
On-the-Fly Entity-Aware Query Processing
in the Presence of Linkage

Ekaterini Ioannou
L3S Research Center
Hannover, Germany

ioannou@L3S.de

Wolfgang Nejdl
L3S Research Center
Hannover, Germany

nejdl@L3S.de

Claudia Niederée
L3S Research Center
Hannover, Germany

niederee@L3S.de

Yannis Velegrakis
University of Trento

Trento, Italy

velgias@disi.unitn.eu

ABSTRACT
Entity linkage is central to almost every data integration and data
cleaning scenario. Traditional techniques use some computed sim-
ilarity among data structure to perform merges and then answer
queries on the merged data. We describe a novel framework for
entity linkage with uncertainty. Instead of using the linkage in-
formation to merge structures a-priori, possible linkages are stored
alongside the data with their belief value. A new probabilistic query
answering technique is used to take the probabilistic linkage into
consideration. The framework introduces a series of novelties: (i)
it performs merges at run time based not only on existing linkages
but also on the given query; (ii) it allows results that may contain
structures not explicitly represented in the data, but generated as
a result of a reasoning on the linkages; and (iii) enables an eval-
uation of the query conditions that spans across linked structures,
offering a functionality not currently supported by any traditional
probabilistic databases. We formally define the semantics, describe
an efficient implementation and report on the findings of our exper-
imental evaluation.

1. INTRODUCTION
Recent developments in data publishing have brought new re-

quirements and new ways through which users interact with data.
In recent days, the typical Internet user is no longer the specta-
tor that consumes information made available by data providers.
Through social Web applications, such as MySpace, Blogosphere,
Facebook, and through services such as Twitter, the user is becom-
ing an active data producer. The creation of feeds and web page
aggregators through mashups (e.g., Yahoo! pipes), have advanced
even further the data production capabilities of average users. Such
technologies allow users to develop applications that integrate data
from heterogeneous sources in ways that better fit their individual
needs, and all this even in the absence of high technical skills.

In this highly heterogeneous environment of the modern web,
the existence of different artifacts modeling the same real world ob-
ject, such as a person, a movie, or a geographical location, is highly
prevalent. As it has always been the case, any successful integra-
tion task that aims to guarantee the quality of the integrated data,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

needs to identify these pieces of information and merge them into a
single artifact that will be retrieved during query answering. Orig-
inal integration efforts have been based on keys or mappings [27].
The exponential growth of the number and heterogeneity of sources
limited the applicability of such solutions.

A more viable solution was to perform the integration first and
then perform a data cleansing operation [12] on the integrated data.
The cleansing operation is based on the ability to identify struc-
tures representing the same real world objects. There has already
been a significant amount of research on this challenge. It can be
found in the literature under different names, such as entity link-
age [22], merge-purge [21], deduplication [30], entity identifica-
tion, reference reconciliation [14], or entity resolution [33]. The so-
lutions follow various directions such as measuring structural sim-
ilarities among data structures [17], string similarities [8], inner-
relationships [14, 24], clustering [7], and blocking [33]. These
techniques have two major limitations. First, they assume that the
data is relatively static. Under this assumption, the process of entity
linkage is performed offline. Once performed, the structures found
to describe the same objects are merged. Query answering is then
performed on the merged dataset [17]. When the original data is
highly volatile, this process needs to be continuously repeated and
it becomes inefficient. The second limitation is that none of these
techniques gives 100% certain results. They typically merge struc-
tures that are found to have a belief above some specific threshold
value, where the adequate selection of this value is not easy and is
often done experimentally.

The evolving nature [29] and the heterogeneity of the data have
led to the creation of integration systems[23] that have uncertainty
built right into the core of their data processing. They are referred
to as probabilistic databases [10]. They are databases in which
every attribute of an entity or a tuple can have a number of alter-
native values, each with some probability [11, 28]. A probabilistic
database is the result of an integration with uncertain alternative tu-
ples [1, 10, 31], or a consequence of probabilistic mappings from
the sources to the integration [16]. Due to these probabilities, query
answers are unavoidably probabilistic. Existing techniques are ei-
ther based on a complete independence assumption among the data
records, or support only very specific correlations, e.g., the mutu-
ally exclusive property [3]. In dataspaces [16] and data integration
scenarios where complementary information may be coming from
different sources and needs to be merged, this is not always a satis-
fying assumption.

In this work we propose a novel technique for query answering
under data uncertainty that combines the ideas of entity linkage and
probabilistic databases, and extends them to achieve better query
answering results under linkage uncertainty. More specifically, first
we accept data with uncertainty at the attribute level. Second, we

obtain the alternative matching suggestions and their beliefs as re-
turned by existing entity linkage techniques, but instead of using
them in taking matching decisions off-line, we store this informa-
tion alongside the data. This leads to a new form of a probabilistic
database that apart from uncertainty at the attribute (or tuple) level,
contains uncertainty at the merging pairs. The stored uncertainty
is used at query time to perform merging of data structures on the
fly. This technique has several benefits. First it avoids pitfalls that
may result from the one-time a-priori merging decisions, as hap-
pens with the traditional entity linkage techniques. Furthermore, it
can easier support highly volatile data. The reason is that since no
merging decisions have taken place, the only updates required are
on the linkages related to the new or modified data. In addition, our
technique produces additional valid query answering results com-
pared to those of entity linkage and probabilistic databases, and
cannot be simulated following any of those techniques. It is an in-
teresting feature, that reasoning about the entity linkages is done on
the fly, which means that some query results may not be explicitly
represented in the database but might be a product of the reasoning
which is based on the data as well as on the query conditions.

The remainder of this paper is structured as follows. Section 2
provides a motivating example that illustrates the need for query
answering based on heterogeneous data with correlations, and with
uncertainty on the attributes and on the correlations. Section 3
presents an appropriate data model for the modern Web reality
based on entities, instead of relational or semi-structured data. The
query answering technique is formally presented and studied in
Section 4. Section 5 illustrates its effectiveness and practicality
through a series of experimental evaluation steps, and reports on
the findings. Section 6 presents conclusions and future work.

2. MOTIVATING EXAMPLE
Consider the entities of an integration system, a fraction of which

is illustrated in Figure 1. The entities have been identified and
collected from a number of distributed sources. Since the sources
may contain outdated or inconsistent data, the attributes of each re-
trieved entity are coming with some degree of belief. This is mod-
eled in the figure by the numeric values on the attributes. To per-
form a successful integration, those entities representing the same
real world object need to be identified and merged under one single
data structure. Unfortunately, the data heterogeneity has led entity
identification (i.e., entity linkage) techniques to return results that
are also with some degree of belief (confidence). This is indicated
in Figure 1 by the numeric values on the dotted lines between the
entities. For instance, it is believed with confidence 0.9 that entities
e1 and e2 represent the same real world object, since despite the
same title, it may be the case that one represents the movie Harry
Potter and the other the DVD. (The semantics of these numbers will
be discussed at a later point.)

Consider now a user looking for “fantasy” stories by “J. K. Rowl-
ing”. Clearly the only two entities that satisfy both conditions are
e1 and e3. A linkage technique with a threshold of 0.7, would have
decided to merge entities e1 with e2, and entity e4 with e5. As a
result, the answer to the above query would have contained two en-
tities [17]: One would have been the result of the merging of e1

and e2, consisting of the union of their respective attributes, and
the other would have been the entity e3. Consider now an entity
linkage analysis suggesting the merging of entities e1, e2 and e3. A
probabilistic database approach would create one entity that con-
tains the union of all the three [33], with the uncertainty numbers
of their attributes updated to reflect the uncertainty of the linkages
as returned by the entity linkage algorithm. Similarly, it can merge
e4 and e5. Then, the user query can be executed in this probabilistic

• e1

0.9

0.6

• e2

• e3

• e4

0.8

• e5

'& %$

 ! "#

title: Harry Potter and the Chamber of Secrets 0.6
starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer: J.K. Rowling 0.6
genre: Fantasy 0.6

'& %$
 ! "#

title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

'& %$
 ! "#

title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
author: J.K. Rowling 0.7

'& %$! "#codename: The Big Blue 0.8
location: California 0.5

'& %$
 ! "#

name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7

Figure 1: Data source with probabilistic linkage & attributes.

instance [3]. The answer to the query would have contained only
one entity, the one derived from the merging of the e1, e2 and e3,
and this entity would have been in the result with some derived
belief value.

We claim that none of the above two approaches is fully desired.
The linkage technique does not take into consideration the fact that
there is an even small chance that the entity e3 is actually modeling
the same real world object as the e1 and should be merged with it
as well. The choice of the right threshold is a critical decision. The
probabilistic approach, on the other hand, fails to take into consid-
eration that there is a chance that entities e1 and e2 and e3 may be
modeling different real world objects and as such, they should not
have been merged. If that was the case, then the query on “fan-
tasy” stories by “J. K. Rowling” should have returned two entities
in its answer set instead of one. Our position is that in the pres-
ence of the uncertainty on the linkage results, leaning towards one
solution or the other, results in a loss of information. We believe
that a complete answer to the query should take into consideration
all the different cases that may exist. In particular, a complete an-
swer should contain three entities, namely, e1, e3, and e13 which is
the merging of entities e1 and e3. Each of these entities should of
course be in the answer set of the query with some degree of belief,
based on the belief of the linkages and the belief of the attributes
writer and genre.

One could have taken the above argument even further and claim
that the answer set should also contain entities e12 and e123, created
by the merging of entity e2 with e1, or with e1 and e3, respectively.
We advocate that generating new entities for the result set by in-
cluding in the merging the attributes of e2 is redundant since it will
simply overwhelm the user with entities that have additional at-
tributes like date=2002 that the user did not ask about in the query.
Our position is that no merging should take place unless it is justi-
fied by the user query, the linkages and the entity attributes.

The fact that the mergings to be considered in every situation
depend on the given query, means that a materialization of the dif-
ferent mergings in advance would have to consider a lot of different
cases and, thus, is becoming impractical.

3. ENTITIES WITH LINKAGES
For a data model, we adopt a flexible, entity-based and proba-

bilistic approach. It has the ability to handle highly heterogeneous
data, and after its introduction in the context of dataspaces [15]

Figure 2: The different kinds of probabilistic databases.

started being used in applications. Its popularity is also based on
its similarity to the human way of thinking, which unlocks the po-
tential of developing integration applications for the modern web.
A model based on similar ideas can also be found in the literature as
concept model [9]. Furthermore, the plethora of existing data struc-
tures, makes data hard to describe to regular users. This, in com-
bination with the fact that the users often have vague ideas of what
they are actually looking for, preferring a more exploratory nature
of interaction with the integration systems, leads unavoidably into
a simple boolean query language with probabilistic answers.

The fundamental component of our data model is the entity, a
design artifact used to represent a real world object. An entity is a
data structure consisting of a unique identifier and a set of attributes
describing its characteristics. Each attribute has a name and a value.
The value can be atomic, for example, a string or an integer, but it
can also be an identifier of another entity. More formally, assuming
the existence of an infinite set of entity identifiers O, an infinite set
of names N and an infinite set of atomic values V, an attribute is
a pair 〈n,v〉, with n∈N and v∈V∪O. Let A=N×{V∪O} represent
the infinite set of all the possible attributes.

Definition 1. An entity e is a tuple 〈id, A〉 where id∈O is the
entity identifier and A⊆A, finite, and referred to as the set of entity
attributes.

The ability to use an entity identifier as an attribute value allows
the support of relationships among entities. Since each entity is
distinguished by its unique identifier, for the rest of the document,
the terms entity and entity identifier will be considered equivalent.

A database is a set of entities, with each entity partially modeling
some part of a real world object. When two entities model parts of
the same object, they are said to be linked.

Definition 2. A linkage database is a tuple 〈E,L〉, where E is a
finite set of entities and L is a linkage assignment on E. A linkage
assignment over a set E is a binary relation L⊆E×E that is commu-
tative, transitive, symmetric, and reflexive. Two entities e1,e2∈E of a
database 〈E,L〉 are said to be linked, denoted as le1 ,e2 , if (e1, e2)∈L.
A maximal group of pairwise linked entities forms a factor.

A linkage assignment can be equivalently expressed either through
explicit enumeration of the binary relationships or through a set of
groups of entities, with each group representing a factor. For in-
stance, given entities e1, e2, . . . , e5, the set {{e1, e2, e3}, {e4, e5}}

describes a linkage assignment with two factors. The first factor
consists of entities e1, e2, and e3, and the second of the e4, and
e5. The alternative representation is through the set of linkages that
consists of the set of all pairwise relationships in each factor.

Since two or more linked entities model parts of the same real
world object, they can be replaced by a third representing the in-
formation of both. In a linkage database this action needs to be
followed by the respective update of every reference to these enti-
ties found in linkages or attributes, to the newly created entity.

Definition 3. A merge of a set of entities e1, e2, . . . , en, , de-
noted as merge(e1, e2, . . . , en), is a new entity enew=〈id, A〉 where

id is a new identifier and A=∪n
i=1Ai, with Ai representing the at-

tributes of the entity ei.
The result of a merge m of entities e1,e2,. . . ,en into enew in a link-

age database D, is a new linkage database D′ constructed by (i)
eliminating from D all entities e1,e2,. . . ,en, introducing entity enew,
(ii) for k,m=1..n eliminating all linkages of the form (ek, em), (iii)
replacing any linkage of the form (ek, e) (respectively (e, ek)) with
(enew, e) (respectively (e, enew)), and (iv) replacing every entity at-
tribute of the form 〈na, ek〉 with 〈na, enew〉. This relationship be-

tween D and D′ is denoted as D
m
→D′.

The core of a linkage database D is a database Dc such that
there is a sequence m1, m2, . . ., mm of merge operators such that

D
m1
→D1

m2
→ . . .

mm
→ Dc and no other merge is possible on Dc.

By definition, the set of linkages in a core is always empty. It
can be shown that the core of a linkage database is always unique
but different linkage databases may have the same core.

To capture the uncertainty that may exist on the data, we adopt
and extend the idea of the probabilistic databases. First, we asso-
ciate to each entity attribute a value between 0 and 1. In the absence
of linkages, this results into a traditional probabilistic database [11].
A probabilistic database D represents a set of possible worlds, each
being a database in which only a fraction of the attributes in D are
present in each entity. An attribute probability indicates the like-
lihood that an attribute1 is present in a randomly selected possible
world. In the presence of linkages among the entities, we have
a probabilistic database with linkage relationships. A probabilis-
tic database with linkage relationships is also representing a set of
possible databases, i.e., a set of possible worlds. This set is the set
of possible worlds of its core.

We push the idea of the probabilistic databases beyond the tra-
ditional definition, by introducing uncertainty also on the linkages
among the entities. This uncertainty exists naturally from the entity
identification or deduplication techniques. The result is a new form
of database, referred to as a probabilistic linkage database, which
is a linkage database with probabilities associated on its linkage
relationships and entity attributes.

Definition 4. A probabilistic linkage database is a tuple 〈E,L,
pa,pl〉, where E is a set of entities, L is a linkage assignment on E,
and pa, pl are attribute and linkage probability assignment func-
tions respectively. In particular, pl|L7→[0, 1] and pa|B7→[0, 1] with
B={a | ∃〈id,A〉∈E ∧ a∈A}.

Due to the probabilities on the linkages, a probabilistic linkage
database models a number of different probabilistic databases with
linkage relationships. Each such database is generated from the
probabilistic linkage database by selecting a fraction of its linkages.
We refer to these probabilistic databases with linkage assignments
as possible linkage worlds, or possible l-worlds for short. The set
of all possible l-worlds of a probabilistic linkage database D is de-
noted by plw(D).

A possible l-world of a probabilistic linkage database is specified
by a linkage specification which determines what linkage relation-
ships should be kept and what should be dropped. Not all the speci-
fications are semantically meaningful. For instance, a specification
that accepts a linkage between entities e1 and e2, and between e2

and e3 but not one between e1 and e3 is not semantically meaning-
ful since the latter contradicts the first two from which it can be
inferred that e1 and e3 are linked due to the transitivity property.

Definition 5. Given a probabilistic linkage database D=〈E,L,
pa,pl〉, a linkage specification is a linkage assignment Lsp⊆L such
1By abuse of terminology, the term attribute refers to the pair at-
tribute name- attribute value.

• e12

• e3

• e45

'& %$

 ! "#

title: Harry Potter and the Chamber of Secrets 0.6
starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer: J.K. Rowling 0.6
genre: Fantasy 0.6
title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

'& %$
 ! "#

title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
author: J.K. Rowling 0.7

'& %$

 ! "#
codename: The Big Blue 0.8
location: California 0.5
name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7

Figure 3: The core of the l-world of the database in Figure 1
generated by the linkage specification {le1 ,e2 , le4 ,e5 }.

that ∀x∈Lsp: pl(x),0. The boolean expression of a linkage specifi-
cation is the expression

∧
1,n ck, where

ck =

{
x , y if (x, y)∈L ∧ (x, y)<Lsp

x = y if (x, y)∈Lsp

A linkage specification is invalid if its boolean expression is always
false.

As an example, consider a database with a linkage assignment
L={le1 ,e2 , le2 ,e3 , le1 ,e3 }, and a linkage specification Lsp={le1 ,e2 , le2 ,e3 }.
Independently of what the probabilities of the linkages are, the
boolean expression of Lsp is e1 = e2∧e2 = e3∧e1,e3 which is al-
ways false, thus the linkage specification is invalid. In our work we
consider l-worlds constructed by valid linkage specifications only.
By definition, given a probabilistic linkage database, and a possi-
ble l-world of it, there is only one linkage specification defining this
possible l-world.

We will use the symbol
>

i
to refer to the i-th factor, and Lsp>

i
to

denote all the possible linkage specifications between its entities.
The k-th assignment in Lsp>

i
is denoted by Lsp>

i
(k). Since the factors

are independent of each other, the probability of a possible l-world
W can be computed by the product of the probabilities of the factor
assignments:

Pr(W) =

n∏
i=1

Pr(Lsp>
i
(.)) (1)

Example 1. Consider the probabilistic linkage database of Fig-
ure 1 and the linkage specification {le1 ,e2 , le4 ,e5 }. The specification
generates a possible l-world that is exactly as the database illus-
trated in Figure 1, but without the probabilities on the dotted lines
and without the dotted lines between entities. Its core will be the
one illustrated in Figure 3. Entity e12 is the result of the merge of e1

and e2, while entity e45 is the result of the merge of entities e4 and
e5. Note that our model allows duplication on the attributes, thus,
the fact that the same attribute name/value pair appears twice in an
entity is not a problem. Elimination of this kind of duplication and
consideration of dependencies among the attributes can be handled
at a later stage.

Figure 2 provides a graphical explanation of the relationships
among the different types of databases defined here.

It is important to note here that, in general, traditional entity link-
age techniques measure beliefs. Some recent works explain how to
turn these beliefs into probabilities [3, 16, 17]. We consider this

task outside the focus of the current work. We assume that this
information has been computed by some data analysis tools [5] or
some other form of linkage discovery algorithms [16], and has been
provided to our framework as input. Another important note is re-
garding the meaning of a probabilistic linkage between two entities.
A linkage represents the belief that the two entities are linked, in-
dependently of any other third entity. It is not a global belief. This
means that through different linkage paths, different linkage be-
liefs may be computed. For instance, consider the simple example
of three entities e1, e2 and e3, with the following linkages between
them: le1 ,e2 =0.3, le2 ,e3 =0.5 and le1 ,e3 =0.8. Through transitivity, from
the linkages le1 ,e2 and le2 ,e3 , it can be inferred a belief that entity e1

and e3 are linked with probability 0.3× 0.5=0.15 which is different
from the 0.8 direct linkage le1 ,e3 . The way all these different prob-
abilities are combined together to form the global belief of linkage
between e1 and e3 is up to the query mechanism. It can be, for in-
stance, the maximum value, their sum, or something else. In our
system, this situation is taken care through the probability compu-
tation of the factor, that will be presented later.

For a query language we have adopted a flexible formalism that
covers the needs of the emerging case of concept databases [9]. In
particular, a query is a conjunction of attribute name-value pairs in
which the user describes the characteristics, i.e., attributes, that the
retrieved entities are expected to satisfy. An answer to a query is a
set of entities. Consider a probabilistic linkage database D, and a
query Q:a1∧. . .∧an, with each ai being an expression of the form
namei=valuei. An entity e is in the answer set of Q if there is a pos-
sible world W of a probabilistic database Dp, such that Dp is the
core of a possible l-world WL of the database D, entity e is in W
and it contains an attribute namei with value valuei for every i=1..n.
In other words, the answer to a query is the union of the answers
over all the possible worlds of all the possible l-worlds. Each en-
tity in the answer set of a query is accompanied with a probability,
which represents the belief we have that this entity will be selected
among all the possible worlds of all the possible l-worlds of the
probabilistic linkage database. This probability is computed based
on the attribute and linkage probabilities.

4. EFFICIENT QUERY EVALUATION
One of the aspects of the proposed work that needs to be inves-

tigated is the evaluation of a query Q over a probabilistic linkage
database 〈E,L,pa,pl〉. The semantics of query answering suggest
an evaluation strategy that consists of the computation of all possi-
ble l-worlds, for each such l-world the computation of its possible
worlds, and then an evaluation of the query Q over each such world.
For each entity in the answer set, the number of its appearances in
the possible worlds can be computed to determine its probability.
It is clear that such an evaluation is prohibitively expensive both in
terms of space and time.

Instead of the brute-force evaluation, we propose here an alter-
native evaluation strategy that is based on a novel technique that
avoids high computational cost and requires no materialization of
worlds. The general high level idea, summarized in Algorithm 1,
may seem to be similar to the evaluation of queries in probabilis-
tic databases [31], but the existence of linkages makes the problem
fundamentally different. Existing models for correlated tuples in
probabilistic databases [31], for instance, cannot handle this sit-
uation. Despite the correlation they support among tuples, they
still consider the tuples independent structures and manage them as
such. In our case the linked entities are merged into one.

A distinguishing feature of our approach is that it restricts the
computation to only those possible l-worlds and their correspond-
ing linkage specifications that are meaningful for the query at hand.

Algorithm 1: Entity-Aware Query Evaluation
Input: Query Q
Output: Set R of Entities satisfying query conditions

1 LA← findRequiredLinkageAssignments(Q);
2 PLW ← ∅;
3 R← ∅;
4 foreach la ∈ LA do
5 W ← findPossibleLWorlds(la);
6 foreach w ∈ W do
7 w.prob← calculateLWorldProbability(la);
8 PLW ← PLW ∪ {w};

9 foreach plw ∈ PLW do
10 E ← evaluateQuery(plw, Q);
11 foreach e ∈ E do
12 e.prob← combineProb(e.prob, plw.prob);
13 R← R ∪ {e};

As a consequence, it is not simply the entities in the answer set that
depend on the query, but also their structure, i.e., the attributes they
contain: adding an extra condition to a query may trigger the con-
sideration of additional linkage specifications, which —in turn—
may result in additional attributes for the entities in the answer set.
This feature has two major benefits. First, it makes the whole pro-
cess computationally cheaper, since only the required merges take
place. Second, it avoids overwhelming the user with answers con-
taining long lists of attributes originating from different possibly
linked entities that are outside the users’ interests.

Our approach consists of the following steps. First, we build an
index on all the factors (Sec. 4.1). Since there is a one-to-one cor-
respondence between possible l-worlds and linkage specifications,
and between linkage specifications and entity merges, we start by
finding the entity merges required in order to generate an answer to
the query at hand (Sec. 4.2). From the merges we find the linkage
assignments that need to be considered, and from these assignments
the possible l-worlds. Then the probability of each possible l-world
is computed (Sec. 4.3). Finally, the possible worlds of each l-world
are generated alongside their own probability, which is combined
with the probability of the respective l-world and then included in
the answer set of the query (Sec. 4.4).

4.1 Representing & Indexing Factors
A commonly used approach [4, 11, 28, 31] in answering queries

over probabilistic data is to partition the data into a series of dis-
joint/independent groups. These groups can be found in the litera-
ture under names such as factors [31] or components [4]. The pos-
sible combinations of these groups generate all the possible worlds.

This idea is not directly applicable to our case. The transitive
property of linkage may generate additional correlation, i.e., de-
pendencies, that are equally important for the correct identification
of the possible worlds.

We do, however, follow a similar idea to the one of managing
uncertain data with correlations [31], and as a first step, we divide
the set of entities into sets of connected components, i.e., factors
(Def. 2). To compute all possible l-worlds of a database, we need to
consider all the possible valid linkage specifications. This number
can easily get large to make the computation intractable. Based on
the fact that no linkage exists between entities in different factors,
we can improve the situation by considering each factor indepen-
dently.

Each possible l-world is based on some linkage specification
within each factor. Thus, the set of possible l-worlds can be de-
rived by combining the alternative linkage specifications withing

each factor. In other words:
plw(〈E,L, pa, pl〉) = L

sp>
1
× L

sp>
2
× . . . × L

sp>
n

The probability of a generated l-world is computed using For-
mula 1, and is based on the assignments of its linkage specifica-
tions. The probability of assignment Lsp>

i
(k) is based on the proba-

bilities of the linkages it uses. We compute it by considering only
the linkages that can not be derived, and thus use set M⊆Lsp>

i
that

does not include more than once the same information. This proba-
bility is computed as

∏
li∈M (pl(li)) ·

∏
li∈(Lsp−M) (1 - pl(li)). In this

work, we selected to remove linkages that had a lower probability
than their corresponding derived one. However, other options can
also be incorporated.

Example 2. In the database of Figure 1, the set of entity link-
ages is L = {le1 ,e2 , le1 ,e3 , le4 ,e5 } in which two independent factors
can be identified:

>
1
= {e1,e2,e3} and

>
2
= {e4,e5}. The first con-

tains entities e1, e2, and e3 with linkages Lsp={le1 ,e2 , le1 ,e3 }, and the
second contains e4 and e5 with linkages Lsp={le4 ,e5 }. The sets of
possible linkage specifications with the respective probabilities of
the l-world they specify are:

Factor
>

1 = {e1,e2,e3} Factor
>

2 = {e4,e5}

L
sp>
1

(1)={le1 ,e2 ,le1 ,e3 } 0.9×0.6=0.54 L
sp>
2

(1)={le4 ,e5 } 0.8

L
sp>
1

(2)={le1 ,e2 } 0.9×(1-0.6)=0.36 × Lsp>
2

(2)={} (1-0.8)=0.2

L
sp>
1

(3)={le1 ,e3 } 0.6×(1-0.9)=0.06

L
sp>
1

(4)={} (1-0.9)×(1-0.6)=0.04

Considering all the possible combination of the above individual
linkage specifications of factors, the linkage specifications of the
whole database can be constructed. Each such specification, spec-
ifies a possible l-world. The following table provides these l-worlds
(through the linkages that each one considers) alongside the re-
spective entity merges that need to take place in the computation of
the core of the l-world. The meaning of the notation e≡e′ is that in
the core computation of the respective l-world the merge of entities
e and e′ needs to take place.

Possible l-world Required Merges Probability
I1= {le1 ,e2 , le1 ,e3 ,le4 ,e5 } e1≡e2≡e3, e4≡e5 0.54 × 0.8 = 0.432
I2= {le1 ,e2 , le1 ,e3 } e1≡e2≡e3, e4, e5 0.54 × 0.2 = 0.108
I3= {le1 ,e2 , le4 ,e5 } e1≡e2, e3, e4≡e5 0.36 × 0.8 = 0.288
I4= {le1 ,e2 } e1≡e2, e3, e4, e5 0.36 × 0.2 = 0.072
I5= {le1 ,e3 , le4 ,e5 } e1≡e3, e2, e4≡e5 0.06 × 0.8 = 0.048
I6= {le1 ,e3 } e2, e1≡e3, e4, e5 0.06 × 0.2 = 0.012
I7= {le4 ,e5 } e1, e2, e3, e4≡e5 0.04 × 0.8 = 0.032
I8= {} e1, e2, e3, e4, e5 0.04 × 0.2 = 0.008

The sum of the probabilities of the possible l-worlds in the above
table is 1. In certain cases, the sum could have been less. This
is because of the fact that certain linkage specifications are not
valid and are not considered. This would have been the case in the
specific example, for instance, if there was also a linkage between
entities e2 and e3.

To avoid recomputing the factors every time, we create an index
structure that is dynamically maintained. The index is based on the
idea of equivalence classes. Actually, each factor is an equivalence
class. When the data is modified and new linkages are introduced
or old are eliminated, changes occur on the equivalence class mem-
berships, and thus on the factors.

4.2 Deciding the Entity Merges
Clearly, not all the possible l-worlds need to be created every

time a new query needs to be answered. If the core of a possible l-
world contains no entity that satisfies all the attributes requested in

Algorithm 2: Generate Entity Merges

Input: Query Q := 〈a1, a2, . . . , ak〉, Database 〈E,L,pa,pl〉

Output: Entity Merges M
1 foreach ai in Q do
2 Ei ← {e | e=〈id, A〉 ∧ e∈E ∧ ai∈A};

3 N ← {(e1, . . . en) | ∀i=1..n: ei∈Ei ∧ ∀i=2..n: f actor(ei−1)= f actor(ei) };
4 M ← {eliminateDuplicates(m) | m ∈ N} ;

the query, then it is certain that every possible world of the core will
return no answer to the query. To avoid these l-worlds, we exploit
the list of factors that have been precomputed and indexed. From all
the possible factors, only those that for every attribute mentioned
in the query, contain at least one entity satisfying that attribute, are
considered.

The above step already provides a considerable reduction to the
number of linkages and entities that need to be processed. How-
ever, merging all the entities in each of the selected factors may
result into entities with a large number of attributes. We exploit
the linkage specifications to push the optimization even further by
considering only the linkage specifications of each factor that are
between entities satisfying at least one attribute from those in the
query. Furthermore, it is required that the union of the attributes of
the factor entities involved in the linkages of the linkage specifica-
tion to be a superset of the set of attributes in the query. In practice
the above selections and the merges are actually computed in one
step.

Algorithm 2 provides the steps we follow. For each query at-
tribute we create a set Ei with all the entities satisfying the specific
attribute. Then we create the cartesian product of these sets, with
the extra requirement that the entities should belong to the same
factor. Since an entity may belong to more than one Ei set, we
involve a duplicate elimination step at the end.

Example 3. Consider the query Q: starring=“Emma Watson”
∧ date=2002 on our usual probabilistic linkage database exam-
ple of Figure 1. Only entities e1 and e2, both belonging to factor>

1
, satisfy the first attribute starring=“Emma Watson”, thus, the

list E1={
>

1
−e1,
>

1
−e2} is constructed. Similarly, the list E2={

>
1
−e2,>

2
−e5} is also constructed for the attribute date=2002 of the query.

The cartesian product of these two lists, with the additional con-
dition of agreement on the factors gives the pairs: 〈

>
1
−e1,
>

1
−e2〉

and 〈
>

1
−e2,
>

1
−e2〉 which becomes 〈

>
1
−e2〉. This suggest one merg-

ing of e1 and e2 and one that considers e2 with no merging. Both
make sense since we cannot distinguish between the attribute star-
ring=“Emma Watson” of e1 and that of e2. However, notice that
although e3 also belongs to factor

>
1
, it is not considered, since it

contains no attribute that has been asked by the query.

4.3 Computing l-world probabilities
Having decided the merges that need to be performed for satis-

fying the given query, the next step is to compute the probabilities
of the respective l-worlds. Equation 1 under the conditions from a
merge that needs to take place, becomes:

Pr(I|cm) =

m∏
i=1

Pr(Lsp>
i
| cm) (2)

where cm are the conditions describing merge m. Recall, however,
that a merge may be true in many possible l-worlds. There are two
alternatives that one can follow. The first is to compute the proba-
bility of the merge as the sum of the probabilities of all l-worlds that
satisfy this merge. The second is to compute and consider only the
maximum of these probabilities. The latter requires significantly

aid. name value p
• a10 starring Daniel Radcliffe 0.7
� a11 starring Emma Watson 0.4

a12 writer J.K. Rowling 0.6
a13 genre Fantasy 0.6
• a20 starring Daniel Radcliffe 0.5
� a21 starring Emma Watson 0.9

Possible Worlds
(1) (2) (3) (4)
a10 a20 a10 a20
a11 a11 a21 a21
a12 a12 a12 a12
a13 a13 a13 a13

Figure 4: Possible worlds for merge(e1≡e2) for exclusive attributes.

less computation time, since it only needs to identify the l-world
with the highest probability. For systems that simply use that prob-
ability as a ranking mechanism for the entities before displaying
them to the user, this second option is typically sufficient.

The algorithm for computing the maximum probability is based
on the algorithm for finding shortest paths in graphs. In particu-
lar, provided the entity linkages Lsp>

i
, we generate a weighted undi-

rected graph G as follows: every entity participating in a linkage
of lei ,e j becomes a node of the graph. Each linkage lei ,e j becomes
an edge that connects the nodes representing entities ei and e j. The
weight of such an edge is given by the probability of the respective
linkage.

An entity merging merge(e1,e2,. . . ,en) corresponds to a spanning
tree that connects all entities e1,e2,. . . ,en. Computing the merging
that maximizes the probability is similar to computing the maxi-
mum connected component of the graph that has the highest total
probability (i.e., multiplication of the probabilities of its edges).
Since the nodes of the graph correspond to the entities of a factor,
they are all connected, thus, the maximum connected component
will include all the nodes of the graph. To compute it, we rank
the edges in decreasing order of their linkage probability. Initially,
all the entities (i.e., nodes) are marked as not-visited. The high-
est ranked edge is first selected and the two nodes it connects are
marked as visited. Then as a list of edges is considered the sub-
set of the edges that have one endpoint marked visited and one
non-visited. The one with the highest probability is selected and
its non-visited endpoint is marked as visited. The same step is re-
peated until all the nodes in the graph have been marked as visited.
The probability of the merge is the multiplication of the probabil-
ities of the edges that have been used in this process, and by con-
struction this probability is the maximum.

4.4 Possible worlds and their probabilities
Each possible world from an l-world essentially represents a dif-

ferent combination over the attributes of the entities participating
in a specific l-world. For instance, consider the data in Figure 3,
and in particular the attributes involved in merge(e1,e2). The entity
merge(e1,e2) needs to include all attributes from entities e1 and e2,
as shown in Figure 4. Two issues need to be taken into consider-
ation. One is the probabilities of the attributes, specifically in the
case of duplication, and the other is the dependencies that may exist
among them.

The attributes that appear in real world datasets are not always in-
dependent. The correlations (i.e., dependencies) between attributes
that need to be considered in attribute merge, strongly depend on
the nature of the sources and their datasets. Our framework is able
to handle such correlations in a uniform manner. The following
paragraphs provide more details for generating worlds with two
possible collections:
A. Independent Attributes. One option is to assume no correla-
tion and thus no restrictions on which attributes to include in the
resulted entity merge. This case results is only one world given by
the union of all attributes: merge(e1, . . ., en) = 〈 id’, ∪n

i=1ei.A 〉.
B. Exclusive Attributes. In certain cases, the attributes originating
from different entities participating in the entity merge are exclu-

sive. This requires that only one occurrence of such an attribute to
be in the entity resulted by the merge. A typical example of such
an attribute are the distinct attribute names, e.g., a person can have
only one name. Other examples are the attributes with the same
name but similar (semantically or syntactically) values, e.g., at-
tributes a11 and a21 from Figure 4. A simple method is to cluster the
exclusive attributes from each entity, i.e., M = {{e1.αi, e1.α j, . . .}}.
We can then use this set to generate worlds with these correlations:
merge(e1, . . ., en) = 〈 id’, A 〉, where A ⊆ (M1 × M2 × . . . × Mm)
∪ { α | α < ∪m

i=1 Mi.α }.
The overall probability of a possible world depends on the prob-

ability of the attributes included or not included in the world. It
is computed as the product of probability pα when attribute α is
part of the world and (1 − pα) when attribute α is not part of it:
Pr(e′|merge(e1, . . . , en)) = Pr(l-world) ×

∏
α∈e′ .A pα ×

∏
α<e′ .A & α∈ei .A

(1-pα).

Example 4. Fig. 4 shows the attributes involved in merge(e1,e2).
The exclusive attributes are given by set M={{α10,α20},{α11, α21}}.
Fig. 4 shows the four generated possible worlds, and their proba-
bility is computed according to above formula.

5. EXPERIMENTS
We have performed a number of experiments in order to study

effectiveness and efficiency of our approach, referred to as EAQP,
in comparison to two other approaches. The first represents the ex-
isting entity linkage techniques, and is referred to as ELA in this
section. This approach performs off-line merging of the data with
linkage probability above some predefined threshold, known as the
entity linkage threshold. For a fair comparison and following the
suggestion of [33], we kept all properties of the matched entities
as part of the respective merged entity. The merged entity is thus
a union of those attributes pairs, increasing the probability that a
query information matches one of the entity attributes. The second
methodology with which we compared our approach is the work
on probabilistic databases, referred to as PDBA. Since PDBA solu-
tions consider probabilities for attributes or tuples only, but not for
linkages, a direct comparison with our approach with respect to the
effectiveness would not have been fair. Thus, the only comparison
we did between EAQP and PDBA was in terms of efficiency. All
evaluations are reported on the average of 800 queries, constructed
by randomly selecting object attributes.
Cora Dataset. It is a collection of publications and authors from
CiteSeer2, that is typically used to evaluate linkage techniques [3,
14, 32]. It contains 9, 774 author descriptions that refer to 2, 882
real world objects. We generated entity linkages between authors
(i.e., entities) using the probabilistic entity linkage algorithm [22].
Fig. 5 shows the number of linkages for different linkage thresh-
olds. Precision and recall of the generated entity linkages are simi-
lar to the ones generated by other algorithms such as [14, 32]. For
our approach we did not apply a threshold in order to obtain all the
linkages, even those with low probabilities.
Movie Dataset. For evaluating the efficiency we needed a suffi-
ciently large dataset and also linkages coming from different link-
age techniques. We generated such a dataset by integrating data
describing 13, 435 movies coming from two real world systems:
23, 182 IMDb movies (relational data) and 28, 040 DBpedia movies
(RDF data). We converted both datasets to our data model and
stored them in a relational database. For generating the entity link-
ages we compared the movie titles using two standard string sim-
ilarity methods [8], Jaccard and Jaro. Fig. 6 plots the precision-
2http://www.cs.umass.edu/̃ mccallum/data/cora-refs.tar.gz

Entity Linkages (under threshold t)
t=0.52 t=0.58 t=0.62 t=0.68 t=0.72 t=0.78
12,440 12,012 10,775 6,394 5,985 4,184

Figure 5: Linkages in the Cora datasets.

Figure 6: Precision-recall for the movie datasets.

recall graph resulting when using these techniques to link entities,
with Jaccard being more successful in linking IMDb to DBpedia
movies than Jaro. As expected, for both techniques we see the typ-
ical dependency between precision and recall. Linkage techniques
always have to make a trade-off between the two. In our experi-
ments we investigate how our approach addresses this issue.
Effectiveness. In our first experiment we examine the result qual-
ity of our approach using the Cora dataset. We processed the 800
queries and compared the results returned by EAQP and by ELA.
Evaluation of the effectiveness is based on the ground truth of the
Cora Dataset. For ELA, queries are evaluated over the already
pre-merged entities (based on the respective entity linkage thresh-
old). Selecting a low threshold (t=0.6) will provide linkages with a
high recall but low precision, whereas selecting a higher threshold
(t=0.8) will provide linkages with significantly higher precision,
but with lower recall. So by increasing the threshold only linkages
with high probabilities are accepted and the number of linkages,
thus, is reduced (see Fig. 5 for the exact numbers). We examine
the behavior of EAQP as well as of ELA for increasing linkage
threshold values.

Fig. 7 shows the average F-measure (weighted harmonic mean
of precision and recall) of the 800 queries for various entity linkage
thresholds. As expected, when moving towards higher thresholds,
the entity linkage technique accepts less and less linkages. This
makes the technique unable to find the entities described by the
queries. EAQP exhibits a higher F-measure than ELA for the en-
tire range of considered linkage threshold values. The difference is
especially high for linkage threshold between threshold values 0.65
and 0.75, where EAQP is still able to identify many of the searched
entities. For instance, for t=0.66 EAQP returned the correct en-
tity for around 10% more queries than ELA. This is because EAQP
can find connecting linkages to construct the entity described in the
query, even if the linkage probability is below the threshold. ELA
had to reject these linkages due to their low threshold.

Fig. 10 shows the numbers of queries that were correctly an-
swered for different linkage thresholds. As shown query process-
ing with our approach returns the correct results to more queries
than ELA. In additional experiments we performed, we noticed that
the entities returned by EAQP were with higher confidence (i.e.,
with higher probability) than the entities returned by ELA. For in-
stance, for t=0.6 EAQP returned 421 correct answers whereas ELA
returned 238 correct answers. For 91 answers, the entities of EAQP
had higher probability than the entities of ELA.
Efficiency. The core of our approach is based on generating fac-
tors by grouping entities which are pairwise linked. During query
processing we select the factors to construct the entities relevant
for the query. The number of entities in the factors influences the
execution time of our approach. In this experiment we examined
this influence using the Movie dataset. We computed the size of
the generated factors as the number of entity linkages contained

Figure 7: F-measure for EAQP and ELA. Figure 8: Data statistics for the factors. Figure 9: Query answering time.

in the factors. We then constructed the histogram of factor sizes.
Fig. 8 shows appearances per factor sizes as generated by both en-
tity linkage techniques, Jaro and Jaccard. It can be seen that only
few factors have a large size, which means less overall processing
time.

Our final evaluation was to measure the time required for EAQP,
and also to compute the overhead that a system will have for of-
fering this additional functionality. Fig. 9 shows the average time
taken to answer queries with EAQP, PDBA, and ELA. We show
time over different number of entity linkages in dataset. As ex-
pected there is an increase in the time required by our approach, but
this is relatively small and it remains under 70 milliseconds. Fur-
thermore, time does not increase as the dataset gets larger. On the
contrary, query time remains stable even when the data size dou-
bles. This behavior is justified by the effective grouping of linkages
into factors that takes place and allows the algorithm to easily detect
and use only a small subset of the linkages during query process-
ing. As expected the additional time required by the PDBA is lower
than that of EAQP, since PDBA does not cover the full semantics
of our approach, especially not considering linkage probabilities.
This clearly leads to a much lower number of possible worlds to be
considered, which is reflected in the smaller increase in run time.

We have also studied the behavior of the time required of retriev-
ing the possible l-worlds, and have also measured its improvements
over ELA, but we will not ellaborate further on the issue.

6. CONCLUSIONS
We have introduced a novel approach for on-the-fly entity-aware

query processing in the presence of linkage information. We have
formally defined the semantics of a new kind of query answering,
and describe efficient techniques for query processing. The results
of our evaluation on real world datasets show the efficiency and
effectiveness of our approach. Our current work focuses on ex-
tending the model with provenance information, and investigating
the implications of conflicting entity information, as this sometimes
appears in Web data.
Acknowledgment This work has been partially supported by the
EU Projects OKKAM ICT-215032 and Papyrus GA-215032.

References
[1] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,

and J. Widom. Trio: A system for data, uncertainty, and lineage. In VLDB, 2006.

Figure 10: Query success of EAQP and ELA.

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in
data warehouses. In VLDB, pages 586–597, 2002.

[3] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases:
A probabilistic approach. In ICDE, 2006.

[4] L. Antova, C. Koch, and D. Olteanu. 10106
worlds and beyond: Efficient repre-

sentation and processing of incomplete information. In ICDE, 2007.
[5] G. J. Bex, F. Neven, and S. Vansummeren. Inferring xml schema definitions

from xml data. In VLDB, pages 998–1009, 2007.
[6] I. Bhattacharya and L. Getoor. Deduplication and group detection using links.

In LinkKDD, 2004.
[7] I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integra-

tion. In DMKD, pages 11–18, 2004.
[8] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance

metrics for name-matching tasks. In IIWeb, pages 73–78, 2003.
[9] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon,

S. Keerthi, and S. Merugu. A web of concepts. In PODS, pages 1–12, 2009.
[10] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

VLDB, 16(4):523–544, 2007.
[11] N. N. Dalvi and D. Suciu. Management of probabilistic data: foundations and

challenges. In PODS, pages 1–12, 2007.
[12] T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John

Wiley, 2003.
[13] A. Doan and A. Y. Halevy. Semantic integration research in the database com-

munity: A brief survey. AI Magazine, 26(1):83–94, 2005.
[14] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex

information spaces. In SIGMOD, pages 85–96, 2005.
[15] X. Dong and A. Y. Halevy. Indexing dataspaces. In SIGMOD, pages 43–54,

2007.
[16] X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty. In VLDB,

pages 687–698, 2007.
[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detec-

tion: A survey. IEEE Trans. Knowl. Data Eng., 19(1):1–16, 2007.
[18] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Explorations, 2005.
[19] R. V. Guha and R. McCool. Tap: a semantic web platform. Computer Networks,

42(5):557–577, 2003.
[20] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace systems. In

PODS, pages 1–9, 2006.
[21] M. A. Hernández and S. J. Stolfo. Real-world Data is Dirty: Data Cleansing and

The Merge/Purge Problem. Data Min. Knowl. Discov., 1998.
[22] E. Ioannou, C. Niederée, and W. Nejdl. Probabilistic entity linkage for hetero-

geneous information spaces. In CAiSE, pages 556–570, 2008.
[23] E. Ioannou, C. Niederee, and Y. Velegrakis. Enabling Entity-Based Aggregators

for Web 2.0 data. pages 1119–1120, 2010.
[24] D. V. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via anal-

ysis of entity-relationship graph. ACM Trans. Database Syst., 31(2):716–767,
2006.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity measures
and algorithms. In SIGMOD Conference, pages 802–803, 2006.

[26] A. M. Ouksel and A. P. Sheth. Semantic interoperability in global information
systems: A brief introduction to the research area and the special section. SIG-
MOD Record, 28(1):5–12, 1999.

[27] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating
Web Data. In VLDB, pages 598–609, 2002.

[28] C. Re and D. Suciu. Managing probabilistic data with mystiq: The can-do, the
could-do, and the can’t-do. In SUM, pages 5–18, 2008.

[29] F. Rizzolo, Y. Velegrakis, J. Mylopoulos, and S. Bykau. Modeling Concept
Evolution: A Historical Perspective. volume 5829, pages 331–345, 2009.

[30] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.
In KDD, pages 269–278, 2002.

[31] P. Sen and A. Deshpande. Representing and querying correlated tuples in prob-
abilistic databases. In ICDE, pages 596–605, 2007.

[32] P. Singla and P. Domingos. Multi-relational record linkage. In KDD Workshop
on Multi-Relational Data Mining, 2004.

[33] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina.
Entity resolution with iterative blocking. In SIGMOD Conference, pages 219–
232, 2009.

APPENDIX
A. RELATED WORK

Entity Linkage. Most of the existing entity linkage techniques,
focus on off-line identification and linkage of the data describing
the same real world objects. A complete overview of the existing
work in this domain can be found in surveys [13, 18, 17] and work-
shops/tutorials [25, 26].

The current state-of-the art in this research area are the algo-
rithms that utilize associations between entity representations to
identify linkages. To capture the associations found inside a dataset,
data is modeled into supportive structures. Ananthakrishna et al. [2]
exploit dimensional hierarchies to detect fuzzy duplicates in dimen-
sional tables. Hierarchies are built by following the links between
the data from one table to data of other tables. Entities are matched
when the information along these generated hierarchies is found
similar. Getoor et al. [6, 7] model the metadata as a graph structure,
with nodes being information describing the entities and edges the
relationships between the entities. Edges are used to cluster the
nodes, and the found clusters help to identify the common entities.
In [24], the data is also modeled as a graph following a similar
methodology as the previous method. This method also generates
other possible relationships (modeled as edges in the graph) to rep-
resent the candidate matches between entities. Then, techniques
from graph theory are used to analyze the relationships in the graph
and decide the correct entity matches.

The TAP system [19] uses a process named Semantic Negotia-
tion to identify common descriptions (if any) between the different
resources. These common descriptions are used to create a uni-
fied view of the data. Another well-know algorithm is the Refer-
ence Reconciliation [14]. Here, the authors begin the computation
by identifying possible associations between entities through com-
parisons of entity descriptions. The information encoded in the
found associations is propagated to the rest of the entities in order
to enrich their information and improve the quality of final results.
Whang et al. [33] introduced a linkage approach focusing on effi-
ciency, which is achieved through partitioning the data into blocks.
For each entity they maintain the complete set of matching data,
a method that allows them to discover further matches by iterative
over their current set of matches.

Probabilistic Data. Few existing data integration proposals fo-
cus on dealing with uncertainty that appears in the data through
the applied entity linkage algorithms. More specifically, Dong et
al. [16] investigate the use of the probabilistic mappings between
the attributes of the contributing sources with a mediated schema.
Applying this method on the data from Section 2 would have con-
sidered the possible mappings between the attribute names as given
by contributing sources with a mediated schema S . This means
that “title” attribute of e1, e2, and e3 is mapped to a “Title” attribute
from S with a probability to show the uncertainty of each mapping.
Querying the mediated schema S is then based on these mappings.
For example query “title = Harry Potter. . . ” returns e1, e2, and e3.
However, it does not really reflect the expected answer, since the
expectation is to merge the data of the entities that describe the
same objects. In fact, the probabilistic schema mappings described
in this approach, can become an input to our approach by repre-
senting them as entity linkage information.

The approach in [3] is more similar to ours, since the focus is not
on the schema information but on the actual data. The authors as-
sume that the duplicate tuples for each entity are given. In our mo-
tivating example (Section 2) this means that linkages do not have
probabilities (i.e., we know if they exist or not) and that all tuples
describing alternative attributes have the same identifier, e.g.,:

Identifier Alternative attr. Probability
idx a10 p1
idx a20 p2

The tuples that represent the alternative attributes are considered as
disjoined. This means that only one tuple for each identifier can
be part of the final resulted entity. Our proposal does not impose
such restrictions/requirements. We explain how entity linkages can
contain correlations and provide an appropriate representation and
efficient solution for this.

Other related approaches are Dataspaces [20] and Trio [1]. The
main focus of these approaches is to create database systems that
support uncertainty along with inconsistency and lineage. To some
extend these systems also deal with duplicate tuples and uncertain
data. Our approach addresses more challenges of heterogeneous
data, mainly by considering linkage/matching on the data (not only
on schema information), and also correlations between entities.

Another important aspect of our approach is the efficient man-
agement of uncertainty in data; a topic that has received a lot of
attention recently. Dalvi and Suciu [10] used the notion of pos-
sible worlds to introduce query semantics for independent proba-
bilistic data and presented how to efficiently evaluate queries. The
approach by Sen et al. [31] moved towards defining and using dif-
ferent correlations, for example that existence of one tuple implies
or disallows the existence of another tuple. The methodology iden-
tified used in probabilistic databases, for performing efficient query
execution is also followed in our approach. We however also ex-
tend this methodology to provide its incorporation into a two level
processing, i.e., generating possible words inside the generate pos-
sible worlds (as explained in Section 3).

B. UNIQUENESS OF THE CORE
We now show that the core of a linkage database Dc is always

unique as derived from D through a sequence of merge operators,

i.e., D
m1
→D1

m2
→ . . .

mk
→ Dc. The proof is by induction on the results

for the size of merge operators with the smallest number.
Hypothesis: Let E denotes the entities in D, i.e., {e1,e2,. . . ,en}.

We have to perform two merge operators, merge m1 on the entities
in S a that results in entity ea, and merge m2 on the entities in S b

that results in entity eb.
Induction base: Entity sets S a and S b are subsets of E, and by

definition the entities in the merge operators are mutually exclusive,
so S a∩S b={}. The two possible sequences are as follows:

(1) D
m1
→ D-S a∪{ea}

m2
→ D-S a∪{ea}-S b∪{eb} =D-S a-S b∪{ea,eb}

(1) D
m2
→ D-S b∪{eb}

m1
→ D-S b∪{eb}-S a∪{ea} =D-S a-S b∪{ea,eb}

Both sequences result in the same linkage database.
Induction step: We now show that if the hypothesis holds, then

it also holds for an arbitrary number of merge operations. So, ap-
plying a set merge operators M on a linkage database D in any
sequence produces the same core linkage database Dc.

Let {m1, m2, . . ., mk} denote an initial merge sequence. We can
create a new sequence M′ by swapping two nearby merge opera-
tors insider M, i.e., {. . ., mi+1, mi . . .}. Given the induction hypoth-
esis, we know that the resulted Dc will be the same. With iterative
swapping of merge operators in the created sequence, we can gener-
ate various sequences (and eventually all possible sequences), with
each one of this sequences resulting in the same Dc.

C. PDBA AND ELA ALGORITHMS
For the experimental evaluation we used a JAVA 1.6 implemen-

tation of our approach for entity-aware query processing using link-
age information (EAQP). We also used a JAVA implementation

Figure 11: Average time for computing the possible world with
the maximum probability over factor sizes.

Figure 12: The number of queries, from the ones shown in
Figure 10, in which EAQP entities had higher probability, and
identified entities whereas the ELA failed.

of two additional methodologies described in the following para-
graphs.

Entity Linkage Technique (ELA). This implementation encap-
sulates the methodology that is currently followed by existing en-
tity linkage techniques. Once a linkage algorithm is applied on the
data (e.g., reference reconciliation [14], or entity resolution [33]),
a list of the matched data along with the derived matching proba-
bility is generated [17, 25]. Then, the entity linkage technique uses
a predefined threshold to accept and keep only the linkages those
probability is higher than this threshold.

The data of the accepted linkages are consider to exist (i.e., no
probabilities), and thus used for creating the finally integrated dataset
in which the data found to describe the same real world entity is
merged. Matched data is merged using the approach described in
[33]. Following this approach, the entities in the dataset are not
directly merged and updated, but for each entity we maintain all
matched data, and use them when we need to retrieve the entity
from the dataset. Therefore, during query processing, an entity will
be retrieved even when the query contains data that are not in the
final entity representation, since this data is presented in the entity’s
matched data.

Probabilistic DBs Technique (PDBT). A couple of recent ap-
proaches have been introduced for addressing the uncertainty ap-
pearing with linkage algorithms [1, 3]. They consider duplicate
tuples as alternative representations for the same real world ob-
ject. These techniques expect that the alternative representations
for each entity are known and that only one of them can exist in
the final integrated data, i.e., alternative representations are disjoin
events. Furthermore, an entity is basically described by the infor-
mation encapsulated in a single record, and not a set of records.

The existing techniques can not represent and handle the uncer-

tainty on the entity linkage information (Section 1). For being able
to perform a comparison of our EAQP approach with PDBT, we
converted the problem as it can be represented by the technique in-
troduced in [3]. More specifically, we assume that the attributes
of the entity (i.e., characteristics) are given and that each of these
attributes have a set of alternative representations. The following
tables show how this representation would apply on the data from
Figure 1.

id attr. attr. name value prob.
e1 a a starring Daniel Radcliffe pr
e1 b a starring Radcliffe, Daniel pr
e1 c b starring Emma Watson pr
e1 d b starring Watson, Emma (II) pr
e2

Although this representation allows us to provide a comparison
between the time required for query processing between the EAQP
and the PDBT technique, we still need to note the differences in
their semantics: (i) PDBT needs to be provided with the exact link-
ages for then handling possible alternatives for attributes, and (ii)
EAQP is able to handle other types of conditions and is not re-
stricted to disjoin events.

D. ADDITIONAL EXPERIMENTS
The following paragraphs present the results of two additional

experiments we performed for investigating the efficiency of EAQP
and comparing its effectiveness with ELA.

Time to retrieve possible worlds. As we presented in Section 4,
our approach separates linkages into factors and query precessing is
performed on the related factors. The size of the factors influences
the time required for processing queries, so we now investigate the
effectiveness for factors of different sizes.

For this experiment, we measured the time needed to identify the
possible world with the highest probability in respect to the fac-
tor size (Section 4.3). Figure 11 shows the average time required
for processing queries over different factor sizes. As expected, for
larger factor sizes the algorithm requires more time than for smaller
factor sizes, which however still remains below 4 milliseconds.
For small factor sizes (i.e., 20-40 entity linkages) that constitute
the dominating majority among the factors, the algorithm requires
around 1 millisecond.

Improvements over ELA. We further analyzed the results of
the evaluation related to effectiveness (Section 5), and identified
two situations in which EAQP performs better than ELA. The first
is that our approach has less failures, i.e., empty result set as an
answer to queries. For instance, for t=0.6 EAQP was able to return
the correct answers for the 150 queries in which ELA did not return
anything.

The second situation is that there are cases in which the entities
returned by EAQP were with higher confidence (i.e., with higher
probability) than the entities returned by ELA. As shown in Fig-
ure 10, for t=0.6 EAQP returned 421 correct answers whereas ELA
returned 238 correct answers. For 91 answers, EAQP had higher
probability that ELA. Figure 12 presents the exact numbers for
these two situations for various entity linkage thresholds. As shown
by the results of the evaluation, EAQP exhibits a higher effective-
ness than ELA. There are of course cases in which both approaches
return the same answer set. For these cases, we can view the addi-
tional processing time of EAQP as a disadvantage in comparison to
ELA.

