a2 United States Patent
Benedikt et al.

US007496571B2

US 7,496,571 B2
Feb. 24, 2009

(10) Patent No.:
(45) Date of Patent:

(54) METHOD FOR PERFORMING
INFORMATION-PRESERVING DTD SCHEMA
EMBEDDINGS

(75) Inventors: Michael Abraham Benedikt, Chicago,

1L (US); Minos N. Garofalakis,
Morristown, NJ (US); Rajeev Rastogi,
New Providence, NJ (US)

Alcatel-Lucent USA Inc., Murray Hill,
NJ (US)

(73) Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 114 days.

@
(22)

Appl. No.: 10/955,322

Filed: Sep. 30, 2004

(65) Prior Publication Data

US 2006/0212860 A1 Sep. 21, 2006

Int. CL.
GO6F 17/30 (2006.01)
US.CL ... 707/6; 707/1; 707/2; 707/3;
707/4; 707/5;707/7; 707/101
Field of Classification Search 707/100,
707/10, 1-7, 101
See application file for complete search history.

(1)
(52)

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

6,718,320 B1* 4/2004 Subramanian etal. 707/2

6,826,568 B2* 11/2004 Bernstein etal. 707/6
2003/0120651 Al* 6/2003 Bernstein et al. 707/6
2003/0167254 Al* 9/2003 Suetal. 70711
2005/0097084 Al* 5/2005 Balminetal.ccoeenen. 707/3
2005/0102303 Al* 5/2005 Russelletal. 707/101
2005/0160108 Al* 7/2005 Charletetal. 707/101
2005/0256850 Al* 11/2005 Maetal.ccoevevveerreennnn 707/3

102 Jjournals 104 u
l — 132 134
book:
Jjournal T i/"'/

name date papers %

title

136

Yyear month vol num paper year classification

— 7 T
authors textBook others
*

title pageNo

author

(a) Source Schema Sy

authors
author P

(b) Source Schema S}

2005/0278139 Al* 12/2005 Glaenzeretal. 702/179

OTHER PUBLICATIONS

D. Shasha et al., “Exact and Approximate Algortihms for Unordered
Tree Matching.” IEEE Trans. on Systems, Man, and Cybernetics, vol.
24, No. 4, Apr. 1994.*

Balmin et al, “XPath Query Containment for Index and Materialized
View Matching”, Nov. 11, 2002, pp. 1-12.*

Luccio et al, “Bottom-up Subtree Isomorphism for Unordered
Labeled Trees”, Universita Di Pisa, Technical Report, Jun. 24, 2004,
pp. 1-20.*

Nieman et al, “Evaluating Structural Similarity in XML Docu-
ments”, University of Michigan, 2002, pp. 1-6.*

Zhang et al, “Fast Serial and Parallel Algorithms for Approximate
Tree Matching with VLDC’s (Extended Abstract)”, University of
Western Ontario, Department of Computer Science, 1992, pp. 151-
161.*

Chi et al, “Frequent Subtree Mining-An Overview”, University of
California, 2001, pp. 1001-1038.*

Bertino et al, “A matching algorithm for measuring the structural
similarity between an XML document and a DTD and its applica-
tions”, Dipartimento di Informatica, Universita degli Studi di Pica,
2003, pp. 1-24.*

(Continued)

Primary Examiner—Apu M Mofiz
Assistant Examiner—Hung D Le

(57) ABSTRACT

Method for performing information-preserving DTD schema
embeddings between a source schema when matching a
source schema and a target schema. The preservation is real-
ized by a matching process between the two schemas that
finds a first string marking of the target schema, evaluates a
legality of the first string marking, determines an estimated
minimal cost of the first string marking and subsequently
adjusts the estimated minimal cost based upon one to one
mapping of source schema and target schema subcompo-
nents.

10 Claims, 10 Drawing Sheets

162
160
archive
jounmls\l:ot]ks confer/emfs/1 64
3 I

publication

itlel dateInt 1,

category

SRR h
papers
*

" i PR
tile name year detail EMPY
* bt

I i 166
month vol num pageNo ‘"”lho"‘
*

author

(c) Target S

US 7,496,571 B2
Page 2

OTHER PUBLICATIONS

Wang et al, “A System for Approximate Tree Matching”, IEEE, 1994,
pp. 559-571.*

Miller et al, “The Use of Information Capacity in Schema Integration
and Translation”, Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993, pp. 120-133.*

Pekka Kilpelainen, “Tree Matching Problems with Applications to
Structured Text Databases”, Ph.D. dissertation, Department of Com-
puter Science, University of Helsinki, Finland, 1992, pp. 1-109.*
Kuo-Chung Tai, “The Tree-to-Tree Correction Problem”, ACM,
North Carolina State University, 1979, pp. 422-433.*

Jason Tsong-Li Wang et al, A System for Approximate Tree Match-
ing, IEEE Transactions on Knowledge and Data Engineering , Apr.
28, 1992, pp. 1-26.*

Erhard Rahm et al, On Matching Schemas Automatically, Universitat
Leipzig, 2001, pp. 1-27.*

Dennis Shasha et al, Fast Parallel Algorithms for the Unit Cost
Editing Distance Between Trees, Courant Institute of Mathematical
Sciences, ACM, 1989, pp. 117-127.*

Christoph M. Hoffmann et al, Pattern Matching in Trees, Purdue
University, Indiana, ACM, 1982 .*

S. Melnik et al., “Similarity Flooding: A Versatile Graph Matching
Agorithm and its Application to Schema Matching,” Proc. 18% Intl.
Conf. on Data Engineering (ICDE), San Jose CA, 2002.

J. Madhaven et al., “Generic Schema Matching with Cupid,” Pro-
ceedings of the 27" VLDB Conference, Roma, Italy, 2001.

E. Rahm and P. A. Bernstein, “A Survey of Approaches to Automatic
Schema Matching,” The VLDB Journal 10: 334-350 (2001)/Digital
Object Identified (DOI) 10.1007/s007780100057.

D. Shasha et al., “Exact and Apoproximate Algorithms for Unordered
Tree Matching,” IEEE Trans. on Systems, Man, and Cybernetics, vol.
24, No. 4, Apr. 1994.

K. Zhang, “On The Editing Distance Between Unordered Labeled
Trees,” Information Processing Letters 42 (1992), pp. 133-139.

* cited by examiner

US 7,496,571 B2

Sheet 1 of 10

Feb. 24, 2009

U.S. Patent

L ©Id

2g 1081m] (9)

doiynp

-

sioynp onaSud wnu 104 you

» ~G 7

T pwioysg 9omog (q)

991 ; -
' mu e
. 4adod L doymn sape HoOqIxIn
" o " L % v 0
i * N
siaylo yooqixm | sipdod dwz posp waf awwu apm sioqny uonworfissp 4ok o
v Doeeeemoi \.wﬂ....w.w\ Y« v e
Aéwwmq.o. o Q.SE.TM: of =-5§3u ofuranp e\:ﬁw /] yoog
uonvaqnd oSt vel syooq cel
\\\\\\‘* a /
ol $20342fu09 sy00q sppuanof
2418240
9l
rac]’

TS pUI_YOS 301n0g (B)

Loyyp

.|

sdony ona8ed apy

<

J2dnd winu joa ypuow Ipad

TV

ssadvd amwp awpn

jouanof

AT +0 F\\\u~==_g=e.s FA)?

001

US 7,496,571 B2

Sheet 2 of 10

Feb. 24, 2009

U.S. Patent

Iyu /_\Ev_ 1Yo /m \Un

(zs-zL)d (1s- 1Y
06¢ 08¢

(9)

¢ Old

{}=¢s

2l T2
022

{6} =1S

U.S. Patent Feb. 24, 2009 Sheet 3 of 10 US 7,496,571 B2

300

START 302

Y
FIND STRING MARKING (s) OF TARGET S, (~_- 304

IS (s)
DTD - LEGAL?

NO 306

DETERMINE MINIMUM COST EMBEDDING | 308
MATCHING (M)

ARE
THERE MORE
STRING MARKINGS
OF 32 ?

YES 310

PROVIDE SMALLEST (M) FROM ALL M's 1 ~_- 312

\
END 314

FIG. 3

U.S. Patent Feb. 24, 2009 Sheet 4 of 10 US 7,496,571 B2

400

START 402

!
FIND STRING MARKING (s) OF TARGET S, ~— 404

NO IS (s)
i DTD - LEGAL?

PERFORM BOTTOM UP ESTIMATE SUBROUTINE

TO OBTAIN INITIAL MATCHING ESTIMATES M - 408

PERFORM TOP DOWN ADJUST SUBROUTINE TO
ADJUST M TO PROVIDE 1 TO 1 MATCHING VALUE ~— 410
AND A CORRESPONDING COST MATCH COST

412
ARE

YES THERE MORE
STRING MARKINGS
OF S, 7

PROVIDE SMALLEST MATCH COST ~— 414

END 416

FIG. 4

U.S. Patent Feb. 24, 2009 Sheet 5 of 10 US 7,496,571 B2

500

502

YES /\ 208

RETURN (INFINITY)

level (u)#level (v) OR
in-degree (u)#in-degree (v) OR
out-degree (u)#out-degree (v)?

COMPUTE stz Match (u,v)=optimal complete
Bipartite matching of strings (u),

strings (v) using string-edit L ~_508
distance metric to
define edge costs
Let cost Stz Match=cost of matching stz Match (u,v)
/‘\ 512

out-degree (u)=
=out-degree (v)=0
?

RETURN (cost Stz Match)

FOR EACH PAIR OF CHILD NODES (x.y)

of u,v: (\/514
COMPUTE M [x,y]=BOTTOM UP ESTIMATE (x,y)

COMPUTE Child Match (u,v)=optimal complete bipartite
matching between children (u) and children (v)

using M[x,y] to define edge costs

LET Cost Child Match=cost of matching Child Match (u,v)

r
RETURN (cost Stz Match+cost Child Match) ™~ 518

FIG. 5

U.S. Patent Feb. 24, 2009 Sheet 6 of 10 US 7,496,571 B2

procedure BOTTOMUPESTIMATE(u, v)
Input: DAG substructure root nodes %, v in the reduced

DTD graphs R(S1) and R(S3 — 82) (respectively).

Output: Estimate M[u,v] of the best cumulative edit distance

of DAG substructures under . € R(S1), v € R(S2 — $2).

begin

1. iflevel(u) # level(v) or in-degree(u) # in-degree(v) or

out-degree(ut) #£ out-degree(v) then

2. return{oo)

3. strings(u) := set of strings in Sy corresponding to node
u € R(S1)

4. strings(v) = set of strings in Sy — s corresponding to
node v € R(S2 — 82)

5. let strMatch(u, v) := optimal complete bipartite matching
between strings(u), strings(v) using the string-edit
distance metric of Sec. 3.2 to defi ne edge costs

6. costStrMatch = 37, \estrMatchqu,v) S415E(8:2)

7. if (out-degree(u) = out-degree(v) = 0) then

8. return(costStrMatch)

9. elseif (out-degree(q) = out-degree(v) > 0)

10. for each node-pair (z,¥) € children(u) x children(v) do

11. M{[z,y] == BOTTOMUPESTIMATE(Z, ¥)

12. let childMatch(u, v) := optimal complete bipartite matching
between children(u), children(w) with edge costs defi ned
by M[z,vy] entries

13. costChildMatch = Z(m,y)echildMatch(u,v') M[.T:, y]

14. return(costStrMatch + costChildMatch)

15. endif

end

FIG. 6

U.S. Patent Feb. 24, 2009 Sheet 7 of 10 US 7,496,571 B2

700

u=zoot(R(S1))
v=node of R(S,-S) such that M[u,v] is minimum 704
Match={(u,v)}, level i=1

RETURN (MATCH, MATCHCOST

k 708

i>depth (R(S1))?

Match Values (i)=0

for each node u at level i of R(S1):

let possMatches (u)=ve R(S2-S) whose parents
have been matched to parents of u

Match Values (i)=Match Values (i) U

{M[u,v]:ve possMatches (u) and M[u,v]<co}

. 709

NO

i=i+1 Match Values (i)#0?

710

712

FIG. 7A

U.S. Patent Feb. 24, 2009 Sheet 8 of 10 US 7,496,571 B2

? /T4

(u,v)=pair with minimum M[u,v] value in Match Values (i)
Match Values (i)=Match Values (i)-{(u,v)}
Match Cost (u,v)=0

' 116

for each pair (w,x) of MATCHED parents of (u,v):

let Sm=strings for the w —u edge in strings (u)

Sx=strings for the x—= v edge in strings (v)

Compute dist (Sw, Sx)=optimal complete bipartite matching of Sw, Sx
using string-edit distance

metric of sec. 3.2

Match Cost (u,v)=Match Cost (u,v)+dist (Sw, Sx)

Match Cost (u,v)<co
?

MATCH=MATCH U {(u,v)}

MATCH COST=MATCH COST+Match Cost (u,v)
Delete all entries M[u,*], M[*,V]

from Match Values (i)

L~ 720

6

FIG. 7B

U.S. Patent Feb. 24, 2009 Sheet 9 of 10 US 7,496,571 B2

- procedure TOPDOWNADIJUST(R(S1), R(S2 — s2), M[])
Imput: Reduced DTD graphs R(S1) and R(S2 — s2), dynamic
programming array of matching-cost estimates M[] computed
by BOTTOMUPESTIMATE.
Output: (Partial) one-to-one mapping MATCH of nodes of R(S1)
onto nodes of R(S2 — s2), and corresponding cost MATCHCOST.

begin
l. u:=root(R(S1))
2. v:=node of R(S2 — s2) such that M[w,v] is minimum
3. MarcH:= {(u,v)}
4. MATCHCOST:=cost(relabel(u,v)) //no strings at root
5. foreachlevel ::=1,...,depth(R(S1)) do
6. matchValues(z) := ¢
7. for each node u at level 7 of R(S1) do
8. parents(u) = set of parent nodes of u
9. parentMatches(u) := {v : (w,v) € MATCH,w € parents(u)}
10. possMatches(w) == {v € R(S2 — s2) : parents(v) D
parentMatches ()}
11. matchValues(z) := matchValues(z) U
{M[u,v] : v € possMatches(u), M[u,v] < co}
12. endfor
13. while matchValues(s) # ¢ do
14. let (u,v) := pair with the minimum M[u,v] value
in matchValues()
15. delete the M [u,v] entry from matchValues(z)
16. matchCost(u, v) := 0
17. for each (w € parents(u), z € parents(v) such
that (w, 2) EMATCH) do
18. Sy := strings for the w — u edge in strings(u)
19. 8z = strings for the £ — v edge in st rings(v)
20. dist($4, $2) = optimal complete bipartite matching
between strings in s, S, using the string-edit
distance metric of Sec. 3.2 to defi ne edge costs;
21. matchCost(u, v) := matchCost(u, v) + dist(sy, 52)
22. endfor '
23. if matchCost(u, v) < 0o then
24. MATrcH:= MATCHU{ (1, v)}
25. MATCHCOST:= MATCHCOST+ matchCost(u, v)
26. delete all entries M [u, *], M[*,v] from matchValues(z)
27. endif
28. endwhile
29. endfor

end FIG. 8

US 7,496,571 B2

Sheet 10 of 10

Feb. 24, 2009

U.S. Patent

V-916 NOILVOIlddV

1NS-916
1001 ONIHOLVIN VWIHOS

916 AMOWIW

216 ¥0SS300¥d

216 LNd1NO/LNdNI

d431LNdNOD

0L6

006

0¢6

6 Ol

|

boge ™]

304NOS
v.iva g3am

US 7,496,571 B2

1

METHOD FOR PERFORMING
INFORMATION-PRESERVING DTD SCHEMA
EMBEDDINGS

FIELD OF THE INVENTION

The present invention relates to a method for processing
XML data, and more particularly, embedding the features and
structure of one DTD schema into a second and structurally
different DTD schema while preserving the information
therein.

DESCRIPTION OF THE BACKGROUND ART

XML (Extensible Markup Language) is a language that has
been designed to improve the functionality of the World Wide
Web by providing data identification in a more flexible and
adaptable manner than previously possible. The term “exten-
sible” is used because the language does not have a fixed
format like its predecessor HTML (a single, predefined
markup language). Instead, XML is actually a “metalan-
guage” (a language for describing other languages) which
allows a designer the freedom of designing a customized
markup language for different types of documents. XMIL.’s
flexibility is possible because it is written in SGML, the
international standard metalanguage for text markup systems
(ISO 8879). The result is an extremely simple dialect of
SGML which enables generic SGML to be served, received
and processed on the Web in the way that is not possible with
HTML.

Organization of data in XML is accomplished via a Docu-
ment Type Definition (DTD) Schema or XML Schema. DTD
is a formal description in XML Declaration Syntax of a par-
ticular type of document. It establishes what names are to be
used for the different types of elements, where they may
occur, and how these elements fit together. A DTD provides
applications with advance notice of what names and struc-
tures can be used in a particular document type. To facilitate
usage, there are thousands of DTDs already in existence for a
variety of applications.

Schema matching is a problem in many data management
applications, including schema evolution and integration,
data exchange and data archiving and warehousing. For
example, given two database schemas S, and S, the goal of
the schema-matching process is to effectively identify ele-
ments/types in the two schemas that semantically correspond
to each other. This process is a critical step, for example, in
mapping messages between different formats in E-business
applications or identifying points of integration between het-
erogeneous source schemas and a global, integrated schema
(e.g., for web-data integration). Currently, schema matching
is a tedious, time-consuming process performed, to a large
extent, manually (perhaps supported by a graphical user inter-
face).

Some existing solutions address different forms of the
schema matching problem and offer partially automated pro-
cesses for several application domains. However, none of
these earlier efforts has addressed the general problem of
matching DTD schemas defined in terms of complex regular
expressions containing conjunction, disjunction, and Kleene
star operators. Furthermore, most earlier work has ignored
the issues of information preservation. Informally, an infor-
mation-preserving matching of schema S1 to S2 implies that
all the information in the S1-structured local database can be
transformed losslessly into the integrated schema S2. In other
words, a systematic mapping of instances of S1 onto
instances of S2 can be obtained without losing any informa-

20

25

30

35

40

45

50

55

60

65

2

tion or structure in the original data. Furthermore, user que-
ries posed over the local S1 schema instances can be effec-
tively translated (based on the underlying schema matching)
into equivalent queries over S2 that return exactly the same
results. Given the rapidly-growing number of available web
data sources as well as the constantly increasing complexity
and diversity of the underlying database schemas, there is a
need for tools that can effectively automate the schema-
matching process.

SUMMARY OF THE INVENTION

Accordingly, we have recognized that there is a need to
preserve the information in and the structure of XML data
when matching a source schema and a target schema. This can
be achieved by schema matching process that finds a first
string marking of the target schema, evaluates a legality ofthe
first string marking, determines an estimated minimal cost of
the first string marking and subsequently adjusts the esti-
mated minimal cost based upon one to one mapping of source
schema and target schema subcomponents. As such, the target
schema is effectively reduced to the source schema without
losing information or schema structure characteristics. Addi-
tionally, this also allows for the translation of queries over the
source schema to the target schema.

BRIEF DESCRIPTION OF THE DRAWINGS

The teachings of the present invention can be readily
understood by considering the following detailed description
in conjunction with the accompanying drawings, in which:

FIG. 1 depicts DTD schemas or graph models associated
with the subject invention;

FIG. 2 depicts a plurality of tree structure data graphs
associated with the subject invention;

FIG. 3 depicts a flowchart of a first method for performing
information-preserving DTD schema embeddings for tree-
structured DTDs in accordance with the subject invention;

FIG. 4 depicts a flowchart of a second method for perform-
ing information-preserving preserving DTD schema embed-
dings for DAG-structured DTDs in accordance with the sub-
ject invention;

FIG. 5 depicts a flowchart detailing a first subroutine of the
second method seen in FIG. 4;

FIG. 6 depicts pseudo code corresponding to the first sub-
routine seen in FIG. 5;

FIG. 7 a flowchart detailing a second subroutine of the
second method seen in FIG. 4;

FIG. 8 depicts pseudo code corresponding to the second
subroutine seen in FIG. 7; and

FIG. 9 depicts a high level block diagram of a computer
system cooperating with a network such as the Internet.

To facilitate understanding, identical reference numerals
have been used, where possible, to designate identical ele-
ments that are common to the figures.

DETAILED DESCRIPTION

The problem of information-preserving schema matching
for complex XML is addressed by the novel concept of
schema embedding. Essentially, schema embedding allows a
source DTD to be effectively matched to (or, embedded in) a
target DTD while allowing for powerful schema-restructur-
ing transformations that capture data-structuring variations
often encountered in practice, and guaranteeing information-
preserving instance mappings and effective translation of
queries over the source DTD to the target DTD schema.

US 7,496,571 B2

3

Schema-restructuring transformations are defined as local-
ized graph-edit operations over a DTD graph to ensure that
information is always preserved and that a large class of XML
queries can be efficiently transformed to run over the restruc-
tured schema. This is accomplished via DTD-embedding
algorithms that rely on an appropriately defined concept of
edit-distance between DTD graphs. The algorithms take into
account apriori semantic knowledge on element tags to com-
pute an appropriate DTD-embedding matching by discover-
ing a low-cost edit-script for transforming the source DTD to
the target DTD.

Initially, the nomenclature and modeling of basic DTD-
schema is presented. As is known, a DTD is considered to
have the form (Ele, P, r) where Ele is a finite set of element
types and r is a distinguished type in Ele called the root type.
P defines the element types as follows: for each A in Ele, P(A)
is a regular expression of the following form:

a:=strl€|B1 BnlBl+ ... +BnlB*

where str denotes PCDATA, € is the empty word, B is a
type in Ele (referred to as a subelement type of A), and “+°,)
and “*’ denote disjunction (with n>1), conjunction (i.e., con-
catenation), and the Kleene star, respectively. The expression
A—P(A) is referred to as the production of element type A.
Further, it is assumed that all Bi’s are distinct in a production.
Note that the DTD-schema definition does not lose generality,
since all DTDs can be expressed in this form by introducing
new element types (entities). As will be shown, matching for
general DTDs can be reduced to matching of normalized
DTDs. Finally, it is established that A is a conjunctive, dis-
junctive or star element type if its production P(A) is a con-
junctive, disjunctive, or Kleene-star regular expression (i.e.,
the last three cases in the above generic form) respectively.

A DTD S is represented as a node-labeled graph, referred
to as the graph of S. FIGS. 1(a), 1(b) and 1(c) depict exem-
plary DTDs for a first source DTD, journal 100, a second
source DTD, book 130 and a target DTD, archive 160 DTD
respectively. For each element type A in S, there is a unique
node labeled A in G, referred to as the A node. From the
A-node there are edges to nodes representing subelement
types B in o, determined by the production A—c of A. There
are different types of edges indicating different DTD con-
structs. Specifically, the edges are solid lines without labels
(102, 132 and 162 in FIG. 1(a), 1(b) and 1(c) respectively)
which denote conjunction except the following cases. If
a=B*, then the edge has ‘*’ as a label (104, 134 and 164 in
FIG. 1(a), 1(b) and 1(c) respectively) indicating that zero or
more B elements can be immediately nested within an A
element. If a is a disjunction, then the edges are indicated by
dashed lines (136 and 166 in FIGS. 1(5) and 1(¢) respectively)
to distinguish from the case of a concatenation. A node in the
DTD graph is characterized as conjunctive, disjunctive, or
star node based on the underlying element type. For example,
a disjunctive node only has two or more outbound dashed
edges and a star node only has a single outbound star edge. A
DTD is recursive if its graph is cyclic. When it is clear from
the context, the DTD and its graph are used interchangeably,
both referred to as S; similarly for A element type and A node.

An XML document instance T of aDTD S is anode labeled
tree such that (1) there is a unique node, the root, in T labeled
withr; (2) each node in T is labeled either with an Ele type A,
called an A element, or with str, called a text node; (3) each A
element has a list of children of elements and text nodes such
that they are ordered and their labels are in the regular lan-
guage defined by P(A); and (4) each text node carries a string
value (PCDATA) and is a leaf.

20

25

30

35

40

45

50

55

60

65

4

As presented earlier, concept of DTD-schema embedding
is employed to address the problem of information-preserv-
ing DTD-schema matching. Specifically, a source DTD S1=
(E1, P1, r1) can be embedded in a target DTD S2=(E2, P2,r2)
denoted by S1-<S2, if there exists a function fthat maps every
element eEE1 onto an image element f(e)&E2 such that: (1)
the “information capacity” of the S2 DTD substructure rooted
under the image element f (e) is greater than or equal to the
corresponding capacity of the DTD substructure rooted under
e and (2) ancestor-descendant relationships are preserved.
Intuitively, the above two clauses state that a substructure s of
S1 can only be embedded in “larger” substructures of S2 that,
essentially, can encompass all the structural information in s,
perhaps also introducing some additional structure and DTD
elements. As an example, the date clement type of our
example source schema S1100 of FIG. 1(a) can be embedded
in the datelnfo type of the target schema S2 160 FIG. 1(c)
since the dateInfo type just augments date with some addi-
tional structural information. The formal definition is as fol-
lows:

asource DTD S1=(E1, P1, r1,) can be embedded in a target

DTD S2=(E2, P2, r2) (denoted by S1->S2) if and only if
there is a function f: E1—+FE2, and a mapping ann(), such
that ann() maps edges (A, B) in S1 to a path ann(A, B)
from f(A) to f(B) in the S2 DTD graph, ann(r1) is a path
from r2 to f(rl), and for each ACFE1, A'=f(A) satisfying
the following conditions:
If A istherootrl in S1, then ann(A) is a conjunctive path
(i.e., a path of only solid lines) from the root r2 of S2

to r1’s image node f(r1) in S2.

It P1(A)=str, then P2(A")=str, i.c., the function preserves
PCDATA nodes.

If P1(A)=B1, . . . Bl then f() maps each Bi node
(i=1, ...,1) to a distinct image node f(Bi) in S2 such
that: (1) f(A) is an ancestor of each f(Bi) and f(Bi) is
not an ancestor of f(Bj) for all i=j&{1, . . . 1} (ie,

ancestor/descendant relationships in S1 are pre-
served); and, (2) for each pair of distinct image nodes
f(Bi) and f(B;), i=]j their least-common-ancestor Ica(f
(Bi), {(Bj)) in the S2 graph is a conjunctive node.

If P1(A)=B1+. . . +Bl, then f() maps each Bi node
(i=1...1) to a distinct image node f(Bi) in S2 such
that: (1) f(A) is an ancestor of each f(Bi) and {(Bi) is
not an ancestor of f(Bj) for all i=j €{1, . . .1} and, (2)
for each pair of distinct image nodes {(Bi) and f(B;j),
i=], their least-common-ancestor Ica(f(Bi), {(Bj)) in
the S2 graph is a disjunctive node.

If P1 (A)=B*, then there exists a node A" in graph S2
such that (1) there exists a conjunctive path from f{A)
to A" thatis a prefix of ann(A, B); and, (2) P2(A")=B"™*
(i.e., A" is a star node in S2) and B'={(B).

We will refer to the mapping ann() as a path annotation.
Note that in the case of tree-shaped schemas, ann() is com-
pletely determined by the embedding function f.

The intuition behind the clauses in the above definition is to
(conceptually) allow the nodes of a production in the source
DTD schema S, to be mapped, in the general case, to the
nodes of a sub-tree in S2 in a manner that preserves the
cardinality constraints and semantics imposed by the original
S1 production. For example, the embedding definition for a
conjunctive production ensures that the target conjunctive
sub-tree in S2 maintains the one-to-one semantics of conjunc-
tive edges exactly by ensuring (through the requirement of a
conjunctive least-common-ancestor for any two distinct chil-
dren in the S1 production) that conjunctive ancestor/descen-
dant relationships are preserved, while also allowing for addi-
tional structuring information to be included (through the

US 7,496,571 B2

5

unmapped nodes in the target sub-tree). Thus, the conjunctive
production is essentially embedded/included (through f()) in
a substructure of larger “information capacity” in the target
DTD. Similarly, the clause for a disjunctive production gives
a similar “structure embedding” guarantee for the source
production while ensuring that the XOR semantics of the
disjunction are preserved. The rationale of the final clause (for
star nodes) follows along the same lines.

As mentioned earlier, there may be a multitude of different
possible mappings f{() for embedding a source DTD schema
S1 into a target DTD S2. To ensure the semantically best
mappings, the subject invention exploits a (partial) label simi-
larity function o() that scores the semantic similarity between
individual element types in the two schemas. Such similarity
functions for schema-matching problems are typically
obtained based on linguistics (e.g., using element names and
textual descriptions, substring matching, stemming and
tokenization, and so on), or based on auxiliary information
(e.g., dictionaries and domain-specific thesauri, user/expert
input, or previous matching decisions). Examples of such can
be found in “Generic schema matching with cupid” by J.
Madhavan, P. A. Bernstein, and E. Rahm In VLDB, 2001,
“Similarity flooding: A versatile graph matching algorithm”,
S. Melnik, H. Garcia-Molina, and E. Rahm, In ICDE, 2002
and E. Rahm and “A survey of approaches to automatic
schema matching” by P. A. Bernstein. VLDB Journal, 2001
herein all incorporated in their entireties by reference. There-
fore, the DTD-schema embedding problem is summarized as
follows:

Given: Source and target DTD schemas S1=(F1, P1, rl,)
S2=(E2, P2, r2), partial labelsimilarity function o().

Find: A DTD-embedding mapping f: S1—=S2 and ann()
that embeds S1 in S2 and maps edges in S1 to pathsin S1 (i.e.,
S1->S2 via f() and ann() such that the cumulative similarity
of matched element types is maximized; that is, compute

fO=ore, mox, { 2, o g<A>>}-

AcE)

The DTD-schema embedding algorithms associated with
the subject invention build on the concept of edit-distance to
capture the quality of an embedding mapping (i.e., the cumu-
lative similarity of matched schema elements). Such concept
and mappings for unordered tree matching is found in for
example “Exact and Approximate Algorithms for Unordered
Tree Matching” by D. Shasha, J. T. L. Wang, K. Zhang, and F.
Y. Shih., IEEE Transactions on Systems, Man, and Cybernet-
ics, 24(4):668-678, April 1994 and “On the editing distance
between unordered labeled trees K”, Zhang, R. Statman, and
D. Shasha. Inf. Process. Lett., 42:133-139, May 1992. both
herein incorporated by reference in their entireties and col-
lectively identified as “Shasha”. Generally, the tree-edit dis-
tance metric is a natural generalization of the edit distance
metric for flat strings as discussed in “Pattern Matching Algo-
rithms” by A. Apostolico and 7. Galil, editors. Oxford Uni-
versity Press, 1997 which is also herein incorporated in its
entirety by reference. Three basic edit operations are allowed:
(1) relabeling a tree node from u to v (relabel (u,v) simply
changes the label of the node from u to v; (2) deleting a node
v (delete (v)) deletes node v from the tree moving all its
children under its parent in the tree; and, (3) inserting a node
v (insert (v)) is the complement of delete (v), that is, it inserts
node v under a parent u in the tree moving a subset of u’s
current children under v. Each such edit operation has an

20

25

30

35

40

45

50

55

60

65

6

associated cost (cost (), typically assumed to be a metric, and
the tree-edit distance between two input trees T1 & T2 is the
least cumulative cost among all edit-operation sequences that
transform T1 into T2. tdist() and sdist() are used to denote the
edit-distance metric for unordered trees and strings, respec-
tively.

The concept of Shasha’s unordered tree matching algo-
rithm is to identify strings of node labels in the two trees (say,
T1 & T2) being compared, and enumerate all possible ways of
“marking” (i.e., deleting) subsets of these strings from both
T1and T2. A string is formally defined as a maximal sequence
of tree nodes starting from a node (termed the head of the
string) whose parent is either the root or a node with >1
children, and ending at a node with >1 children (or, a leaf),
and each intermediate node has exactly 1 child. Note that a
string may very well comprise a single tree node. FIG. 2
depicts two exemplary trees T1 200 and T2 220 associated
with the tree-edit distance algorithm. One or more strings of
T2 include, e.g., “1” 222, “k” 224, and “nhi” 226. The algo-
rithm iterates over all possible string markings s1 ands2in T1
and T2 (respectively), where a string marking si is any subset
of Ti’s strings that are selected for deletion from Ti. For each
such pair of string markings, (s1 and s2), the strings in si are
deleted from tree Ti (i=1,2) to give the remainder (sub)trees
T1-s1 and T2-s2. FIG. 2(b) shows remainder subtrees T1-s1
240 and T2-s2 260, for the string marking (s1,s2) depicted in
FIG. 2(a). Finally, all the strings in the T1-s1 and T2-s2 trees
are compressed down to a single node yielding the reduced
trees corresponding to the (s1,s2) string marking, denoted by
R(T1-s1) 280 and R(T2-s2) 290 per FIG. 2(c).

In the tree-matching algorithm of Shasha, each node in the
final reduced trees for a marking corresponds to a single
sequence of node labels in the original trees. For example,
FIG. 2(c) depicts these label sequences (“bd”, “chi”, etc.) at
the leaf nodes of R(T1-s1) and R(T2-s2). Thus, for string
markings (s1,s2) resulting in isomorphic reduced trees R(T1-
s1) and R(T2-s2), one can easily find the cost of converting
(T1-s1) into (T2-s2) using a standard string-edit distance
metric between (the label sequences of) corresponding nodes
in the reduced trees. Finally, to take into account the cost of
string deletions dictated by the given marking, the cumulative
tree-edit distance between T1 and T2 for marking (s1,s2) is
computed as the summation of three component costs: (1) the
costofdeleting all nodes in s1, (2) the total string edit distance
between corresponding nodes (i.e., label sequences) in R(T1-
s1) and R(T2-s2), and (3) the cost of inserting all nodes in s2;
that is,

wdist(Ty, Ty; (51, $2)) = Z cost(delete(v)) +

ves)

Z sdist(string(v), string(i(v))) + Z cost(insert(v)),

veR(T1—s1) vEsy

where i() denotes the (isomorphism) mapping between the
nodes of R(T1-s1) and R(T2-s2), that results in the smallest
overall cuamulative string-edit distance. In FIG. 2(c¢), it is clear
that mapping the “chi” node of R(T1-s1) to the “nhi” node of
R(T2-s2) results in lower string-edit costs. Given R(T1-s1)
and R(T2-s2), this optimal mapping can be found through a
bottom-up dynamic-programming search of Shasha. By
searching through all possible string markings for the original
trees T1 and T2 and selecting the marking (and corresponding
reduced-tree mapping) resulting in the minimum overall cost,
the Shasha algorithm computes the exact tree-edit distance

US 7,496,571 B2

7
between T1 and T2. The overall complexity of the algorithm
is dominated by the number of possible string markings to be
searched.

Exact Embedding Algorithm for Tree-Structured DTDs

Consider a source DTD S1 and a target DTD S2 having
DTD graphs that are tree-structured. As discussed earlier, the
inventive concept of DTD embeddings is based on trying to
embed all nodes of the source schema S1 into “larger” sub-
structures of the target schema S2. Accordingly, this means
that only string markings s2 in the S2 tree need to be consid-
ered, since nodes from the smaller source schema S1 will not
be deleted. Similarly, for a given marking s2 of S2, when
comparing the strings of corresponding nodes (u and v) in the
reduced trees R(S1) and R(S2-s2) it is required that |string(u)
|=Istring(v)l, i.e., the string on the S2 side is at least as long
as that of S1, by setting the string-edit distance sdist(string
(w),string(v)) equal to o otherwise. Furthermore, since the
ultimate goal is to maximize the cumulative similarity of
matching element types in S1 and S2, the cost of both inser-
tion operations on string(u) and deletion operations on string
(v) (the only possible inserts/deletes) is set equal to zero. On
the other hand, the cost of a relabeling operation is computed
based on the labelsimilarity o() ofthe corresponding element
types as well as the type of their corresponding DTD produc-
tion (i.e., conjunctive, disjunctive or star). Specifically, given
two element types ACstring(u) and BEstring(v), the follow-
ing is defined:

1-0o(A, B), if both A and B are
conjunctive, disjunctive, or star
cost(relabel(4, B)) = elements in Sy, S, —s, (resp.)
00, otherwise.

That is, for a given string marking s2 of the target DTD S2,
elements of S1 are mapped onto elements with the same
production type (i.e., conjunctive, disjunctive, or Kleene star)
in S2-s2. However, the procedure for marking DTD strings in
S2 (outlined below) enables embedding mappings that can
potentially match elements with different production types as
well.

Assuming, tree-structured DTDs, the definition of strings
for the marking of the DTD graph S2 is identical to that of
Shasha: a string in S2 is a maximal sequence of nodes starting
from a node whose parent has an out-degree >1 (or, the root of
the tree) and ending in a node with out-degree >1 (or, a leaf)
with all intermediate nodes having an out-degree=1. Each
marking represents a modification of S2, with the correspon-
dence identical to that of Shasha: marking a string of S2
means that nodes are selected for deletion from the S2 graph.
Additionally, the subject invention’s string-marking proce-
dure needs to account for the semantics of different DTD
constructs and ensure that the resulting S2-s2 graph repre-
sents a valid DTD in normal form. Therefore a string marking
s2 of the target DTD graph S2 is DTD-legal if and only if
during a bottom-up deletion of nodes in strings of s2 there
cannot be a situation where, after deleting all marked string
nodes at levels =i, a node v at level i-1 satisfies one of the
following: (1) the production for v does not satisty the DTD
normal form (e.g., contains both conjunctive and disjunctive
edges); or, (2) v was originally a conjunctive (disjunctive)
node before the deletions at level i and, as a result of these
deletions, two or more disjunctive (resp., conjunctive) nodes
have been merged into v.

—

5

20

25

30

35

40

45

50

55

60

65

8

Intuitively, clause (1) in the above definition ensures that
the invention remains within the assumed DTD normal form,
whereas clause (2) guarantees that the disjunctive/conjunc-
tive semantics of the original S2 DTD are not lost during the
string marking/deletion process. Note that, merging =2 dis-
junctive (conjunctive) nodes into a node of S2 that was origi-
nally conjunctive (resp., disjunctive) would cause the original
DTD semantics to be lost; for example, when merging a pair
of disjunctive children into a conjunctive node v creates a
“larger” disjunctive production at v but, clearly, the XOR
(“one-and-only-one”) semantics of this production is not
present in the original DTD.

Consider a source-target DTD pair (S1 and S2) and assume
that both DTD-graphs are trees. An inventive EXACT-
TREEMATCH algorithm for tree-structured DTDs in accor-
dance with the present invention is presented in FIG. 3. Spe-
cifically, the EXACTTREEMATCH algorithm is depicted as
a series of method steps 300 to perform the operation of
finding a Minimum Cost Embedding Match value (M) to map
(embed) S1 into S2. The method starts at step 302 and pro-
ceeds to step 304 where a first string marking s of the Target
DTD (e.g. Target DTD S2 160 of FIG. 1) is found. At step 306,
the method decides if the first string marking s is DTD-legal.
The above-identified rules and semantics for DTD-legality
provide the framework for making the decision. If the first
string s is not DTD-legal, the method loops back to find
another string marking s of Target S2 to reinitiate the overall
cost determination.

If the first string s is DTD-legal, the method proceeds to
step 308 where a determination of the Minimum Cost Embed-
ding Match value (M) is made. In one embodiment of the
invention, M is determined by operating the tree-edit algo-
rithm of Shasha on S1, S2-s and using a string-edit distance
metric that abides by the DTD embedding strategy. For
example, the one strategy discussed requires that Istring(u)
|=Istring(v)l, i.e., the string on the S2 side is at least as long
as that of S1, by setting the string-edit distance sdist(string
(u),string(v)) equal to oo otherwise. Other metrics may be
possible and derived by those skilled in the art to achieved the
desired results.

Once a value for M is determined based on the first string
marking s (or a suitable DTD-legal s following an illegal first
string marking), the method proceeds to step 310 where a
determination is made as to whether there are additional
string marking s of Target DTD S2. If there are additional
string markings, the method loops back to step 304 to con-
tinue the DTD-legality and cost determination of the addi-
tional string markings. If there are no additional string mark-
ings, the method proceeds to step 312 where an final value of
M is returned. Specifically, the smallest value of M from each
of' the earlier determinations of M from step 308 is held until
there are no additional string markings left to process (step
310). The smallest value M is then provided and a mapping of
the source DTD to the target DTD can be performed via
function fbased on the provided cost M. The method ends at
step 314.

Approximate Embedding Algorithm for DAG-structured
DTDs

While the EXACTTREEMATCH algorithm 300 does pro-
vide the desired results for very simple tree-structured DTD
schemas, its effectiveness is limited with respect to Directed
Acyclic Graph (DAG) DTDs. Applying EXACT-
TREEMATCH (by splitting nodes with in-degree >1 to
expand the DAGs into trees) results in the complexity of such
a scheme becoming doubly-exponential in the original DTD
DAGs. Additionally, since original DAG nodes are split into

US 7,496,571 B2

9

several copies, the element-mapping resulting from such a
solution can be, in general, many-to-many thus violating one
of the key properties of the embedding. Thus, for the general
case of DAG-structured DTDs, a novel approximation algo-
rithm APPROXDAGMATCH reveals a satisfactory DTD-
embedding mapping working directly off the DTD DAG
structures.

FIG. 4 depicts the algorithm APPROXDAGMATCH as a
series of method steps 400. Similarto EXACTTREEMATCH
300, APPROXDAGMATCH 400 is based on edit-distance
computations. Upon starting at step 402, the method exhaus-
tively explores all DTD-legal string markings of the target
DTD graph S2, where a string in the DAG structure is defined
in a manner similar to the tree case discussed above and first
found at step 404 and its legality determined at step 406.
Except that a string in this DTD ends at either sink nodes or
nodes that have indegree or out-degree >1 in the S2 DAG.
Note that markings are defined directly on the DAG structure
rather than the corresponding “expanded” tree.

A key differentiation between string markings in DAGs
and trees is that, for DAGs, each node v with in-degree >1 is
potentially associated with a set of distinct strings terminating
at v. Given a (DTD-legal) string marking s2 of the S2 DAG
and the corresponding reduced DAGs, R(S1) and R(S2-52),
the APPROXDAGMATCH algorithm 400 takes this fact into
account during a bottom-up dynamic-programming pass over
the two reduced DAG structures at step 408. This step pro-
duces an estimate M for the cost of the s2 marking. The result
is to define an appropriate metric for the “best” edit distance
between sets of strings corresponding to reduced-graph nodes
based on a minimum-cost complete bipartite matching. How-
ever, since predictions based on such localized minimum-cost
matchings represent a “best-possible” case for the final mark-
ing cost, the APPROXDAGMATCH algorithm 400 then per-
forms a second top-down pass at step 410 during which the
true mapping between nodes of S1 and S2-s2 is fixed and the
corresponding cost MATCHCOST for the marking is final-
ized.

Similar to EXACTTREEMATCH 300, once a value for
MATCHCOST is determined based on the first string mark-
ing s (ora suitable DTD-legal s following an illegal first string
marking), the method proceeds to step 412 where a determi-
nation is made as to whether there are additional string mark-
ing s of Target DTD S2. If there are additional string mark-
ings, the method loops back to step 404 to continue the
DTD-legality and cost determination of the additional string
markings. If there are no additional string markings, the
method proceeds to step 414 where an final value of MATCH-
COST is returned. Specifically, the smallest value of
MATCHCOST from each of the earlier determinations of
from steps 408 and 410 is held until there are no additional
string markings left to process. The smallest value MATCH-
COST is then provided. The method ends at step 416.

The Bottom-Up EstimateSubroutine (Dynamic-Program-
ming Procedure) 408 is seen in greater detail in FIG. 5 as
method steps 500 and one example of practicing same is seen
in the corresponding pseudo code in FIG. 6. Given a DTD-
legal marking s2 of S2 and the corresponding reduced DTD
DAGs, the bottom-up pass produces an estimate for the cost
of'the s2 marking at the DAG roots. The bottom-up procedure
works level-by-level, starting from sink nodes that are the
farthest from the DAG root (i.e., the level of a node is its
distance from the root of the D'TD), and works by filling in the
entries of a two-dimensional dynamic programming array
M, where M[u,v] denotes an estimate for the best cumula-
tive edit distance of the two DAG substructures rooted at the
two same-level nodes uER(S1) and v&ER(S2-s2). The initial

20

25

30

35

40

45

50

55

60

65

10

invocation of this recursive algorithm is done with u=root(R
(S1)) and v=root (R(S2-s2)). The BOTTOMUPESTIMATE
procedure starts at step 502 and proceeds to step 504 by
checking that the two input nodes are at the same level and
also that their in- and out-degrees match. If not, a cost of oo is
returned at step 506 since they cannot be mapped to each
other. For nodes meeting the level and degree conditions, the
BOTTOMUPESTIMATE procedure moves to step 508 and
produces an estimate of the cost of matching the sets of strings
corresponding to nodes u and v in the reduced graphs (re-
member that, for DAGs, each node in S1, S2-s2 can be the
termination point for multiple strings). This cost estimate is
computed by finding the optimal complete bipartite matching
between the two string sets using edge costs defined by the
string-edit distance metric discussed earlier (for example
with respect to EXACTTREEMATCH 300) (also see Steps
5-6 of FIG. 6).

Next, out-degree values for u and v are compared to zero at
step 510. If the condition is true, the method returns the value
of cost matching the above bipartite matching at step 512. If
the condition is false, the method proceeds to steps 514 and
516 whereby a second complete bipartite matching problem
is solved to determine the best possible way of matching the
input nodes’ children using the recursively-computed (and
tabulated) cost estimates M[x,y] (see also Steps 10-14 of FI1G.
6). The appropriate cost estimate is then returned at step 518
and the method ends at step 520.

The final cost estimate for the marking of the S2 DTD
computed by the BOTTOMUPESTIMATE 500 procedure
may not be attainable through a one-to-one mapping of the
nodes in R(S1) onto those of R(S2-s2). The problem is that
that BOTTOMUPESTIMATE 500 estimates the cost for
matching DAG substructures rooted at each node in level i
independently of other DAG nodes, by assuming the best-
case bipartite matching for these child substructures (Step 12
in algorithm BOTTOMUPESTIMATE). In general, such
DAG substructures are not independent and nodes may be
shared, leading to situations where these locally-optimal
matchings are incompatible with a one-to-one mapping of
DAG nodes. The goal of the second and final step of our
APPROXDAGMATCH algorithm 400 (TOPDOWN
ADIJUST) is to resolve such conflicts by performing a top-
down pass over the reduced input graphs, and fixing the final
one-to-one matching for the DTD embedding as well as the
corresponding marking cost.

The TOPDOWNADIJUST step 410 is seen in greater detail
in FIG. 7 as method steps 700 and one example of practicing
same is seen in the corresponding pseudo code in FIG. 8.
TOPDOWNADJUST 700 starts at step 702 and proceeds
top-down, level-by-level along the two input graphs and, at
each level, tries to match nodes in the two reduced DAGs
using the computed dynamic-programming array M of cost
estimates (returned by BOTTOMUPESTIMATE 500), while
guaranteeing that ancestor-descendant relationships are pre-
served for already-matched nodes. TOPDOWNADJUST
700, in step 704, selects the best match for the root node of the
source reduced graph R(S1) in the target reduced graph R(S2-
s2) based on the computed matching cost estimates in M
(also seen in Steps 1-4 of FIG. 8). At step 706, the depth level
of'source reduced graph R(S1) is checked against the current
level i. If the condition is false, the method moves to step 708
to return a value for MATCH and MATCHCOST. If the
condition is true, the method moves to step 709 where, so long
as matchValues(i)=0 in decision step 710, for each level i in
R(S1), each node u&R(S1) at this level is examined and all the
potential matches v&ER(S2-52) are discovered for node u, as

US 7,496,571 B2

11

well as the corresponding cost estimates M[u,v] (stored in
“matchValues(i)” (also seen in Steps 7-12 of FIG. 8).

At step 714, the pairs of matching nodes for level i are
determined by selecting the pairs with the best (i.e., smallest)
matching costs from the “matchValues(i)” set (also see Step
14 of FIG. 8). At step 716, for each such (u,v) pair selected,
the value of the actual string-matching cost “matchCost(u,v)”
is computed based on the matching between u and v’s parents
(also see Steps 16-21 of FIG. 8). If that cost is finite (i.e.,
strings(u) is “embeddable” in strings(v) given the parent
matchings) as per decision step 718, the (u,v) pair enters the
matching and the matching cost is updated at step 720 (also
see Steps 22-26 of FIG. 8). Of course, to ensure that the final
mapping is one-to-one, once a pair (u,v) is added to the
matching, all entries of the form M[u,*],M[*,v] (where “*”
means any node), i.e., all other possible matchings for u and
v, are removed from “matchValues(i)” (also see Step 25 of
FIG. 8).

Atthe end of TOPDOWNADIJUST 700, MATCH contains
the final set of matching node pairs from the reduced graphs
R(S1) and R(S2-s2), and MATCHCOST gives the corre-
sponding cumulative matching cost (that is returned as an
estimate for the cost of the s2 marking of S2). Note that the
final (partial) DTD-embedding mapping f() between element
types in S1 and S2-s2 must be determined through the indi-
vidual string matchings computed inside TOPDOWNAD-
JUST 700 (i.e., the string edit distance computations in Step
20). Annotation mapping ann() is omitted as it can be easily
extracted from the output marking.

Experimentation was conducted with APPROXDAG-
MATCH using a DTD-schema from the XMark synthetic
XML data benchmark [32], intended to model the activities of
an on-line auction site. The XMark auction DTD was normal-
ized, giving rise to a fairly complex DAG structure involving
several conjunctive, disjunctive, and star productions. The
(normalized) XMark DTD SXMark was used as a source
DTD-schema, which has 72 nodes and 116 edges. To obtain
target DTDs St of varying complexity, the method applies a
script of random perturbations and insertions that either
modify or impose additional structure on SXMark to form a
target St. The random modification process ensures that, in
each case, the “information capacity” of is at least as large as
that of SXMark, that is, the structure of SXMark is
embeddable in St. Target DTDs St of different complexity
were generated by varying the length of the random-modifi-
cation script, so that the number of nodes in St varies from
IStI=1.1-ISXMark!| up to IStl=1.3-ISXMarkl. In each case,
APPROXDAGMATCH implementation was run to try to dis-
cover an embedding mapping from SXMark to St.

For the purposes of this study, the random-modification
scripts ensured that all the labels in the source SXMark are
preserved in St (under possibly different DTD structures),
while newly-introduced nodes of St were given labels with a
minimum similarity value of 0 to already-existing labels in
SXMark. Similarly, any label in SXMark was given similarity
value of 0 to all other labels and, of course, a similarity value
of 1 to itself. This 0/1 similarity scheme allowed for a very
simple way of computing the objective value for the optimal
SXMark-to-St embedding mapping, namely ISXMarkl (i.e.,
the mapping that maps each node in SXMark to the corre-
sponding node of St) while, at the same time, demonstrating
the ability of APPROXDAGMATCH correctly identify and
match embeddable DTD sub-structures. The timing and solu-
tion-quality numbers presented below are indicative of the
results obtained over a variety of randomly-generated target
DTDs St. In Table 1, the running time of APPROXDAG-
MATCH is presented as the number of nodes in the target

20

25

30

35

40

45

50

55

60

65

12
DTD St is varied from [StI=1.1-ISXMarkl up to
IStI=1.3-ISXMarkl. In each of the experiments,

APPROXDAGMATCH returned the optimal source to target
DTD-embedding (of size ISXMarkl).

TABLE 1

Target-Source Ratio Running Time (minutes)

1.1 18.05
1.15 24.37
1.20 26.53
1.25 50.11
1.30 62.01

FIG. 9 depicts a high level block diagram of a computer
system cooperating with a network such as the Internet. Spe-
cifically, the system 900 of FIG. 9 comprises a computer 910
interacting with a web data source 930 via a network 920. The
computer 910 is a general-purpose computer suitable for use
in performing the functions described herein and comprises a
processor element 914 (e.g., a CPU), a memory 916 (e.g.,
random access memory (RAM) and/or read only memory
(ROM) and the like) and input/output devices 912 (e.g., stor-
age devices, including but not limited to, a tape drive, a floppy
drive, a hard disk drive or a compact disk drive, a receiver, a
transmitter, a speaker, a display, an output port and/or user
input devices such as a keyboard, a keypad, a mouse, and the
like). The system 900 of FIG. 9 as described thus far is
entirely conventional.

The network 920 comprises a standard network supporting
the world wide web (WWW), such as the Internet. Interac-
tions between a computer such as computer 910 and a Web
site such as Web a data source 930 are facilitated by XML,
HTML and other standard protocols and languages, such as
well known to those skilled in the art.

The memory 916 of the computer 910 also includes a
schema matching tool 916-SMT and at least one application
program 916-A, which operate as described above with
respect to the various figures.

It should be noted that the present invention may be imple-
mented in software and/or in a combination of software and
hardware, a general purpose computer or any other hardware
equivalents. In one embodiment, software stored in the
memory 916 were retrieved from a source external to the
computer 910 can be loaded into memory 916 and executed
by processor 914 to implement the functions as discussed
above.

Itis contemplated that some of the steps discussed herein as
software methods may be implemented within hardware, for
example, as circuitry that cooperates with the processor to
perform various method steps. Portions of the present inven-
tion may be implemented as a computer program product
wherein computer instructions, when processed by a com-
puter, adapt the operation of the computer such that the meth-
ods and/or techmques of the present invention are invoked or
otherwise provided. Instructions for invoking the inventive
methods may be stored in fixed or removable media, trans-
mitted via a data stream in a broadcast or other signal bearing
medium, and/or stored within a working memory within a
computing device operating according to the instructions.

Although various embodiments that incorporate the teach-
ings of the present invention have been shown and described
in detail herein, those skilled in the art can readily devise
many other varied embodiments that still incorporate these
teachings.

US 7,496,571 B2

13

We claim:

1. A method for performing information-preserving DTD
(Document Type Definition) schema embeddings between a
source schema and a target schema, comprising:

finding each DTD-legal string of the target, schema,

wherein each of the source schema and the target schema

comprise a Directed Acyelie Graph (DAG) DTD,
wherein a DTD-legal string is a string, where after delet-

ing all marked string nodes in the string at levels>_i, a

node at level i-1 satisfies at least conditions of:

(a) determining that a production of the node does not
contain both conjunctive and disjunctive edge,

(b) determining that where the node was originally a
conjunctive node before the deletions, the deletions
do not cause two or more disjunctive nodes to be
merged into the node, and

(c) determining that where the node was originally a
disjunctive node before the deletions, the deletions do
not cause two or more conjunctive nodes to be merged
into the node;

determining, for each DTD-legal string, a bottom-up esti-

mate of DAG substructure root nodes in reduced DTD

graphs to provide thereby initial estimates of the best
cumulative edit distances of the relevant DAG substruc-
tures;

determining a top down adjustment of the initial estimates

to provide thereby a one to one matching value and

corresponding match costs; and

estimating a minimal match cost in memory, wherein the

minimal match cost is the smallest among the match

costs.

2. The method of claim 1 wherein the step of finding further
comprises:

determining from a sequence of nodes comprising the tar-

get schema, a maximal sequence of tree nodes starting

from a first node whose parent is either a root or a node
having more than one children and ending at a node
having more than one children; wherein each interme-

20

25

30

35

14

diate node therebetween has one child, thereby the deter-
mined maximal sequence of nodes forms a string.

3. The method of claim 1 where the top down adjustment
comprises preparing a best cumulative edit distance of the
first string of the target schema and a first string of the source
schema routed at respective same level nodes.

4. The method of claim 3 wherein the preparing of the best
cumulative edit distance further comprises:

(a) checking that input nodes from a reduced source
schema graph and a reduced target schema graph are at
the same level,

(b) producing an estimate of the cost of matching sets of
strings corresponding to the input nodes; and

(c) comparing out-degree values for the input nodes.

5. The method of claim 4 wherein the cost estimate is
computed by finding a first optimal complete bipartite match-
ing between the sets of strings.

6. The method of claim 5 wherein if the out-degree values
for the input nodes equal zero, then the edit distance equals
the first optimal complete bipartite matching between the sets
of strings.

7. The method of claim 5 wherein if the out-degree values
for the input nodes do not equal zero, then the edit distance is
computed by performing a second complete bipartite match-
ing is solved.

8. The method of claim 7 wherein the second complete
bipartite matching determines the best way of matching the
input nodes’ children using recursively computed cost esti-
mates.

9. The method of claim 1 wherein the determining a top
down adjustment step further comprises taking the minimal
match cost of the determining step and evaluating parent
nodes of the same level input nodes.

10. The method of claim 9 wherein if the parent node
evaluation results in a finite cost, the same level input nodes
enter a matching and the estimated minimal match cost is
updated.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,496,571 B2 Page 1 of 1
APPLICATION NO. : 10/955322

DATED : February 24, 2009

INVENTOR(S) : Michael Abraham Benedikt et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

[T 34

Column 13, line 5, in claim 1, delete the “,” after “target”.
Column 13, line 7, in claim 1, delete “Acyelie” and insert instead --Acyclic--.
Column 13, line 9, in claim 1, delete “levels>_1i,” and insert instead --levels > i,--.

Column 13, line 12, in claim 1, delete “edge™ and insert instead --edges--.

Signed and Sealed this

Thirty-first Day of March, 2009

A Q20

JOHN DOLL
Acting Director of the United States Patent and Trademark Office

