two parallel sketches compris-
ing

counters that are built over the streams f; and f, , where €,
1-ddenote the desired bounds on error and probabilistic con-
fidence, respectively. Then, with a probability of at least 1-9,
[Isk(f,)-sk(E,)|*e(1=e)|If,~L.I* and sk(f,)-sk(f>)e
(f, Lxe||f IIE,]). The processing time for maintaining each
sketch is

per update.

Thus, the self-join of the difference of the sketch vectors
gives a high probability relative error estimate, €, of the join of
the difference of the actual streams. So, naturally, [|sk(f, )| e
(1xe)||f,|[*. Similarly, the inner product of the sketch vectors
gives a high probability estimate of the join of the two streams
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to within an additive error of €||f,|||[f,/|. This “inner product”
operator over sketch vectors is slightly more complex, involv-
ing both averaging and median-selection operations over the
sketch vector components. Formally, each sketch vector can
be viewed as a two-dimensional nxm array, where

1 1
n= 0(;], m= O(IOgg]

and the “inner product” in the sketch-vector space for both the
join and the self-join cases is defined as

i
sk(fi)-sk(f2) = n_gedian{—Z sk J1-sk(A)L, j]}.
j=l...m| R

i=1

To provide e relative error guarantees for the binary join query
f,-T,, Theorem 1 can be applied with an error bound of €'=e
Y (IE I, giving a total sketching space requirement of

o3

0[ AlPIAI
£2(fi- )

counters.

The results of Theorem 1 can be extended in a natural
manner to the case of multi-join aggregate queries as follows.
Given an m-way join (i.e., tensor-product) query Q(f;. . .,
f,)=f,1,. . . £, and corresponding parallel AGMS sketch
vectors, sk(f)), . . ., sk(f,), of size

that are built based on the specific join predicates in the query,
then the inner product of the sketches I1,_,”sk(f;) can be
shown to be within an additive error of (2™~ =1)*I1,_, "||f]| of
the true multi-join result size. The sketches II,_,"'sk({,) are
again defined using median-selection and averaging over
terms of the form IT,_, "sk(f)[i, j].

Query Tracking Solution

Exemplary embodiments of the tracking algorithms ensure
strong error guarantees for approximate answers to queries
over the collection of global streams {f;:i=1, . . . , s} at the
coordinator 104, while minimizing the amount of communi-
cation with the remote sites 102. Additional desirable design
attributes of exemplary embodiments include: (1) minimal
global information exchanges, (2) a summary-based informa-
tion exchange, and (3) stability.

First, minimal global information exchanges are desirable.
Prior art schemes in which the coordinator 104 distributes
information on the global streams to remote sites typically
need to rebroadcast up-to-date global information to sites
either periodically or during some “global resolution” stage
to ensure correctness. Instead, exemplary embodiments are
designed to avoid such expensive “global synchronization”
steps.

Second, a summary-based information exchange is desir-
able. Rather than shipping complete update streams f, ; to the
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coordinator 104, remote sites 102 only communicate concise
summary information (e.g., sketches) on their locally
observed updates.

Finally, stability is desirable. Intuitively, the stability prop-
erty means that, provided the behavior of the local streams at
remote sites remains reasonably stable or predictable, there is
no need for communication between the remote sites 102 and
the coordinator 104.

Exemplary embodiments avoid global information
exchanges entirely, because each individual remote site 102,
J, continuously monitors only the L, norms of'its local update
streams {f, :i=1, ..., s}. When a predetermined amount of
change is observed locally, then a site 102 may send a concise
state-update message to update the coordinator 104 with
more recent information about its local update stream. Then,
the site 102 resumes monitoring its local updates (see FIG. 1).
Such state-update messages typically comprise a small sketch
summary of the offending local streams(s) along with, pos-
sibly, additional summary information. These state-update
messages allow the coordinator 104 to maintain a high-prob-
ability error guarantee on the quality of the approximate
query answers returned to users.

Exemplary embodiments of the tracking scheme depend
on two parameters, € and 0. The parameters captures the error
of the local sketch summaries that are communicated to the
coordinator 104. The parameter 6 captures an upper bound on
the deviation off the local stream 4 norms at each remote site
102 involved in the query, since the last communication with
the coordinator 104. The overall error guarantee provided at
the coordinator 104 is given by a function g(e,0), which
depends on the specific form of the query being tracked.
However, the local constraints at each remote site 102 are
substantially similar (i.e., simply tracking [, norm deviations
for individual streams) regardless of the specific global query
being tracked. As results demonstrated, the combination of
small sketch summaries and local constraints on the stream L.,
norms at individual sites 102 is sufficient to provide high-
probability error guarantees for a broad class of queries over
the global streams, {f:i=1, ..., s}.

Intuitively, larger 0 values allow for larger local deviations
since the last communication and, thus, imply fewer commu-
nications to the coordinator 104. However, for a given error
tolerance, the size of the e-approximate sketches sent during
each communications is larger, because g(e,0) is increasing in
both parameters. Analysis is provided that allows an optimal
division of the allowed query-error tolerance in simple cases.
Also provided are empirical guidelines for more complex
scenarios based on experimental observations.

A local sketch summary sk(f, (t)) communicated to the
coordinator 104 gives an e-approximate picture of the snap-
shot of the f; ; stream at time t. To achieve stability, a compo-
nent of the exemplary embodiments are concise sketch-pre-
diction models that may be communicated from remote sites
102 to the coordinator 104 along with the local stream sum-
maries in an attempt to accurately capture the anticipated
behavior of local streams. Each site 102 j is enabled and the
coordinator 104 shares a prediction of how the stream f; ; will
evolve over time. The coordinator 104 employs this predic-
tion to answer user queries, while the remote site 102 checks
that the prediction is close to (i.e., within 6 bounds) the actual
observed distribution f; ;. As long as the prediction accurately
captures the local update behavior at the remote site 102, no
communication is needed. Taking advantage of the linearity
properties of sketch summaries, the predicted distribution is
represented using a concise predicted sketch. Thus, predic-
tions in exemplary embodiments are based on concise sum-

25

30

40

45

50

55

60

65

12

mary information that can be efficiently exchanged between
the remote site 102 and the coordinator 104 when the model
is changed.

FIG. 2 shows a high-level schematic 200 of prediction error
202 from an exemplary embodiment of sketch-prediction-
based tracking. In experiments, a predicted distribution 204
was used to generate a predicted sketch 206, which is used by
the coordinator 104 for query answering. The predicted dis-
tribution 204 approximated a true distribution 208 and the
predicted sketch 206 approximated a true sketch 210. The
prediction error 202 was the error of the predicted sketch 206
compared to the true sketch 210. From the analysis of the
protocol, it was determined that as long as local constraints
are satisfied, the predicted sketches at the coordinator 104 are
approximately equivalent to g(e,0)-approximate sketch sum-
maries of the global data streams.

Exemplary embodiments of distributed query-tracking
schemes and sketch-prediction models for capturing remote
site 102 behavior are provided. In addition, exemplary
embodiments include an effective improvement of the basic
AGMS sketching technique that helps remote sites 102 to
track their local constraints over massive, rapid-rate streams
in a guaranteed, small time per update.

Basic Tracking Scheme

One exemplary embodiment of a tracking scheme is based
on inner product and generalized tensor-product (i.e., multi-
join) queries. Other exemplary embodiments for the other
query classes follow as corollaries of the inner-product case.
A single inner product (i.e., join) query Q(f,,f; )=t -f, over the
distributed tracking architecture 100. A remote site 102 j
participates in the distributed evaluation of Q(f,f,), i.e., jes-
ites(f, )Usites(f,). Each such site maintains AGMS sketches
on its locally observed substreams f, ; and/or f; ;. The term
sketches implies AGMS sketches in the following sense. If
each participating site 102 sends the coordinator 104 its up-
to-date local stream sketches sk(f, (1)) and/or sk(f, (t)), then,
by sketch linearity, the coordinator 104 can compute the
up-to-date sketches of the global streams sk(f,(1))=2sk(f; (D)
(1i=1,2) and provide an approximate answer to the join query
at time t with the error guarantees specified in Theorem 5. In
an initial coordination step, each remote site 102 obtains the
size parameters for its local sketches and the corresponding
hash functions (which are the same across all sites 102) from
the coordinator 104.

In an exemplary embodiment of the tracking scheme, to
minimize the overall communication overhead, remote sites
102 can ship a concise sketch-prediction model for their local
updates to f, in addition to their local stream sketches to the
coordinator 104. A sketch prediction model allows the coor-
dinator 104 to construct a predicted sketch sk’(f, (1)) in con-
junction with the communicated local stream sketch. The
predicted sketch is for the up-to-date state of the local stream
sketch sk(f; (t)) at any future time instant t, based on the
locally observed update behavior at the remote site 102. The
coordinator 104 then employs these collections of predicted
sketches sk”(f;;) to track continuously an approximate
answer to the distributed join query. There are various options
for sketch prediction models. After a remote site 102 jesites
(f,) where ie{1,2} ships its local sketch sk(f; ) and possibly a
corresponding sketch prediction model to the coordinator, the
site 102 j continuously monitors the L, norm of the deviation
ofits local up-to-date sketch sk(f; (1)) from the corresponding
predicted sketch sk”(f, (1)) employed for estimation at the
coordinator. The site 102 checks the following condition at
every time instant t:
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0
sk (£, ;@) = sk?(f; ;)| = Willsk(f;,j(t))ll

that is, a communication to the coordinator 104 is triggered
only if the relative L, norm deviation of the local, up-to-date
sketch sk(f;(t)) from the corresponding predicted sketch
exceeds

4

Ve

(where k,=lIsites(f)I).

FIG. 3 shows an exemplary embodiment of pseudo code
for processing stream updates and tracking local constraints
atremote sites 102 as well as providing approximate answers
at the coordinator 102. The pseudo code includes procedures
for sketch maintenance and tracking at a remote site jesites
(£){ie1,2}) and for join-size estimation at the coordinator (t
denotes current time) as follows.

Procedure SiteUpdate(j, i, v,1, €,9,0, ki)

Input: Site index j, stream index i, inserted/deleted value
ve[U];

sketch error, confidence, and local-deviation parameters €,9,
6;

“distribution factor” k, for stream i.

1. UpdateSketch(sk(f; ;),<i,v=1>)//update current and

2. UpdatePredictedSketch(sk?(f, (1)))//predicted sketches

3.

if [lsk(£;,5) = sk” (f; ;O > %Ilsk(ﬁ,ﬂll then

i

4. Compute sketch-prediction model predModel(f, )
5. Send {i, j, sk(f, ), predModel(f, )} to coordinator
Procedure EstimateJoin(id(f) ), id(12))

Input: Global-stream identifiers id(f) ), id(f2).
Output: Approximate answer to join-size query f;f,.
1. fori:=1to 2 do

2. Set sk?(f; (1)):=0

3. for each jesites(f;) do

4. skP(£,(0):=sk (F(0)+sk” (1, (1)

5. return sk?(f (1)) skf(£,(1))

The following theorem demonstrates that, as long as the
local L, norm deviation constraints are met at all participating
sites 102 for the distributed f;-f, join, then a strong error
guarantee is provided at the coordinator 102 for the approxi-
mate query answer, which is based on the predicted sketches.

Theorem 2
Assume local stream sketches of size

oz )od3)

and let 8,3, .. )=sk?(f, Yie{1,2}). Also, assume that, for
each remote site 102 jesites(f;)(ie{1,2}), the condition (*¥) is
satisfied. Then, with probability at least 1-2(k, +k, e,

§18aef, e+ L+’ (L DA
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Proof: Consider the inner product of the “global” predicted
sketches §, '§,. Algebraic manipulation gives the following.

J

J

$i$r = [Z K (A, p]-[Z skﬂ(fz,j)] =

J

[Z SKP(fi1) = sk(f, n] +
Sk(fi,))- [Z ((SKP (f,)) =K () + sk(fo ) | =
i

D sk Y kg +
- 7

J

E (kP (i) = sk(fi ) Y sk(fo )+
7 J
E (kP (fo) = sk(f2)- ) sk(fij)+
7 J

DR sk ) Y R ) k)
7 J

By sketch linearity, the first term in the above sum is the
estimate of f, -f,, which can be bounded by Theorem 1, assum-
ing all sketch computations produce results within their error
bounds. In addition, by the Cauchy-Schwarz and triangle
inequalities, it is known that, for any vectors v, . . ., Vg,
v, VIZ[V IVl and |[Z,v]|=X||v||. Combining all the above
facts:

$i-$ € (fi-fxelflllfll £
|I5k(fz)llz [sk? (f1,5) = sk(fupll £
J

skCAID | Isk?(fa,) = sk pll £
J
[Z ||sk”<ﬁ,j)—sk<ﬁ,j>||]x
J

[Z lIsk” (f,)) = sk( o, j>||].
J

Now, using the special case of Theorem 1 for the L, norm and
the local site constraint(*):

st e (fi- AL+

L+l ‘ g [lsk(fL Il +
+& — K i
: ‘/E J b

d+alAl ‘ g [lsk(f2.0)Il +
+& — K i
' ‘/E J i

02
S sk | D skl

€ (- =lANAI+



US 7,756,805 B2

15

-continued

[
1+ 2ol — £
1L+ Il «/KE (FW

[
1 — IES
@+l \/E;nfzdn

2 02
(1+e) W[; ||f1,j||][; ||f2,j||].

Assuming the components of vectors v, . . . v, are non-
negative, application of the Cauchy-Schwartz inequality
gives:

L 3
2 Il Vi 3 il = Vi
i=1 =

I3
2
=1

Combining with the above expressions gives:

§8oefy By || Bll+2(1xe) 8| [S]=(1+e)
0% Il lef, /5 =(e+(14€)* (140 - I)IA A

The proof relies on the outcome of 2k, +2k, sketch computa-
tions, in total. Applying a union bound, the probability that
any of these fails is no more than 2(k,+k,)e, giving the
required probability bound.

Thus, by Theorem 2, using local sketches of size

1 (hki+k
o zod 57}

satisfying the local L, norm deviation constraints at each
participating remote site 102 ensures that the approximate
answer for the join size f,-f, computed using only the pre-
dicted sketches at the coordinator 104 is within an absolute
error of xg,(e,0)If[||If;]| of the exact answer. These error
guarantees are similar to those obtained for the simpler, cen-
tralized case (Theorem 1), with the only difference being the
approximation error bound of gg(e,e):e+(l+e)2((l+6)2l)z
€+20, ignoring quadratic terms in €,0, which are typically
very small, because €,0=1. The following corollary gives the
adaptation of the tracking result for the special case of a
self-join query Q(f,)=||f,|F=Z f,[v]*. The proof follows from
Theorem 2 with f,=f,.

Corollary 1
Assume local stream sketches of size

andlets, =2 - sk°(f, ). If each remote site 102 jesites(f,)

satisfies the condition (*), then with a probability of at least
1-2k, € I8, |Pell =(e+e)*(1+6)*~ NI, P~(1£(e+26))
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Extension to Multi-Joins

In one embodiment, the analysis and results for the exem-
plary embodiments of the distributed tracking scheme can be
extended to the case of distributed multi-join (i.e., tensor
product) queries. More formally, consider an m-way distrib-
uted join Q(fy, ..., T, )=f, 1, ...f, and corresponding parallel
sketches sk(f, )) that are built locally at participating sites
jeU,_, "'sites(f;), which is based on the specific join predicates
in Q. As shown in the following theorem, simply monitoring
the L, norm deviations of local stream sketches is sufficient to
guarantee error bounds for the predicted sketch estimates at
the coordinator 104 that are similar to the corresponding
bounds for the simple centralized case.

Theorem 3
Assume parallel local stream sketches of size
1 1
ofzvd5))
and let §,=2 . ~sk’(f, )(i=1, . . ., m). If each remote site
102 jesites(t,) satisfies the condition (*), then with a probabil -
ity of at least

1- zi k6,
i=1

the predicted sketch estimate II,_, ™, at the coordinator 104
lies in the range TT,_,"f +(e(2" "1 =1)*+(1+€)™((1+0)"-1)).

Hi:1meiH“Hi:1mfit(ﬁmil_ 1 )27m0)Hi:1'"§H}§H.

Proof: Proceeding along similar lines as in Theorem 2 and
using the generalization of Theorem 1 to multi-joins as well
as an easy generalization of the Cauchy-Schwarz inequality
to tensor products of more than two vectors gives:

Sl

(KPS ;) — sk(fi, 1)) + sk(fi, 1)

—
s

i

E ]_1[ ET v 1)2]_:[ (e

mo(L+ o™ | | 1Al =

i=1
m n m
(2 ]02<1 +2) ]_1[ (A
-3

oL+ er] | I

i=1
E ]_1[ ET v 1)2]_:[ (e

L+ +0y = D] [ 1Al

i=1

The result follows easily from the above expression and a
simple application of the union bound.
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Sketch-Prediction Models

Exemplary embodiments provide different options for the
sketch prediction models employed to describe local update
behaviors at remote sites 102. Such models are part of the
information exchanged between the remote sites 102 and the
coordinator 104 so that both parties are “in sync” with respect
to predicted query results and local constraint monitoring. If
the prediction models result in predicted sketches, sk”(f; ),
that are sufficiently close to the true state of the local sketches
at site 102 j, then no communication is required between site
102 j and the coordinator 104. Thus, exemplary embodiments
keep sketch prediction models concise and yet powerful
enough to effectively capture stability properties in the dis-
tributed tracking environment. In each case, the prediction
models consider how the local distribution, f; ,, changes as a
function of time between the time of the last communication
to the coordinator 102, 1,,,,, and the current time, t. Then, it is
shown how to translate this model to a model for predicting
the change in the sketch of f;; over time (FIG. 2). Again,
assume a consistent notion of “global time” in the system and
that the differences between local “clocks” at sites 102 are
sufficiently small to be ignored. The linearity properties of
sketches play a role in the design of space- and time- and
communication efficient sketch prediction models, in exem-
plary embodiments.

Static Model

One exemplary embodiment is the simplest prediction
model, the static model, which essentially assumes that the
local stream distribution, f, ,, remains static over time. In other
words, the prediction for the distribution, f, ;, at the current
time instant t (denoted by f; 7(t)) does not change over the
time interval t-t, . or f, 2()=1, (t,,.,). This implies that the
predicted sketch, sk’(f; (1)), employed at both the coordinator
104 and the remote site 102 j is exactly the sketch last shipped

from site j; that is:
S {(0)=sk (f, FO)=5k(f; {(Lpres)-

Such a prediction model is trivial to implement, requiring
little additional information to be exchanged between the
coordinator 104 and the remote sites 102 other than the sites
102 local sketches that are sent when determined by condition
().
Linear Growth Model

One exemplary embodiment is the linear growth model.
Due to its simplistic nature, the static model can only achieve
stability in the unrealistic scenario when all frequency counts
inthe f; ; remain reasonably stable. This is clearly not the case,
for instance, when local frequency counts are growing as
more updates arrive at remote sites. In such cases, a reason-
able strawman model is to assume that the future of the local
distribution will resemble a scaled-up version of its past. That
is, assume that f; (t) has the same shape as 1, (t,,.,) with
proportionately more elements. The linear growth model is
based on this assumption, setting

50 = — £ itprer),

r
Iprev

i.e., using a linear scaling of f, (t,,.,) to predict the current
state of the distribution. Scaling by time makes sense, for
example, in a synchronous updates environment, where
updates from remote sites 102 arrive regularly at each time
interval. By sketch linearity, this implies that the correspond-
ing predicted sketch is:
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SKUAH(0) = SKUG0) = ——SK (S, Tpren).
e

which is a linear scaling of the most recent local sketch of f, |
sent to the coordinator 104 and no additional information
need be exchanged between sites 102 and the coordinator 104
in this exemplary embodiment.

Velocity Acceleration Model

Another exemplary embodiment is the velocity accelera-
tion model. Although intuitive, the linear growth model suf-
fers from at least two shortcomings. First, it predicts the
future behavior of the stream as a linear scaling of the entire
history of the distribution, whereas, in many real life sce-
narios, only the recent history of the stream may be relevant
for such predictions. Second, it imposes a linear, uniform rate
of change over the entire frequency distribution vector and,
thus, cannot capture or adapt to shifts and differing rates in the
distribution of updates over the vector. The velocity/accelera-
tion model addresses these shortcomings by explicitly
attempting to build a richer prediction model that uses more
parameters to better-fit changing data distributions. More
specifically, letting A=t-t,,,..,, the velocity/acceleration model
predicts the current state of the {, ; distribution as

fi,/'p(l):fz:,j(l;)rev)-"Av,j-"Azai’ja

where the vectors v, ; and a, ; denote a velocity and an accel-
eration component, respectively, for the evolution of the f,
stream. Again, by sketch linearity, this implies the predicted
sketch is:

SKE(f; J(O) =Sk (f: (L pren) HAASK(; J-)+A2sk(ai )

Thus, to build a predicted sketch at the coordinator 104 under
a velocity/acceleration model, a velocity sketch, sk(v, ;), and
an acceleration sketch, sk(a, ;) are needed. One exemplary
embodiment includes a method for computing these two
sketches at site 102 j. A sketch is maintained on a window of
the W most recent updates to f, ;. This sketch is scaled by the
time difference between the newest and the oldest updates
stored in the window to give an appropriate velocity sketch to
be shipped to the coordinator. The acceleration sketch is
estimated as the difference between the recent and previous
velocity sketches scaled by the time difference. When remote
site 102 j detects a violation of its local L, norm constraint for
1, , at time t, it computes a new velocity sketch, sk(v, ), based
on the window of the W most recent updates to f, ; and esti-
mates a new acceleration sketch, sk(a, ), as the difference
between sk(v, ;) and the corresponding velocity sketch at time
scaled by

tp rev

1

= Iprey

The only additional model information that needs to be com-
municated to the coordinator from site 102 j is the new veloc-
ity sketch, sk(v, ;), because the coordinator already has a copy
of the previous velocity sketch and can independently com-
pute the acceleration sketch.

Thus, while the richer velocity/acceleration model can give
a better fit for dynamic distributions, it also effectively
doubles the amount of information exchanged compared to
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the simpler prediction models. Furthermore, the effectiveness
of the velocity/acceleration predictions can depend on the
size of the update window, W. It is possible to set W adap-
tively for different stream distributions in other exemplary
embodiments. In one exemplary embodiment, different set-
tings are evaluated for W experimentally over real-life data.

FIG. 5 is a table summarizing information for exemplary
embodiments of the three prediction schemes: the static
model, the linear growth model, and the velocity/acceleration
model. The information includes the model information
exchanged between the sites 102 (column 2) and the coordi-
nator 104 and the corresponding predicted sketches (column
3.

Analysis

The worst-case communication cost is analyzed for an
exemplary embodiment of the inner product tracking scheme
as a function of the overall approximation error at the coor-
dinator 104 under some simplifying assumptions.

Theorem 4

Assume the static prediction model for an inner-product
query Q(f,-f,)=f,f, with €,0,0, and k, as previously defined
and let Y=g ,(€,0)~€+20 denote the error tolerance at the
coordinator 104. Then, for appropriate settings of parameters
€ and 0 (specifically,

the worst case communication cost for a remote site 102 j
processing N, local updates to a stream f, , is

Ry

Proof: First, assume that all updates are insertions, i.e., of
the form <i,v,+1>. In the static model, the worst-case effect of
each such update is to increase the difference between the
predicted (static) distribution and the true distribution by at
most one. Let N, denote the number of updates received at
the last communication. Then, in the worst case, the differ-
ence between predicted and true distribution is N,,,,, and a

communication is triggered when

[
Npew > —=(Notg + Nyew)-

Vi

This gives the total number of communications after N
updates as

o[ﬂhw]_

4

The cost of each communication is
0( 1 ) 1
2 Ogg],

proportional to the size of a sketch. Therefore, the overall cost
depends on
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To give an error guarantee of Y||f; || ]|, set Y=g (€,0)=e+(1+
€)*((1+0)?-1)~+20, assuming that terms quadratic in € and 0
are small enough to be neglected. So, maximize

szé(w—s).

Differentiating with respect to € and setting equal to zero
gives 2eyp—-3e>=0, giving

2 d0—1
s_gt/lan ‘6‘/"

Thus, assuming that the “distribution factors” k; of streams
in the join query are reasonably small, the worst cast commu-
nication cost even for the simplest prediction model is com-
parable to that of the one-shot sketch-based approximate
query computation with the same error bounds (Theorem 1).
Each counter in the sketches for site 102 j is of size O(log N )
bits. This analysis extends in a natural manner to the case of
multi-join aggregates, as known to one of skill in the art.
Providing similar analytical results for the more complex
linear growth and velocity/acceleration models is more com-
plex. Instead, different strategies were experimentally evalu-
ated for setting € and 6 for minimizing worst-case communi-
cation over real-life streams. (See FIGS. 10A and 10B.)

Time-Efficient Tracking: The Fast-AGMS Sketch

A drawback of AGMS randomized sketches is that every
streaming update must “touch” every component of the
sketch vector to update the corresponding randomized linear
projection. This requirement, however, poses significant
practical problems when dealing with massive, rapid-rate
data streams. Because sketch summary sizes can vary from
tens to hundreds of kilobytes (especially when tight error
guarantees are required, e.g., for join or multi-join aggre-
gates), touching every counter in such sketches is infeasible
when dealing with large data rates (e.g., monitoring a high-
capacity network link). This problem is further compounded
in the distributed tracking scenario, where, for each streaming
update, a remote site 102 needs to track the difference
between a sketch of the updates and an evolving predicted
sketch.

Exemplary embodiments of a fast-AGMS sketch structure
solve this problem by guaranteeing logarithmic time (i.e.,
O(log(1/9)) sketch update and tracking costs, while offering a
slightly improved space/accuracy tradeoff over basic AGMS
sketches.

A fast-AGMS sketch for a stream f over [U] (also denoted
by sk(f)) comprises bxd counters (i.e., linear projections)
arranged in d hash tables, each with b hash buckets. Each hash
table =1, ..., dis associated with (1) a pairwise-independent
hash function h,() that maps incoming stream elements uni-
formly over the b hash buckets (i.e., h;:[U]—=[b]); and (2) a
family {§[v]:ve[U]} of four-wise independent {-1,+1} ran-
dom variables. To update sk(f) in response to an addition of u
to element v, the h,() has functions are used to determine the
appropriate buckets in the sketch, setting

Sk W) 1] =sk(f) [, (). 1] +uE(v)
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foreachI=1,...,d. The time per update is only O(d), because
each update touches only one bucket per hash table. The
structure of an exemplary fast-AGMS sketch 400 is illustrated
in FIG. 4.

Given two parallel fast-AGMS sketches sk(f)) and sk(f,),
using the same hash functions and & families, the inner prod-
uct f, -f, is estimated by the sketch “inner product™:

b

sk(f1)-sk(f2) = 'fﬁdmd"{Z sk(fOLE 2] - sk( )l l]}-

i=1

In other words, rather than averaging over independent linear
projections built over the entire [U] domain, this exemplary
embodiment of the fast-AGMS sketch averages over parti-
tions of [U] generated randomly through the h,() hash func-
tions. As the following theorem shows, this results in space/
accuracy tradeoffs similar to that in the prior art, while
requiring only

0(d) = 0(1og((-15]]

processing time per update, because an element only touches
a single partition (i.e., bucket) per has table.

Theorem 5

Let sk(f;) and sk(f,) denote two parallel fast-AGMS
sketches of streams f; and f, with parameters

8 1
b= = and d :4log(g],

where €,1-8 denote the desired bounds on error and probabi-
listic confidence, respectively. Then, with a probability of at
least 1-9||sk(f))-sk(f,)|Pe(lze)|lf,—f,|F and sk(f))-sk(f,)e
(f, Lxe||f I, The processing time required to maintain
each sketch is

per update.

Proof (sketch): Consider the estimate X, given from com-
puting the inner product of the Ith row of sk(f;) with the
corresponding row of sk(f,). It can be shown that

1
E(X)=fi-f, and Var(X)) < E||f1||2||f2||2,

provided that g, is drawn from a family of four-wise indepen-
dent hash functions and {, is drawn from a family of two-wise
independent hash functions. Applying the Chebyshev
inequality,
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8
[Xi = f1-fol > \/;”fllllllel

Taking the median of d such estimators gives an estimate
whose probability of being outside this range of 2%, using
standard Chernoft-bound arguments. Thus,

P <1
(A 8

d
<273,

8
Prilsk(f1)-sk(f2) = fi- f2| > \/;”fl””lel

Substituting the values for the b and d parameters gives the
required bounds.

The update cost of this exemplary embodiment of the fast-
AGMS sketch remains

even when tight, relative-error guarantees are required for
join or multi-join aggregates. In other words, tighter error
tolerances only increase the size b of each hash table, but not
the number of hash tables d, which depends only on the
required confidence. Providing tight error guarantees for such
complex aggregates can easily imply fairly large sketch sum-
maries. Finally, for given € and 9, this exemplary embodiment
of the fast-AGMS sketch requires less space than prior art
sketches, because the prior art sketches required a total of

hash functions (one for each £ family), whereas this exem-
plary embodiment of the fast-AGMS sketch only needs a pair
of'hash functions per hash table for a total of only

{3

hash functions. This difference in space requirements
becomes much more pronounced as the e approximation-
error bounds become tighter.

Time-Efficient Sketch Tracking

In exemplary embodiments, each update to the local 1, ; at
site 102 j requires checking the local sketch-tracking condi-
tion on the L, norm of the divergence of the site’s 102 true
sketch from the corresponding predicted sketch. Implement-
ing such a sketch-tracking scheme directly over local
sketches of size
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would imply a time complexity of

per update to recompute the required norms. This complexity
can easily become prohibitive when dealing with rapid-rate
update streams and tight error-bound requirements. Fortu-
nately, as the following theorem demonstrates, the sketch-
tracking overhead can be reduced to

i3]

per update by computing the tracking condition in an incre-
mental fashion over the input stream. Exemplary embodi-
ments of the tracking algorithm uses the fast-AGMS sketch
structure as well as concise

-size pre-computed data structures to enable incremental
sketch tracking. One exemplary embodiment uses the general
velocity/acceleration model. Both the static and linear-
growth models can be thought of as instances of the velocity/
acceleration model with certain parameters fixed.

Theorem 6
Assuming fast-AGMS sketches of size

the computation of the sketch tracking condition (*) at site
102 j can be implemented in

time per update, where the predicted sketch sk”(f, (1)) is
computed in the velocity/acceleration model.

Proof: A goal is to track [|sk?(f; (1)-sk(f, (D)||. Set A—t-t'
and write this quantity out by substituting in the parameters of
the acceleration model:

1
SKfi )+ Ask(vi ) + 5 A% sk(@i ) = sk(f, )

The estimate of the norm using sketches is produced by
computing an estimate from each row of the array of counts,
then taking the median of these estimates. The estimate from
the Ith single row is computed. For this row, write V, for the
vector representing the corresponding row from the velocity
sketch: A, for the vector representing the corresponding row

24

from the acceleration sketch scaled by V2 and S, for the dif-
ference of rows coming from sk(f, (t'))-sk(f, ). The estimate,
est, can then be written as:

estt = )" (Silk]) + AVi[k] + Ak
k

= > (SHIKT + 2ASKIVi K]+ 207 (KIS K] + ViIKP) +
k

10
A2V [K]A[K] + A*A [k
= S+ 283 SiTIViIK] + 287" Afkls[k] +
k k k
s AZ; (Vi[K] + AA [K])?

The last term is easy to track, because V, and A, do not change
until the sketch tracking condition is violated. The following
quantities can be computed when the sketches are set.

wi= Y VK aa= Y AR var= Y AdkIViIK]
k k k
25

At each time step, the following term is computed in constant
time.

30

AZZ (VK] + AALIK])? = A(aqy + 2ava; + A2vyy)
k

The other three terms are affected by updates, but proper-
ties of the fast-AGMS sketches can be used to maintain them
efficiently based on their previous values. Define

40 ssi= S svi= ) SIKIVIKE sa= ) AdkISk].
k k k

The structure of the fast-AGMS sketches means that follow-
ing an update, ve{+1,-1} to f, [v], only one entry in S, is
affected:

8, [hy(v)]==8,[h(v)]-E,(v)*u.

So, ss, sv, and sa can all be efficiently maintained in constant
time per update:
557558 (S (=& V) ¥ P =Sl (V)| =ss prur” - 2u*E,

WS ly(W)]svy=svE(V)*u*V [h(v)]sa;—sa§,
(vy*u*Afh(v)]and S;[h(v)] =S [h(V)]-E(v)*u.

> Putting all these together, the estimate can be rewritten as

est 2=ss | +2Asv 2N sa +A (aa 2Ava+ Nvy,).

This allows computation of the estimate produced by each

60 row in constant time for every update. The estimate for ||sk?
(f; )-sk(f, )|l is found by computing the median of all d esti-
mates in time O(d). The total time cost is O(d) per update.

FIG. 6 shows pseudo code for an exemplary embodiment
of'a fast procedure for tracking updates at remote sites 102 as
follows.
Procedure Site Update (j, u, 1)
Input: site index j : update u to position i

65
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1. Update ss, sv, sa from u, 1, f, g, SO
2. A=t-t'
3. forl=1to d do
4. est,?=ss,+2Asv,+2A%sa+A*(aa+ 2Ava,+A*vv,);
5. update skx>
6. if (median, est,>>0? Ik median, skx,”) then
7. compute new sk *,sk“;
8. send new model to coordinator;
9. recomputed aa, va, vv;
10. t'=t;

If this exemplary embodiment of the fast tracking scheme
detects that a 6 bound has been violated, the parameters of the
sketch-prediction model are recomputed and sketch informa-
tion is sent to the coordinator 104. Such communications
necessarily require

time, but occur relatively rarely.
The computed quantity est® is compared to

0
T llske(fi NI

This can be tracked using the same method that ss is tracked
with in the above proof. Because S, A, and V are stored in
sk(f, ), sk(v, ), and sk(a, ;), this t.rackmg method requires only
constant extra space over the naive scheme that computes the
difference every update. To initialize this method, compute
initial values of vv, va, and aa, when a new velocity and
acceleration sketch is chosen. At this time, t=t', and so
sk(f; =].(t).):sk(fi A Hence,.l.mtlahze ss=sa=sv=0 e.lnd pro-
ceed to increase these quantities as updates are received.

Handling Other Query Classes

The result applies to other query classes also. The basic
intuition is that such queries can be viewed as special inner
products of the distribution (e.g. with wavelet basis vectors)
for which sketches can provide guaranteed-quality estimates.
The predicted sketch of fi at the coordinator can be treated as
a g(e,0)-approximate sketch of f,, which accounts for both
sketching error (e) and remote-site deviations (0).

Range Queries, Point Queries, and Heavy Hitters

A given range query R(f,,a,b) can be reposed as an inner
product with a vector e, ,; where e, ,,|[v]=1 ifa=v=b and 0
otherwise. This implies the following theorem.

Theorem 7
Assume local-stream sketches of size

and let 8,2, . ~sk”(f; ). If for each remote site jesites(f,)

satisfies the condition (*), then with probability at least
1%, 3ysk(ep, y)eR(f; a,b)x(e+(1+€))((1+0)*~1)(b-a+
DIAIL-2k,3, |8, | e[ Lx(e(e+(1+e)*(1+6)°-1))]
VA P~(Lx(er20)AIF.
An immediate corollary is that point queries can be
answered with ~(e+20)||f|| error. Heavy-hitter queries can be
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answered by asking all U, point queries, and returning those v
whose estimate exceeds ¢R(f,a,b) (with guarantees similar to
the centralized, one-shot case).

Histogram and Wavelet Representations

It is known how to use e-approximate sketches to find
B-term Haar-wavelet transforms that carry at least 1-€ of the
energy of best B-term representation if this representation has
large coefficients. In one setting, the sketch at the coordinator
is essentially a g(e,0)-approximate sketch; thus, our analysis
in conjunction with Theorem 3 implies that exemplary
embodiments of the schemes can track a 1-g(e,0) approxi-
mation to the best B-term wavelet representation at the coor-
dinator. Similarly, it is known how to use e-approximate
sketches to find at approximate histogram representation with
error at most 1+Be times the error of the best B-bucket mul-
tidimensional histogram. Combining the use results with
Theorem 3 producers a schema for tracking a 1+Bg(e,0)
approximation to the best B-bucket multidimensional histo-
gram.

Extensions

So far, exemplary embodiments have considered the case
where queries are to be answered on the whole history of
updates. In many applications, only recent updates are rel-
evant to queries, and older information should be dropped or
weighted so that its contribution is minimal. Two standard
approaches to keeping results fresh are included in a tracking
scenario embodiments. One embodiment extends techniques
to more complex, multi-level distributed monitoring hierar-
chies, including analysis of the optimal approximation
parameter settings under different communication-cost
objectives. Other embodiments consider alternate sketch pre-
diction models.

Sliding Windows and Exponential Decay

In the sliding window case, the current distribution f; is
limited to only those updates occurring within the last t,, time
units, for some fixed value of t,,. The tracking condition is
modified so that the remote sites build a sketch of the most
recent t,, time units, and track whether a predicted sketch for
this interval is within 0 error of the interval norm. The role of
the coordinator remains the same: to answer a query; it uses
the predicted sketch. In the case that the site is not space-
constrained, the remote site can buffer the updates that
occurred in the window. When the oldest update v in the
buffer is more than t,, time units old, it can be treated as an
update <i,v,—1> to f,. The effect of the original update of v is
subtracted from the sketch, and so the sketch only summa-
rizes those updates within the window of t,,. Using the effi-
cient tracking method, the asymptotic costis not altered in the
amortized sense, because each update is added and later sub-
tracted once, giving an amortized cost of

per update.

In the case that the remote site does not have space to buffer
all updates in the sliding-window, techniques such as the
exponential histogram approach can be applied to bound the
amount of space required. This method allows the sketch of
the window to be approximated by the combination of a
logarithmic number of sketches of non-overlapping sub-win-
dows. However this does not directly lead to guaranteed
bounds: although the sketch of the sliding-window is well
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approximated by this method, when the predicted sketch is
subtracted, the bounds to do not hold. In practice, this
approach or a similar method of dividing the window into
non-overlapping windows and approximating the window
with these pieces is likely to give sufficiently good results. An
alternate sliding-window approach is to consider only the
most recent SW. updates. This has two variants: (1) when this
policy is applied locally to the site and (2) when the policy is
to be applied globally all over all updates. In the first case, the
above discussion applies again, and the same results follow.
For the second case, the problem seems more involved, and
can provide an interesting direction for future research.

The exponential decay model is a popular alternative to the
sliding-window model. Briefly, the current distribution f,(t) is
computed as f()=N"f(t") for a positive decay constant
A<1—for example, A=0.95 or 0.99. Updates are processed as
before, so an update v means f,(t)[v]—=L(0)[v]+1. As in the
sliding window case, the action at the coordinator is
unchanged: given a suitable model of how the (exponentially
decayed) distribution changes, the coordinator uses the pre-
dicted sketch to answer queries. At the remote site, the track-
ing condition is again checked. Because the decay operation
is a linear transform of the input, the sketch of the decayed
distribution can be computed by decaying the sketch: sk(f;(t))
=A""sk(f(t") (where t' denotes the time of the last update.
Applying this directly would mean the tracking operation
takes time

Aaod5)

out by devoting some extra space to the problem, we can track
the condition in time

i3]

again.

In one embodiment, the method includes, for each entry of
the array of counts in sk(f; ). a tag is kept denoting the time t
when it was last updated. To apply the decay to the sketch for
a time t-t', take the estimate at time t' and multiply it by A"
To process an update u to location i at time t, in each row,
identify the entry in S that is affected (S,[h,(v)]) and to look up
the last time this entry was probed as t". Then, updating the
estimate by setting

est? —est 22 +2 0 FurE(V)S [h,(v)]
(This expression comes from computing the change due to
decaying the entry of S by A, and subtracting the contri-

bution of this and then adding on the contribution from the
addition of u.) Update

S [y W]=H7S [hy(v)+u*E (),

and set the time of last modification to t. Theorem 8 is derived
from this.

Theorem 8
The sketch tracking condition (*) can be tracked in time

i3]

per update in both the sliding window and the exponential
decay streaming models.
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Approximate Hierarchical Query Tracking

Consider a more complex distributed-tracking scenario
where the communication network is arranged as a tree-
structured hierarchy of nodes (i.e., sites). One goal is for the
root node to track an approximate query answer effectively
over the update streams observed at the leaf nodes of the
hierarchy. (To simply the discussion, assume that internal
nodes in the hierarchy do not observe any updates; however,
such generalizations can be incorporated into the model by
adding dummy leaf-child nodes to the internal nodes to
accept their corresponding streams.) This hierarchical-moni-
toring architecture generalizes the flat, single-level model
discussed earlier (essentially, an one-level hierarchy with
remote sites as leaves). Such monitoring hierarchies arise
naturally, for instance, in the context of sensor networks,
where sensor nodes are typically organized in a routing tree
with a root base-station monitoring the sensornet operation.
In such scenarios, naively propagating sketch updates from
the leaves to the root node is wasteful; distribution changes at
leaf nodes of a subtree may effectively “cancel out” at a
higher node in the hierarchy rendering further communica-
tion with nodes higher in the hierarchy unnecessary. For such
multi-level hierarchies, the tracking scheme is able to exploit
stability properties at any node of the hierarchy.

Other embodiments can effectively solve and analyze
approximate query-tracking problems in the case of such
general hierarchies. For simplicity, concentrate on the case of
a self-join query Q(D=|f]* (corollary 1), where the update
stream f'is observed across all leaf nodes in the hierarchy. The
extensions to handle more general queries and site subsets are
straightforward.

Assume that the tracking hierarchy comprises h+1 levels,
with the root node at level 0 and the leaf nodes at level h.
Compute an approximate sketch over the union of streams
observed at the leaf nodes by running the sketch-tracking
scheme between each internal node and its children. That is,
each internal node u tracks an (approximate) AGMS sketch
over its children, and then passes up relevant information to
its parent when its locally-observed sketch (which summa-
rizes the data distribution of all streams in its subtree) violates
a specified deviation bound with respect to its corresponding
prediction at u’s parent (i.e., condition (*) with k, equal to the
number of sibling of u).

Just as in the flat, single-level case, it suffices to allocate the
same deviation tolerance 6 to every remote site. Arguably, it
suffices to allocate the same the same 0, parameter to every
node at level I in the hierarchy—essentially, this implies that
each level-(I-1) node gives all its children the maximum
possible error tolerance (based on its own error bounds) in
order to minimize communication cost across levelsI-1and 1.
Now, consider a node u at level 1 in the tree hierarchy and let
S,, denote the union of update streams in the subtree rooted at
u, and define (1) o, as the accuracy at which u tracks its local
sketch summary (for the S stream); and (2) 0, as the bound on
the deviation of locally-maintained sketches (with respect to
their predictions) at node u. The following corollary then
follows easily from corollary 1.

Corollary 2

Let c, and 8, be as defined above. Then, the compounded
error of the local AGMS sketch summaries for nodes at level
1-1 of the hierarchy is a,_,=c,+26.

Corollary 2 essentially allows cascading of the basic,
single-level tracking scheme to the case of multi-level hier-
archies. Specifically, assuming a fixed AGMS sketching error



US 7,756,805 B2

29

€ at the leaf nodes of the hierarchy, then, by Corollary 2,
summing across all levels, the total sketch-tracking error at
the root node is

h
@y =c+ ZZ ;.
=1

1
Assuming that the sketching error € at leaf nodes is fixed

(e.g., based on site memory limitations) optimize the settings
for the 0, parameters for minimizing communication costs.
Consider the worst-case bounds for the static-prediction
model, and two possible optimization objectives: (1) the
maximum transmission cost for any node in the hierarchy (or,
equivalently, the maximum load on any communication link),
and (2) the aggregate communication cost over the entire
communication hierarchy. Both of the above objectives are
important in the sensornet context (e.g., for maximizing the
lifetime of a sensor network) as well as more traditional
distributed network-monitoring scenarios. To simplify, the
analysis that follows, assume a regular hierarchical-monitor-
ing topology, where both (a) the branching factor (i.e., num-
ber of siblings) and (b) the number of observed updates for a
node at level I are fixed at k, and N, respectively. (The analy-
sis can also provide some guidance for effective heuristics for
setting the deviation parameters in scenarios that are more
general.) From the analysis above, the (worst-case) transmis-
sion costs for a node at level I is

Maximum Transmission Cost Minimization Problem
Determine 6,’s that minimize max;

{2 oo

subject to the total-error constraint £,0,~6.
For this minimization problem, the optimal point occurs

when the per-node transmission costs at all levels are equal, >°

giving the optimal per-level 0, settings

Gl

0(\/5 log(%]logN,]

Z[ kjlog(%]log[vj ]é :

J

o =

In the case of minimizing total communication, the per-
node transmission costs at level I are multiplied by the total
number of nodes at that level KZ:szllkj, giving a sum objec-
tive function. This is a more complicated minimization prob-
lem, but a closed-form solution for the optimal 9, settings is
provided.

30
Aggregate Communication Cost Minimization Problem

Determine 6,’s that minimize the sum

: KNk | (k;
7 log(?]logN,

{

subject to the total-error constraint £,8,~6.

Theorem 9
The optimal 0, values for minimizing the (worst-case)

aggregate communication cost over a (regular) multi-level
tracking hierarchy are given by

W_@mqgmfr
5 lirogs o)
i
Proof. Let

k
o= Kn/EIOg(g’JIOgNl

for all levels 1. This proof uses Holder’s Inequality, which

> states that, for any x;, y,Z0 and p,q>1, such that

|-
o=

o] ] = e

with equality holding only if y,~A-x7~* for all 1.
Substituting

or, equivalently (because
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Note that the left-hand side of this inequality is precisely
the optimization objective, whereas the right-hand side is
constant. Thus, the optimal (i.e., minimum) value for the
objective occurs when equality holds in this instance of Ho1d-
er’s Inequality, or equivalently, if

which after some simplification, gives
1
V=23
(where the new proportionality constant is
1
O =XNcp

Coupled with the total error constraint &,0,=0, this directly
implies that the optimal 6, values are given by

1
6 = bcit.

The result follows.

Alternate Sketch-Prediction Models

Three distinct approaches to sketch prediction have been
outlined, each building progressively richer models to
attempt to capture the behavior of local stream distributions
over time. The most sophisticated model explicitly tries to
model both first-order (i.e., “velocity”) and second-order
(i.e., “acceleration”) effects in the local update-stream rates
while increasing the amount of sketching information com-
municated to the coordinator by a factor of only two. Other
models of evolving local distributions may be translated into
predicted sketches by applying the linearity properties of the
sketch transformation. While the models described operate
on whole sketches at a time; however, it is possible to design
“finer-grained” models that consider different parts of the
distribution and model their movements separately (e.g.,
tracking an acceleration model), while using a sketch only for
tracking the remainder of the distribution. Once a local con-
straint is violated, then it may be possible to restore the
constraint by only shipping information on some of the
heavy-hitter items, instead of shipping an entire sketch—
clearly, this may drastically reduce the amount of communi-
cation required.

Experimental Study

An experimental study was conducted on the proposed
tracking algorithms, to understand the effect of setting vari-
ous parameters (€,0, and window W for the velocity/accelera-
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tion model), to evaluate the communication savings from the
method, compared to the baseline solution of each remote site
communicating every update to the coordinator site. The
overall accuracy of the approximate methods was tested by
comparing to the exact answer for various queries, and the
benefits of using the fast update technique were analyzed.

Testbed and Methodology

A test system was implemented that simulated running
protocols in C. Throughout, the probability of failure was set
at 8=1% . Experiments were run on a single machine, simu-
lating the actions of each of k sites and the coordinator. For
each experimental simulation, all remote sites used the same
class of prediction model (static, linear-growth or velocity/
acceleration) with the same tracking parameters €,0. Various
optimizations of the methods were implemented. When each
site had to communicate to the coordinator, it computed
whether it was more efficient to send a sketch or to send the
updates since the last communication and sent the cheaper
message. Because the coordinator has the previous sketch, it
could compute the new sketch by adding on the recent
updates, so both the remote site and the coordinator stayed in
lockstep. This ensured that the cost was never worse than the
trivial solution of sending every update to the coordinator. In
the early stages in the protocol, when the site was still learning
the nature of its streams, the coordinator was updated often.

The results of the experiments were reported for two data
sets. The first was drawn from an Internet Traffic Archive
representing HT TP requests sent to servers hosting the World
Cup 1998 Web Site. Servers were hosted in four geographic
locations: Plano, Tex.; Herndon, Va.; Santa Clara, Calif.; and
Paris, France. Therefore, this system was modeled with four
remote sites, one handling requests to each location. The
relations defined by this sequence of requests were tracked
using the “objectID” attribute as the attribute of interest. This
seemed to be a good approximation of many typical data sets,
taking on a large number of possible values with a non-
uniform distribution. The second data set consisted of SNMP
network usage data obtained from the Community Resource
for Archiving Wireless Data at Dartmouth (CRAWDAD). It
consists of measurements of total network communication
every five minutes over a four-month period at a large number
of different access points (approximately 200). These access
points were divided into eight groups to create a data set with
eight sites and 6.4 million total requests. The “size” attribute
was used as the one on which to index the data, because this
took a very large number of values, and it would have been
challenging to predict the distribution accurately. Similar
results were obtained to those reported when using different
data sets and settings.

Throughout the experiments, the communication cost was
measured as the ratio between the total communications used
by a protocol (in bytes). For example, if the protocol sent 3
sketches, each of which was 10 KB in size, to summarize a set
of 50,000 updates, each of which can be represented as a
32-bit integer, then the communication costs was computed
as 15%. The goal was to drive these costs as low as possible.
When measuring the accuracy of the methods, an estimated
result, est, was computed and (for testing) the exact answer,
true, was computed. The error was then given by

|true — es1|
- .

true

which gives a fraction, 0% being perfect accuracy; again, the
goal was to see this error as low as possible.
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Setting Parameters and Tradeoffs

The tradeoff between parameters € and 6 was first investi-
gated to guarantee a given global error bound, and the setting
of the parameter W for the velocity/acceleration model. One
day of HTTP requests were taken from the World Cup data
set, which yielded a total of 14 million requests, and the
complete SNMP data.

FIGS.7A and 7B show the effect of varying € and 6 subject
to €+20=¢, for $=10%, 4% and 2% error rate. In each case, it
was verified that the total error was indeed less than ¢. The
communication cost was minimized for e roughly equal to
0.55-0.6¢. The analysis of sketch-prediction models showed
that for a worst case distribution under the static model, €
should be around 0.66¢. In practice, it seemed that a slightly
different balance gave the lowest costs, although the tradeoff
curve was very flat-bottomed, and setting € between 0.3¢ and
0.7¢ gave similar bounds. The curves for the velocity/accel-
eration model with W=20,00 on the HT TP data and W=1,000
on the SNMP data; curves for the different models and dif-
ferent settings of W looked similar. For the remainder of the
experiments, e=0.5¢ and ¢$=0.25¢ were set, giving g(e,0)=~¢.

FIGS. 8A and 8B show the effect of varying the window
size W for the velocity/acceleration model on the communi-
cation cost for three values of ¢=e+26 on both data sets. In
order to show all three models on the same graph, the static
model costs was shown as the leftmost point (plotted with a
cross), because this can be though of as the velocity/accelera-
tion model with no history used to predict velocity. Similarly,
the cost of the linear growth model was plotted as the right-
most point on each curve (marked with an asterisk), because
this can be thought of as using the whole history to predict
velocity. On the HT'TP World Cup data (FIG. 8A), for the best
setting of the window size, the velocity/acceleration model
outperformed both of the other models by at least a third, but
it was sensitive to the setting of W: too small or too large, and
the overall communication cost was noticeably worse than
the vest value. For each curve, the least cost was between a
half and a third of the greatest cost for that curve. The static
model got close to the worst cost, while the linear growth
model did quite well, but still about a third more than the best
velocity/acceleration model.

For the HTTP data set, irrespective of the g(e,0) value, the
best setting of W was in the range 10,000-100,000. Similar
behavior was observed on the SNMP data, although the ben-
efits of using a window over the linear growth model
decreased as e decreased. For the remainder of the experi-
ments, the focus was on the velocity/acceleration model with
W=20,000 for the HTTP data and W=1,000 for the SNMP
data.

Communication Cost

FIGS. 9A and 9B show how the communication cost
evolved with time, using an exemplary embodiment of the
velocity/acceleration model. This experiment was performed
on a larger data set from a week of HTTP requests to the
World Cup data sets, totaling over 50 million updates (with
k=4 as before), and on the same Dartmouth SNMP data set
treated as updates to a single site (so k=1). For both data sets,
the behavior was similar. The cost was initially high, as the
remote site adapted to the stream, but as the number of
updates increased, then the requirement for communications
dropped. For the higher error bounds, there were long periods
of'stability, i.e., where no communication was necessary. This
implied that in the long term, the methods reach a “steady
state”, where no communication is necessary, and large sav-
ings result over shipping up every update to the coordinator.
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Accuracy of Approximate Query Answers

The first set of experiments focused on the communication
cost of our proposed protocols. Then, the focused changed to
the accuracy they provided for answering queries at the coor-
dinator and the time cost at the remote sites. FIGS. 10A and
10B plot the error in answering queries at the coordinator
based on processing the one day of data from the World Cup
data set. For a fixed 0, the observed accuracy is plotted for
computing the size of a self-join as € varied when all of the
updates were processed. A heavy line shows the worst-case
error bound e+20=~g(€,0): all the results fell well within this
bound. Both static and velocity/acceleration models gave
similar errors at the coordinator. There was some variability
in the error with different values of €, which arose from two
sources: (1) variation due to the sketch error bound € and (2)
variation from the tracking bound 8. Depending on when the
query was posed, the remote site might have been using little
of'the “slack™ that this bound gives or it might have been using
almost all of it. Therefore, it is not expected to see any overall
trend as e varies, beyond that the total error is within the
global guarantee.

In FIG. 10B, it was attempted to separate the sketch error
from the tracking error, by computing the approximation we
would have if the remote site had sent the sketch of its current
distribution to the coordinator when the self-join query was
posed. In FIG. 10B, the error was subtracted from the total
error to give an indication of how much error was due to
tracking as 0 varied. The negative values seen in the results for
the velocity/acceleration model indicated that the answer
given by using the prediction model at the coordinator was
actually more accurate than if the coordinator had requested
each site to send it a sketch at query time. This showed an
unexpected benefit. The worst-case bounds assume that the
error from sketching and tracking are additive, but, in some
cases, these error can partially cancel out. For the static case,
the trend for the tracking error to decrease as 0 decreased to
zero was more clearly seen, thus guaranteeing that it met the
error bound.

Timing Results

Lastly, the time cost of the tracking methods was consid-
ered. The implementation of the methods using Fast-AGMS
sketches and the fast sketch-tracking scheme was compared
against the same prediction models implemented with a naive
tracking method with time complexity linear in the sketch
size (FIGS. 11A and 11B). The communication cost and
accuracy of both versions was the same in all cases: the fast
tracking techniques computed the same functions, but were
designed to work more quickly. The time cost was composed
of the time required to update each sketch, and the time to
recompute the sketch model when the error bounds are
exceeded. For the “slow” implementation, the former
requires time linear in the size of the sketch, which is in turn
quadratic in 1/e; for the “fast” version, the cost is independent
of €. As shown, the direct implementations of the tracking
methods rose sharply as e approached zero, while the fast
implementations hardly varied. For small €, the fast velocity/
acceleration methods became more expensive, because,
while update operations were still fast, recomputing the
sketches when tracking bounds were broken began to con-
tribute more significantly to the overall cost. For e23% on the
World Cup HTTP data (FIG. 11A), the cost was 36 seconds in
the static case and 50 seconds for the more complex velocity/
acceleration model to process all 14 million updates. This
gave an effective processing rate of around 300-400 thousand
updates per second per site, which was equivalent to an aver-
age overhead of three microseconds per update on the experi-
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mental setup (i.e., 2.4 GHz Pentium desktop computer). A
similar rate was observed on the Dartmouth SNMP data (FIG.
11B).

Experimental Conclusion

The experiments showed that significant communication
savings were possible for the variety of tracking problems
based on the key sketch-tracking problem that was addressed.
With an approximation factor of 10%, the communication
cost was less than about 3% of sending every update directly
to the coordinator, and this savings increased as more updated
were processed. Time overhead was minimal: a few micro-
seconds to update the necessary tracking structures, and typi-
cally a few kilobytes per sketch, plus space to store a recent
history of updates. The more detailed sketch prediction mod-
els seemed to offer significant improvements over the sim-
plest model. The velocity/accleration model gave the best
performance, if enough information about the streams was
known to choose a good setting of the window parameter W.
Other embodiments may have a more involved algorithm that
tires several values of W in parallel and eventually settle on
the one that minimizes communication. Failing this, linear
growth provides adequate results and requires no extra
parameters to be set.

Conclusion

Exemplary embodiments present novel algorithms for
tracking complex queries over multiple streams in a general
distributed setting. The schemes are optimized for tracking
high-speed streams and result in very low processing and
communication costs, and provide significant savings over
naive updating schemes. The results showed that any query
that can be answered using sketches in the centralized model
could be tracked efficiently in the distributed model, with low
space, time, and communication needs.

The results showed that join, multi-join and self-join que-
ries could be answered with guaranteed error bounds pro-
vided remote sites track conditions that depend only on indi-
vidual streams observed locally. With appropriate models
predicting future behavior based on a collected history, little
communication is needed between the remote sites and the
coordinator site. A wide rage of queries can be answered by
the coordinator: essentially, any query that can be approxi-
mated using e-approximate sketches can now be answered
with g(e,0) error, including heavy hitters, wavelets, and multi-
dimensional histograms.

FIG. 12 is a high-level block diagram showing a computer.
The computer 1200 may be employed to implement embodi-
ments of the present invention. The computer 1200 comprises
a processor 1230 as well as memory 1240 for storing various
programs 1244 and data 1246. The memory 1240 may also
store an operating system 1242 supporting the programs
1244.

The processor 1230 cooperates with conventional support
circuitry such as power supplies, clock circuits, cache
memory and the like as well as circuits that assist in executing
the software routines stored in the memory 1240. As such, it
is contemplated that some of the steps discussed herein as
software methods may be implemented within hardware, for
example, as circuitry that cooperates with the processor 1230
to perform various method steps. The computer 1200 also
contains input/output (I/O) circuitry that forms an interface
between the various functional elements communicating with
the computer 1200.

Although the computer 1200 is depicted as a general pur-
pose computer that is programmed to perform various func-
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tions in accordance with the present invention, the invention
can be implemented in hardware as, for example, an applica-
tion specific integrated circuit (ASIC) or field programmable
gate array (FPGA). As such, the process steps described
herein are intended to be broadly interpreted as being equiva-
lently performed by software, hardware, or a combination
thereof.

The present invention may be implemented as a computer
program product wherein computer instructions, when pro-
cessed by a computer, adapt the operation of the computer
such that the methods and/or techniques of the present inven-
tion are invoked or otherwise provided. Instructions for
invoking the inventive methods may be stored in fixed or
removable media, transmitted via a data stream in a broadcast
media or other signal-bearing medium, and/or stored within a
working memory within a computing device operating
according to the instructions.

While the foregoing is directed to various embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof. As such, the appropriate scope of the invention
is to be determined according to the claims, which follow.

What is claimed is:

1. A method for tracking, comprising:

monitoring a plurality of local update streams by a plurality

of monitoring sites, each monitoring site tracks any
deviation of a local distribution from a predicted distri-
bution using a sketch prediction model, the local update
streams being part of a global data distribution in a
distributed system;

sending a state update message from each monitoring site

to a coordinator only when the local distribution differs
from the predicted distribution by more than a predeter-
mined amount, the state update message including a
predicted sketch derived from the sketch prediction
model wherein a fast-AGMS sketch is used to track any
deviation of the local distribution from the predicted
distribution by averaging over partitions of a domain
generated randomly through a hash function, the fast-
AGMS sketch including a plurality of counters arranged
in a plurality of hash tables, each hash table having a
plurality of hash buckets; and

providing an approximation at a coordinator based on the

state update messages from the monitoring sites.

2. The method of claim 1, wherein the sketch prediction
model is one of: a static model, a linear-growth model, and a
velocity/acceleration model.

3. The method of claim 1, wherein the monitoring sites
perform substantially continuously monitoring.

4. The method of claim 1, wherein the approximation is an
answer in response to a user query, the user query is one of a
join query and multi-join query.

5. The method of claim 1, wherein the approximation is
computed substantially continuously.

6. An apparatus, comprising:

means for receiving state update messages from a plurality

of monitoring sites monitoring a respective plurality of
local update streams that are part of a global data distri-
bution in a distributed system, each monitoring site
tracks any deviation of a local distribution from a pre-
dicted distribution using a sketch prediction model, each
state update message including a predicted sketch and
being received only when the local distribution at a
respective monitoring site differs from the predicted
distribution by more than a predetermined amount
wherein a fast-AGMS sketch is used to track any devia-
tion of the local distribution from the predicted distribu-
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tion by averaging over partitions of a domain generated
randomly through a hash function, the fast-AGMS
sketch including a plurality of counters arranged in a
plurality of hash tables, each hash table having a plural-
ity of hash buckets; and

means for providing an approximation based on the state

update messages from the plurality of monitoring sites.

7. The apparatus of claim 6, wherein each monitoring site
tracks any deviation of the local distribution from the pre-
dicted distribution using a sketch prediction model.

8. The apparatus of claim 7, wherein the sketch prediction
model is one of: a static model, a linear-growth model, and a
velocity/acceleration model.

9. The apparatus of claim 6, wherein the approximation is
computed substantially continuously.

10. The apparatus of claim 6, wherein the approximation is
an answer in response to a user query.

11. The apparatus of claim 10, wherein the user query is
one of a join query and multi join query.

12. A computer readable storage medium storing instruc-
tions for performing a method of tracking, the method com-
prising:

monitoring a plurality of local update streams by a plurality

of monitoring sites, each monitoring site tracks any
deviation of a local distribution from a predicted distri-
bution using a sketch prediction model, the local update
streams being part of a global data distribution in a
distributed system; and

sending a state update message from each monitoring site

to a coordinator only when the local distribution differs
from the predicted distribution by more than a predeter-
mined amount, the state update message including a
predicted sketch derived from a sketch prediction model
wherein a fast-AGMS sketch is used to track any devia-
tion of the local distribution from the predicted distribu-
tion by averaging over partitions of a domain generated
randomly through a hash function, the fast-AGMS
sketch including a plurality of counters arranged in a
plurality of hash tables, each hash table having a plural-
ity ot hash buckets.
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13. The computer readable storage medium of claim 12,
wherein each monitoring site tracks any deviation of the local
distribution from the predicted distribution using a sketch
prediction model.

14. The computer readable storage medium of claim 13,
wherein the sketch prediction model is one of: a static model,
a linear-growth model, and a velocity/acceleration model.

15. The computer readable storage medium of claim 12,
wherein the monitoring sites perform substantially continu-
ously monitoring.

16. A computer readable storage medium storing instruc-
tions for performing a method of tracking, the method com-
prising:

receiving a state update message from each of a plurality of

monitoring sites only when a local distribution at the
monitoring site differs from a predicted distribution by
more than a predetermined amount, the state update
message including a predicted sketch derived from a
sketch prediction model wherein a fast-AGMS sketch is
used to track any deviation of the local distribution from
the predicted distribution by averaging over partitions of
a domain generated randomly through a hash function,
the fast-AGMS sketch including a plurality of counters
arranged in a plurality of hash tables, each hash table
having a plurality of hash buckets, the state update mes-
sages reflecting local update streams that are part of a
global data distribution system; and

providing, in response to a user query, an approximation

determined based on the state update messages received
from the plurality of monitoring sites wherein each
monitoring site tracks any deviation of the local distri-
bution from the predicted distribution using a sketch
prediction model.

17. The computer readable storage medium of claim 16,
wherein the user query is one of a join query and multi-join
query.

18. The computer readable storage medium of claim 16,
wherein the approximation is computed substantially con-
tinuously.



