
Sketching Probabilistic Data Streams

Graham Cormode
AT&T Labs—Research

180 Park Avenue, Florham Park NJ
graham@research.att.com

Minos Garofalakis∗

Yahoo! Research and UC Berkeley
2821 Mission College Blvd, Santa Clara CA

minos@yahoo-inc.com

ABSTRACT
The management of uncertain, probabilistic data has recently emerged
as a useful paradigm for dealing with the inherent unreliabilities
of several real-world application domains, including data clean-
ing, information integration, and pervasive, multi-sensor comput-
ing. Unlike conventional data sets, a set of probabilistic tuples de-
fines a probability distribution over an exponential number of pos-
sible worlds (i.e., “grounded”, deterministic databases). This “pos-
sible worlds” interpretation allows for clean query semantics but
also raises hard computational problems for probabilistic database
query processors. To further complicate matters, in many scenarios
(e.g., large-scale process and environmental monitoring using mul-
tiple sensor modalities), probabilistic data tuples arrive and need to
be processed in a streaming fashion; that is, using limited memory
and CPU resources and without the benefit of multiple passes over a
static probabilistic database. Such probabilistic data streams raise a
host of new research challenges for stream-processing engines that,
to date, remain largely unaddressed.

In this paper, we propose the first space- and time-efficient al-
gorithms for approximating complex aggregate queries (including,
the number of distinct values and join/self-join sizes) over prob-
abilistic data streams. Following the possible-worlds semantics,
such aggregates essentially define probability distributions over the
space of possible aggregation results, and our goal is to character-
ize such distributions through efficient approximations of their key
moments (such as expectation and variance). Our algorithms offer
strong randomized estimation guarantees while using only sublin-
ear space in the size of the stream(s), and rely on novel, concise
streaming sketch synopses that extend conventional sketching ideas
to the probabilistic streams setting. Our experimental results verify
the effectiveness of our approach.

Categories and Subject Descriptors:
E.1 [Data]: Data Structures; F.2 [Theory]: Analysis of Algorithms

General Terms: Algorithms, Performance, Reliability

Keywords: Data Streams, Uncertain Data.

∗Work done while at Intel Research, Berkeley

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 12–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

1. INTRODUCTION
Conventional database systems and query processing tools are

designed around the idea of static collections of exact data tuples.
Unfortunately, the data generated by a diverse set of real-world ap-
plications is often uncertain and imprecise. For instance, data in-
tegration and record linkage tools can generate distinct degrees of
confidence for output data tuples (based on the quality of the match
for the underlying entities) [8]; structured information extractors
typically assign different confidences to rules for identifying mean-
ingful patterns in their (unstructured) input [17]; and, pervasive
multi-sensor computing applications need to routinely handle noisy
sensor/RFID readings [19]. Motivated by these new application re-
quirements, recent research efforts on probabilistic data manage-
ment aim to incorporate uncertainty and probabilistic information
as “first-class citizens” of the database system.

Among the different approaches for managing uncertainty in-
side the database, tuple-level uncertainty models (that, essentially,
associate independent existence probabilities with individual tu-
ples) have seen wide adoption both in research papers as well as
system prototypes. This is due to both their simplicity of repre-
sentation in current relational systems (i.e., just adding an “exis-
tence probability” column), as well as their simple and intuitive
query semantics. In a nutshell, a probabilistic database is a concise
representation for a probability distribution over an exponentially-
large collection of possible worlds, each representing a possible
“grounded” (deterministic) instance of the database (e.g., by flip-
ping appropriately-biased independent coins to select each uncer-
tain tuple). This “possible-worlds” semantics also implies clean se-
mantics for queries over a probabilistic database — essentially, the
result of a probabilistic query defines a probability distribution over
the space of possible query results across all possible worlds [8].

Unfortunately, despite its simple, intuitive semantics, the paradigm
shift towards tuple-level uncertainty also appears to imply a huge
jump in the computational complexity of simple query process-
ing operations: As demonstrated by Dalvi and Suciu [8], correctly
evaluating the resulting tuple probabilities for duplicate eliminating
projections over a simple three-way join can give rise to problems
with #P -hard data complexity (i.e., exponential in the number of
database tuples). Query-processing efficiency issues are, of course,
further exacerbated by the streaming nature of several target ap-
plications for probabilistic data-management tools. For example,
large-scale process and environmental monitoring tools rely on the
continuous collection and processing of large amounts of noisy, un-
certain readings from numerous sensor modalities, and recent work
has already suggested attaching tuple-level probabilities as explicit
indicators of data quality [19]. Due to the continuous, online nature
of these applications and the large data volumes involved, these
probabilistic data tuples arrive continuously and need to be pro-

281

cessed in a streaming fashion; that is, query results must be avail-
able in real-time, using only limited memory and CPU resources,
and without the benefit of several passes over a static probabilistic
database. Efficient stream-processing algorithms and system ar-
chitectures for deterministic tuple streams have formed a very ac-
tive research area in recent years. As in the static database case,
however, such probabilistic data streams raise a host of new, dif-
ficult research challenges for stream-processing engines that man-
date novel algorithmic approaches.

Prior Work. Several efficient algorithms have been developed for
processing different classes of complex queries over massive data
streams; examples include computing quantiles [15], estimating
distinct-value counts [4], counting frequent elements (i.e., “heavy
hitters”) [7, 20], approximating large Haar-wavelet coefficients [14],
and estimating join sizes and stream norms [1, 2, 9]. None of these
works consider the issues raised by uncertain streaming tuples.

Recent work on probabilistic database systems has focused on
different aspects of managing uncertain data tuples in relational
DBMS architectures, including the complexity and algorithmic prob-
lems of query evaluation [8], data modeling issues [23], and man-
aging lineage for probabilistic query results [5]. The issue of ef-
ficient aggregate query evaluation under the stringent constraints
of the streaming model was not considered in any of these pa-
pers. Khoussainova et al. [19] propose an architecture for cleaning
sensor readings by attaching explicit “correctness” probabilities —
their techniques are essentially complementary to our work. More
recently, Jayram et al. [16] have studied the problem of evaluating
simple aggregate functions (focusing, in particular, on AVERAGE)
over streams of uncertain data. Their model of uncertainty is ac-
tually richer than ours, and can capture value-level uncertainty as
well as the probability of existence. Still, even for very simple
aggregates like AVERAGE, their techniques and analyses rely on so-
phisticated mathematical tools (e.g., generating functions), and it is
very unclear if they can be extended to the broader, more complex
class of aggregate queries considered here. Independently and con-
current with this work, Jayram et al. [18] showed some results for
the expectation versions of F0, F2 and quantiles problems studied
here, and improve their results for AVERAGE.

Our Contributions. In this paper, we initiate the study of space-
and time-efficient techniques for approximating a broad class of
complex aggregate queries over continuous probabilistic tuple streams.
By possible-worlds semantics, such probabilistic aggregates de-
fine probability distributions over an (exponentially-large) space of
possible results; thus, our goal is to characterize such distributions
through efficient, streaming approximations of their key moments
(such as expectation and variance) over the possible-worlds col-
lection. We propose novel, randomized sketching synopses and
estimation algorithms for probabilistic data streams; as with con-
ventional data streaming, our methods employ only sublinear space
(in both the size and domain of the probabilistic stream) and offer
strong randomized estimation guarantees for the key moments of
the underlying complex aggregate. More concretely, our contribu-
tions are summarized as follows.

• Generic Streaming Probabilistic Aggregate Estimator based
on Possible-Worlds Sampling. We present a universal aggregate
estimation algorithm for probabilistic data streams based on the in-
tuitive idea of sampling possible-worlds (i.e., deterministic streams)
from the input, and running conventional streaming estimators over
the sampled streams. The obvious appeal of such a scheme is that
it allows us to directly leverage existing space-efficient algorithms
for deterministic data streams in the probabilistic setting. Unfortu-
nately, as our analysis and experimental results show, this approach

has severe limitations when it comes to estimating the moments of
complex aggregates over streaming probabilistic data.

• Probabilistic FM (pFM) Sketch Synopses and Estimators for
Probabilistic Count-Distinct Aggregates. While count-based ag-
gregates (e.g., expected tuple counts or heavy-hitters) allow for
simple solutions (due to their linearity), that is not the case for
more complex aggregate queries over the probabilistic stream. We
initially focus on the class of count-distinct queries and introduce a
novel, randomized estimation algorithm for probabilistic data streams.
Our algorithm relies on a new, hash-based sketch synopsis structure
for streaming probabilistic data (termed probabilistic FM (pFM)
sketch), inspired by the well-known Flajolet-Martin (FM) sketch [11]
for counting distinct deterministic values. We introduce and ana-
lyze pFM-sketch-based estimators for probabilistic count-distinct,
and demonstrate strong error guarantees while using only small
space to sketch a large probabilistic data stream.

• Streaming Estimators for Probabilistic Self-Join/Join Sizes
and Higher Frequency Moments based on AMS Techniques.
For the second moment of a probabilistic data stream, correspond-
ing to the expected self-join size, and the related quantity of the
join size of two independent probabilistic streams, we develop new
insights based on expressing the expectation and variance in terms
of the cumulants of appropriate distributions. These cumulants can
be computed easily for each component of the stream, and we show
how to represent them all compactly, and manipulate them, using
variations of the Alon-Matias-Szegedy (AMS) sketch data struc-
ture [2]. We show the accuracy and power of this approach, as we
are able to track yet higher moments using cumulant analysis.

• Experimental Results Validating our Approach. We perform
a thorough evaluation of our techniques on a mixture of real and
synthetic data. We observe that our methods can be highly prac-
tical: they typically obtain a small (< 10%) error on streams of
millions of items, using only tens of kilobytes and taking only sec-
onds of CPU time. We show that simple techniques often suffice
for estimating expectations, but to understand the higher moments
our more involved algorithms are a necessity.

Due to space constraints, several proofs and detailed technical argu-
ments are omitted; complete details are deferred to the full version.

2. PROBABILISTIC DATA STREAM MODEL
We consider a simple model of probabilistic data streams, where

each stream renders a multi-set of relational tuples with indepen-
dent tuple-level uncertainties (i.e., existence probabilities). As men-
tioned earlier, such independent probabilistic tuples form the basis
of several recent studies on probabilistic data management (e.g.,
[8]), since they can be naturally represented in relational systems,
and allow for clean and intuitive query semantics; furthermore,
even such simple models of uncertainty raise intractable compu-
tational problems for probabilistic query processing [8].

More formally, we define a probabilistic data stream as a se-
quence of N uncertain tuples 〈t, p〉, with the semantics that tuple
t occurs in an instance of the database with probability p ∈ (0, 1]
(independently of all other tuples in the database).1 Tuples t are
drawn from a finite domain of size M that, without loss of gen-
erality, is assumed to be the integer domain [M] = {1, . . . , M}.
As is typical in data stream analysis, we focus on the case when N
and M are “large”, and our stream query processor can observe the
streaming tuples only once (in the fixed order of arrival) and can

1For simplicity, we assume that all arithmetic is exact, i.e., we do not ad-
dress issues of precision, and instead assume that all probabilities can be
represented exactly within a small, constant number of machine words.

282

only use space/time that is sublinear in both N and M to maintain
a concise synopsis of the probabilistic data stream. As our results
show, relatively simple techniques can be used in the case where
O(min{N, M}) space is available, but more advanced tools are
needed under sublinear space constraints. This model is a special
case of the more general model where each tuple encodes a com-
pact probability distribution (PDF); we comment that many of our
results immediately apply to this more general setting, but for sim-
plicity we concentrate our discussion on the simpler case.

Aggregate Estimation over Probabilistic Streams. Following all
earlier work on probabilistic databases, we view a probabilistic data
stream as defining a probability distribution over a collection of
possible worlds: Implicitly, a probabilistic stream encodes expo-
nentially many (up to 2N) conventional, deterministic data streams,
each occurring with some probability (determined by the individual
existence probabilities of its constituent tuples). We refer to these
possible deterministic instantiations of a probabilistic data stream S
as its grounded streams (denoted by grnd(S)). Specifically, con-
sider a probabilistic stream S = (〈ti, pi〉 : 1 ≤ i ≤ N) and let
G(I) denote one possible outcome of S comprising the sequence
of all tuples with index in some subset I ⊆ [N] (i.e., G(I) = (ti :
i ∈ I}); then, by tuple independence, it is easy to see that the prob-
ability of this possible outcome G(I) can be computed simply as
Pr[G(I)] =

Q
i∈I pi ·

Q
j 6∈I(1 − pj). Note, of course, that, since

the tuples ti are not necessarily distinct (i.e., a stream renders a bag
of tuples), several distinct index subsets I can in fact map to the
same grounded stream G ∈ grnd(S); thus, grnd(S) ≤ 2N and the
probability of a grounded stream instance G ∈ grnd(S) is defined
as Pr[G] =

P
I:G(I)=G Pr[G(I)]. (It is straightforward to show

that Pr[G] defines a valid probability distribution over grnd(S).)

EXAMPLE 2.1. Consider the simple probabilistic stream S =
(〈x, 1

2
〉, 〈y, 1

4
〉, 〈y, 1

3
〉). This encodes 23 = 8 possible outcomes,

covering 6 distinct grounded stream instances:
grnd(S) = {(x); (y); (x, y); (y, y); (x, y, y); φ}

(where φ denotes the empty stream). The probabilities for each
possible distinct grounded stream can be easily computed as:

Grounded Stream G (x) (y) (x,y) (y,y) (x,y,y) φ
Pr[G] 1

4
5
24

5
24

1
24

1
24

1
4

Our focus here is on computing complex aggregates over proba-
bilistic data streams. As mentioned earlier, such aggregates essen-
tially define a probability distribution over the (exponentially large)
space of aggregation results for all possible worlds. Given the po-
tentially enormous size and complexity of such distributions, our
goal is instead to effectively characterize these probabilistic data
aggregates through efficient streaming approximations of their key
distribution moments, such as expectation and variance over the
possible-worlds collection. More formally, consider a probabilis-
tic data stream S, and let F (S) denote the result of evaluating an
aggregate function F () over S. Then, F (S) is a random variable
ranging over all possible grounded streams G ∈ grnd(S) with ex-
pectation and variance naturally defined as

EG[F (S)] =
X

G∈grnd(S)

Pr[G] · F (G) and

VarG[F (S)] = EG[F 2(S)]− E2
G[F (S)]

=
X

G∈grnd(S)

Pr[G] · F 2(G) − E2
G[F (S)],

where we use the “G” subscript to denote the underlying probabil-
ity space of all possible worlds G ∈ grnd(S).

Naturally, a “naive” way to compute EG[F (S)] and VarG[F (S)]
in Ω(2N) time and space, is by explicitly grounding S and comput-
ing Pr[G] and the (deterministic) aggregate value F (G) for every
G ∈ grnd(S). However, our goal is much stronger: we aim to per-
form these computations in time exponentially less than this (es-
sentially, in a single pass over the probabilistic tuples), and with
space significantly sublinear (e.g., poly-logarithmic) in N and M .
These are the typical requirements for efficient query processing
algorithms in the (deterministic) streaming model [3, 13].

The specific class of aggregate queries of interest in this work
are the frequency moments of a stream (as well as closely related
streaming problems). Such frequency moments have formed the
basis of most algorithmic studies of (non-probabilistic) data streams,
and the techniques developed for their computation are at the heart
of many other algorithms for data-stream query processing [1, 2,
3, 9, 7, 13]. Formally, consider a grounded stream G and let ft

denote the number of occurrences of element t ∈ [M] in G. (We
use “tuple” and “element” interchangeably in the remainder of the
paper.) The kth frequency moment of G, Fk(G) (k ≥ 0), is defined
as Fk(G) =

PM
t=1 fk

t , where k ≥ 0. We treat 00 = 0, which im-
plies that F0(G) is the number of domain elements t ∈ [M] such
that ft is non-zero, i.e., the number of distinct tuples in the stream
G. Similarly, F1(G) is simply the total number of tuples in G (i.e.,
F1(G) = N), and F2(G) is the size of the self-join of G (over the
attributes of the streaming tuples) [2].

The kth frequency moment Fk(S) of a probabilistic stream S
can now be defined naturally as a random variable over G ∈ grnd(S),
as earlier. Of course, it is important to note here the distinction be-
tween the Fk(S) frequency moments, and the corresponding distri-
bution moments, such as EG[Fk(S)] and VarG[Fk(S)] over grnd(S)
— our goal in this work is to devise streaming algorithms for esti-
mating such distribution moments in a single pass over S. As with
most work on data-stream algorithmics, our approach is based on
the design of efficient randomized schemes that, ideally, guarantee
(ε, δ)-approximation bounds [2, 11]; that is, given a quantity X to
be estimated over a stream, we aim to produce an estimate X̂ of X
such that Pr[|X̂ −X| < εX] > 1− δ.

3. WARM-UP: BASIC STREAM ESTIMATES
In this section, we start by describing a general aggregate estima-

tion scheme for probabilistic data streams based on the idea of sam-
pling possible worlds. Then, we briefly discuss a simple streaming
estimator for the first frequency moment of a probabilistic stream S
(i.e., F1(S)), and its implications for other probabilistic aggregate
queries (including, quantiles and heavy-hitters).

3.1 Universal Sampling-based Algorithm
Based on our possible-worlds interpretation of probabilistic stream

aggregates, a natural sampling-based scheme emerges for obtaining
streaming, estimators for EG[F (S)] and VarG[F (S)], for any ag-
gregate F () that can be computed (or, accurately approximated)
over a deterministic data stream.

The idea is to randomly sample a small subset of possible worlds
for an input probabilistic stream S, where a grounded stream G ∈
grnd(S) is chosen with probability Pr[G]. This is simple to im-
plement: Given a target sample size s, initialize Gj = φ (j = 1,
. . . , s), and, for each incoming probabilistic tuple 〈ti, pi〉, simply
perform s independent biased coin flips (each with success prob-
ability pi) setting Gj = Gj ∪ {ti} if the jth coin flip succeeds.
For our universal probabilistic-stream estimator for F (), we do not
store the possible worlds Gj ; instead, the tuples generated for these
(grounded) streams are fed into s parallel instances of streaming
estimation algorithms for F (). Let {F̂ (Gj) : j = 1, . . . , s} de-

283

note the outputs of these streaming estimators; then, we estimate
EG[F (S)] and VarG[F (S)] as the sample mean µ̂ and the sample
variance σ̂, respectively, where:

µ̂ =
1

s

sX
j=1

F̂ (Gj) and σ̂2 =

sX
j=1

F̂ (Gj)
2

s− 1
− µ̂2.

The following theorem establishes the accuracy properties of our
universal probabilistic stream estimator.

THEOREM 3.1. If F̂ (G) is an unbiased streaming estimator for
F (G), then µ̂ and σ̂ are unbiased estimators for EG[F (S)] and

VarG[F (S)], respectively. Moreover, using s = O
“

1
ε2

VarG[F (S)]

E2
G

[F (S)]

”
samples, µ̂ provides an (ε, O(1))-approximation of EG[F (S)].

In other words, by sampling s = O(1
ε2

VarG[F (S)]

E2
G

[F (S)]
) possible worlds

and passing each to a separate instance of a streaming estimation al-
gorithm for F () over deterministic data streams, our sample-mean
estimator can guarantee ε-relative error with constant probability.
We can amplify this to any user-defined success probability by
simply repeating O(log(1/δ)) times and taking the median result;
standard Chernoff-bounds arguments then guarantee that the prob-
ability of failure is less than δ. By its sample-size requirement, it
is easy to see that the estimation quality of our universal estima-
tor depends crucially on the ratio of VarG[F (S)] = EG[F 2(S)]−
E2

G[F (S)] to E2
G[F (S)]. We will see subsequently that for the

frequency moments we consider in this paper, VarG[Fk(S)] ≤
EG[Fk(S)] for k = 0, 1, and VarG[F2(S)] = O(E

3/2
G [F2(S)]).

So this ratio will be small, and decreasing as EG[Fk(S)] increases.
It is tempting to try to apply the same technique to derive bounds

for the accuracy of σ̂2 for approximating the distribution variance
VarG[F (S)] of the probabilistic aggregate F () — after all, the vari-
ance is just another expectation. Unfortunately, the bounds result-
ing from such an approach are considerably worse. Observe that the
variance computation is equivalent to computing the difference of

two values:
Ps

j=1

F̂ (Gj)2

s−1
and µ̂2. The first of these is an unbiased

estimator for the quantity VarG(S) + E2
G[F (S)] and the second

for the quantity E2
G[F (S)]. However, for the frequency moments

that we study, E2
G[Fk(S)] can be much larger than VarG[Fk(S)]:

we stated above that VarG[Fk(S)] ≤ E[Fk(S)] for k = 0, 1.
Suppose we chose s large enough to ensure that EG[Fk(S)] is
(ε′, δ) approximated, then EG[Fk(S)]2 is (3ε′, δ) approximated.
Because we the quantity we are estimating can be much smaller
than this, we need a much more accurate approximation in order
to (ε, δ) approximate VarG[Fk(S)]. Thus we need to choose an
ε′ such that ε′EG[Fk(S)]2 ≤ εVarG[Fk(S)]. Using the bound
from Theorem 3.1, this means we need Ω(EG[Fk(S)]) samples for
VarG[F0(S)] and VarG[F1(S)], and Ω(E

1/2
G [Fk(S)]) samples for

VarG[F2(S)]. The bounds from this analysis are so weak that they
are of little practical use. We shall also see experimentally that the
estimations of variance using the universal sampling algorithm are
very poor in practice.

In the remainder of the paper, we show several cases where more
intelligent, “aggregate-aware” streaming estimation algorithms can
be developed that perform significantly better than the above uni-
versal sampling-based strategy. We start by discussing solutions
and applications for the simple case of the first frequency moment.

3.2 F1: Counts, Quantiles, and Heavy Hitters
For a conventional, deterministic data stream G, computing the

first frequency moment F1(G) is trivial: it is just the count of ele-
ments in the stream, which can be computed exactly using a single

counter. Similarly, computing the (exact) distribution moments of
F1(S) over a probabilistic stream S turns out to be quite straight-
forward. Specifically, consider the probabilistic stream S = (〈ti,
pi〉 : 1 ≤ i ≤ N). For the purposes of first-moment estimation
over S, each streaming uncertain tuple 〈ti, pi〉 can be seen as a
Bernoulli variable Bi that takes the value 1 (i.e,. the tuple is in the
possible world) with probability pi, and 0 otherwise. Then, by lin-
earity of expectation and the independence of probabilistic tuples
in the stream:

EG[F1(S)] =
PN

i=1 E[Xi] =
PN

i=1 pi , and
VarG[F1(S)] =

PN
i=1 Var[Xi] =

PN
i=1 pi(1− pi),

and hence VarG[F1(S)] ≤ EG[F1(S)]. The above linearity im-
mediately implies that we can compute the exact expectation and
variance of F1(S) using only two variables. Earlier work on prob-
abilistic data has already made similar observations for such linear
aggregates, at least for the case of computing the expectation (e.g.,
see [16]). It is not difficult to see that, thanks to this linearity, we
can also leverage known (deterministic) stream synopses and re-
sults to provide strong estimation guarantees for other important
count-based aggregates over probabilistic data streams. We now
summarize our key results in this setting.

Given a probabilistic data stream S and tuple t ∈ [M], let ft de-
note the point frequency (i.e., number of occurrences) of t in S —
this is again a random variable over grnd(S). If t ∈ [M] is given
in advance, we can easily compute EG[ft] and VarG[ft] using two
simple counters, as above. More interestingly, when t is not known
beforehand, it is possible to build small-space streaming synopses
over S to estimate such point-frequency moments to within ε fac-
tors of the corresponding stream moments. (In other words, we
can estimate point-frequencies accurately in small space as long as
they are “large” with respect to the overall (expected) count of ele-
ments in the stream; these correspond to the typical streaming error
guarantees for point estimation in the deterministic setting [7, 20].)

LEMMA 3.2. Using space of only O(1
ε
), it is possible build a

synopsis over a probabilistic data stream S that, given t ∈ [M],
can return estimates µ̂t and σ̂t such that (with probability 1)

EG[ft] ≤ µ̂t ≤ EG[ft] + ε EG[F1(S)] and
VarG[ft] ≤ σ̂t ≤ VarG[ft] + ε VarG[F1(S)].

Proof:By linearity of the aggregate, it is not difficult to see that esti-
mating EG[ft] and VarG[ft] corresponds to a standard point query
over a data stream containing fractional values — namely, the pi

values for EG[ft] and the pi(1 − pi) values for VarG[ft]. Thus,
one can immediately apply known streaming synopses, such as the
Count-Min sketch [7]. This provides estimates with errors propor-
tional to ε

Pn
i=1 pi = εEG[F1(S)] and εVarG[F1(S)], for expec-

tation and variance (respectively), but with only probabilistic guar-
antees. Well known techniques such as Lossy Counting [20] and
Misra-Gries [22] do not naturally accommodate a stream of frac-
tional values (they assume a stream of unitary updates). However,
the algorithms of Suri et al. [24] and Metwally et al. [21] allow ar-
bitrary update values, and can be applied to extract point estimates
from a stream. They can be implemented so that each update takes
expected time O(1), and uses space O(log M

ε
) [6] amd O(1

ε
) re-

spectively. Thus, we can provide the required estimates µ̂t and σ̂t

in this time and space.

Using standard streaming arguments, the above lemma directly
implies space/time-efficient probabilistic-stream estimation algo-
rithms for other interesting count-based aggregates, such as approx-
imate heavy hitters and approximate quantiles. The development
resembles that for the conventional streaming version of the prob-
lem — more details can be found, e.g., in [7, 24].

284

COROLLARY 3.3. Assume a constant φ ∈ (0, 1), and a desired
accuracy guarantee ε < φ. We state the following results:

1. Approximate φ-Heavy Hitters: To return all elements t such
that EG[ft] ≥ (φ+ε)EG[F1(S)], and no item t′ such that EG[ft′] ≤
(φ− ε)EG[F1(S)] can be done in space O(1

ε
).

2. Approximate φ-Quantiles: To return all items t such that (φ+
ε)EG[F1(S)] ≤ EG[

Pt
i=1 fi] ≤ (φ + ε)EG[F1(S)] can be done

in space O(log M
ε

).
The same estimation guarantees also hold for variance estimates

(i.e., replacing EG[] with VarG[]).

4. ESTIMATING COUNT DISTINCT (F0(S))
As noted in Section 3, the case of of the first frequency mo-

ment F1 and related count-based estimation problems was easy to
reduce to prior streaming work, due to linearity of the aggregate.
Unfortunately, other frequency moments are less straightforward.
In this section, we consider the case of F0, the number of distinct
items over the probabilistic stream S. It is important to note that
computing EG[F0] is very different from computing the number of
distinct tuples seen in S; for instance, S could comprise many mil-
lions of tuples with distinct values, but if each pi is minuscule (say,
of the order of 10−10), EG[F0(S)] could still be much less than
one. Also, the linearity property that allowed us to simply sum
probabilities in the case of F1 is no longer valid — intuitively, this
is because, for F0, the number of occurrences of a distinct tuple
t ∈ [M] in a stream is immaterial as long as the tuple appears at
least once. Thus, our streaming algorithms must track these prob-
abilities of occurrence for distinct tuples in the domain. Thanks to
tuple independence, this turns out to be quite simple to do if one
assumes linear space (O(M)).

LEMMA 4.1. Using space O(M), a streaming algorithm can
compute the exact values of EG[F0(S)] and VarG[F0(S)] over a
probabilistic data stream S.

Proof:Let pt denote the probability that element t ∈ [M] is ob-
served at least once in any grounded instance of the stream S =
(〈ti, pi〉 : i = 1, . . . , N); that is, pt =

P
t∈G,G∈grnd(S) Pr[G].

By tuple independence, it is not difficult to see that this probabil-
ity can also be expressed as pt = 1−

Q
i:ti=t(1 − pi), i.e., one

minus the probability that none of the instances of t are actually
materialized. This probability can be incrementally computed as
tuples 〈ti, pi〉 from S are streaming by. Initially, set pt = 0 for
all t = 1, . . . , M . Now, suppose the next tuple in S is 〈ti, pi〉,
with ti = t; then, we update pt ← pt(1 − pi) + pi, to reflect
the updated probability of seeing a t tuple. It is easy to verify that
this rule correctly maintains the probability of occurrence for t as
defined above. The expected number of distinct items is exactly
EG[F0(S)] =

PM
t=1 pt. For VarG[F0(S)], observe that, for count-

distinct estimation, each t ∈ [M] is just a Bernoulli random vari-
able with parameter pt, and, thus, its variance is simply pt(1− pt).
Since F0(S) is basically the summation of these Bernoulli random
variables, and by tuple independence, we have VarG[F0(S)] =PM

t=1 pt(1− pt), and hence VarG[F0(S)] ≤ EG[F0(S)].

EXAMPLE 4.2. Consider our example probabilistic stream S =
(〈x, 1

2
〉, 〈y, 1

4
〉, 〈y, 1

3
〉). We have px = 1

2
, and py = 3

4
· 1
3
+ 1

4
= 1

2
,

so EG[F0(S)] = 1 and VarG[F0(S)] = 1
2

. We can verify these re-
sults against the probabilities for the grounded streams Pr[G] (see
Example 2.1). From these probabilities, we have EG[F0(S)] =
1(Pr[(x)]+ Pr[(y)]+ Pr[(y, y)]) +2(Pr[(x, y)]+ Pr[(x, y, y)]) =
1(1

4
+ 5

24
+ 1

24
)+ 2(5

24
+ 1

24
) = 1. Similarly, VarG[F0(S)] =

EG[F 2
0 (S)]− E2

G[F0(S)] = 1(12
24

)+ 4(6
24

)− 12 = 1
2

.

Using the Universal, Sampling-Based Estimator for EG[F0(S)].
We show the guarantees that our universal estimation algorithm
(based on possible-worlds sampling) of Section 3 can provide for
F0 estimation over S. From Theorem 3.1, we know that the univer-
sal estimator can guarantee a good approximation for EG[F0(S)]

by sampling s = O(1
ε2

VarG[F0(S)]

E2
G

[F0(S)]
) grounded streams G ∈ grnd(S),

and using an efficient, guaranteed-error streaming estimator for
F0(G) on each. From the above analysis based on independent
Bernoulli random variables, we see that

VarG[F0(S)]

E2
G[F0(S)]

=

PM
t=1 pt(1− pt)

(
PM

t=1 pt)2
≤

PM
t=1 pt

(
PM

t=1 pt)2
=

1

EG[F0(S)]
.

In other words, the number of grounded-stream samples (and esti-
mators) needed to guarantee small relative errors is inversely pro-
portional to EG[F0(S)] (the quantity that we want to estimate).
This is actually quite intuitive: Consider a probabilistic stream S
comprising N distinct tuples ti, where all tuples have the same
probability pi = p. If p is very small, which, of course, implies
that EG[F0(S)] is small, then a large number of samples is needed
to ensure a sampling estimate with small relative error; for instance,
if N = 104 and p = 10−10, then at least 106 (= 1

EG[F0(S)]
) sam-

ples are needed, on average, just to sample a non-empty possible
world (i.e., give a non-zero estimate)! Whereas, if p = 1 (i.e.,
EG[F0(S)] = N), then all tuples are deterministic, and a single
instance of the F0(G) estimator (i.e., s = 1).

As our experiments show, in practice, EG[F0(S)] is typically of
moderate size, and a small sample size s is often sufficient to get a
good approximation. On the other hand, as discussed in Section 3,
such error guarantees unfortunately do not carry over to the case of
the F0-variance VarG[F0(S)].

4.1 The Probabilistic FM (pFM) Sketch
We now introduce a novel algorithm for F0 estimation over prob-

abilistic data streams. Our algorithm guarantees randomized (ε, δ)-
estimates for both EG[F0(S)] and VarG[F0(S)], while using space
that is only poly-logarithmic in the size of the stream S, and inde-
pendent of the value of EG[F0(S)].

Our technique is inspired by the popular Flajolet-Martin (FM)
algorithm [11] for estimating the number of distinct elements over
a deterministic data stream G. Briefly, letting [M] denote the do-
main of the stream (as earlier), the FM algorithm employs a family
H of hash functions h : [M] −→ {1, . . . , log M}, such that, for
any x ∈ [M] Pr[h(x) = i] = 2−i (where probability is defined
over the family of hash-function choicesH). The basic stream syn-
opsis maintained by the FM algorithm (known as an FM sketch) is
a bitmap of size O(log M) that is maintained using a specific hash
function h() ∈ H. Specifically, the sketch is initialized to all zeros
and, for each incoming element x in the stream, the bit at location
h(x) is turned on. By the properties of h(), we expect a fraction
of 2−i of the distinct values in the stream to map to location i of
the sketch; that is, we expect 1

2
of the distinct values to land in bit

1, 1
4

in bit 2, and so on. Thus, if we let λ denote the highest bit
location that has been turned on in the bitmap, then 2λ is a good
indicator of the number of distinct elements in G. Using several in-
dependent FM sketches (with different hash-function choices from
H), it is possible to boost estimation accuracy and confidence to
user-defined (ε, δ) levels (e.g., [4]).

Our proposed sketch synopsis for probabilistic data streams, termed
probabilistic FM (pFM) sketch, is based on similar ideas. We em-
ploy the same class of hash functionsH as the basic FM algorithm,
and define a pFM sketch as an array pFM[] comprising O(log M)
(real-valued) probability entries maintained using a hash function

285

procedure pFMestimate (sketchMatrix[1 . . . s1, 1 . . . s2])
Input: Matrix of s1 × s2 independent probabilistic FM sketches for

probabilistic stream S, where s1 = O(1
ε2

) and s2 = O(log(1/δ)).
Output: (ε, δ)-approximate estimate for EG[F0(S)].
1. let d̂ij := basic pFM estimate of EG[F0(S)] using the sketch

of S at sketchMatrix[i, j] (see Eqn. (1))
2. d̂ :=

P
i,j d̂ij/(s1 · s2)

3. k∗ := dlog(8d̂)e // find inference level
4. for j = 1 to s2 do
5. Yj :=

Ps1
i=1 sketchMatrix[i, j][k∗]/s1

6. return(2k∗ × median{Y1, . . . , Ys2})

Figure 1: (ε, δ) Estimation Algorithm for EG[F0(S)].

h() ∈ H. The pFM[] array is initialized to all zeros, and, for each
streaming pair 〈ti, pi〉 in the probabilistic data stream S, we update
the pFM[h(ti)] entry by setting

pFM[h(ti)]← pFM[h(ti)](1− pi) + pi.
Let h−1(j) the set of tuples in [M] that map onto bit j through

h(); that is h−1(j) = {t ∈ [M] : h(t) = j}. Using a simple
inductive argument, we can prove that, using the update rule above,

pFM[j] = 1−
Q

ti∈S(1− pi) = Pr[h−1(j) 6= φ],
where the last equality follows from tuple independence. We

compute a basic estimate for EG[F0(S)] from the pFM[] array as

d̂ =

O(log M)X
j=1

2jpFM[j]

O(log M)Y
k=j+1

(1− pFM[k]). (1)

Intuitively, the above formula computes an expectation over the 2j

estimates for all possible bitmap locations j using the probability
that j is the highest non-empty location in the bitmap. In a sense,
this can be seen as an “probabilistic expectation” version of the
original FM idea. Our basic pFM estimate can be shown to guar-
antee constant estimation error with constant probability:

THEOREM 4.3. Using a single pFM sketch of size O(log M),
our basic pFM estimation algorithm outputs an estimate d̂ for
EG[F0(S)] such that Pr[1

c
≤ d̂

EG[F0(S)]
≤ c] ≥ 1− 2/c.

An (ε, δ)-Approximate Estimator for EG[F0(S)]. We now give a
streaming (ε, δ)-approximate estimation algorithm for EG[F0(S)].
Briefly, our algorithm employs a number of independent pFM sketches
built over the S probabilistic stream. The basic idea behind our es-
timation process is to first use our constant-factor/probability basic
estimator for EG[F0(S)] (described above) in order to identify an
appropriate inference level k∗ in the pFM sketch structures. Our
goal in determining this inference level is to ensure that the proba-
bility that more than one distinct elements map onto that level (over
all possible worlds G and choices of hash function h()) is small.
We can achieve this by choosing k∗ to be a few levels higher than
log d̂, where d̂ is the estimate returned by averaging basic estimates
across the individual pFM sketches. Then, we use averaging and
median selection over the probabilities at level k∗ across all pFM
sketches in order to produce an accurate estimate of EG[F0(S)].
Pseudocode for our (ε, δ) estimation algorithm is in Figure 1.

THEOREM 4.4. Algorithm pFMestimate returns an (ε, δ)-ap-
proximate estimate for EG[F0(S)] using O(log(1/δ)

ε2
) independent

pFM sketch synopses for the probabilistic data stream S.

Proof (sketch):We briefly discuss the main ideas behind our proof
— the complete details, optimizations of constant factors, etc., are
deferred to the full paper. We start with some notation. Fix a spe-
cific level k in the pFM sketch. Let Xk be an indicator random

variable (RV), over all G and h(), for the event that ≥ 1 distinct
stream elements map onto level k, and let Zk denote a RV (over all
G and h()) for the number of distinct values in the stream mapping
onto level k. Now, fix a specific choice of hash function h() and
let pk(h) = pFM[k] denote the (incrementally) computed proba-
bility at level k of the sketch; this is exactly the fraction of possible
worlds G for which the kth bit of the corresponding FM sketch
is on, i.e., pk(h) = EG[Xk(h)]. In other words, pk(h) is a sam-
ple point (for a fixed h()) from the distribution of Xk — note that
the expectation of Xk has a highly non-linear relationship with F0;
more specifically:

EG,h[Xk] =
P

G Pr[G] · (1− (1− 2−k)F0(G))
since each distinct element in G maps independently onto level

k with probability 1/2k. (We use the G, h subscripts to denote
expectation taken over the space of possible worlds and hash func-
tions, respectively.) So, while we can use the sample points pk(h)
to estimate EG,h[Xk], there is no obvious way to go from that to
our target quantity EG[F0(S)] =

P
G Pr[G] · F0(G).

On the other hand, the expectation of Zk has an “easy” linear
relationship to EG[F0(S)], since

EG,h[Zk]=
X
G

Pr[G]F0(G) Pr[level=k]=2−kEG[F0(S)] (2)

Our goal is to pick out an inference level k∗ such that, with some
constant probability, EG,h[Xk] = EG,h[Zk]. We achieve that using
our initial constant factor approximation to EG[F0(S)] — based
on our analysis, and using an additional averaging step over m iid
instantiations to reduce the variance (and, thus, the probability of
error in the Chebyshev bound) by a factor of m, we can get an
estimate d̂ of EG[F0(S)] such that 4EG[F0] < 4cd̂ < 4c2EG[F0]
with probability at least 1− m+1

mc
. In what follows, we assume our

approximation bounds on d̂ hold and add m+1
mc

to the probability of
error. Define k∗ = dlog(4cd̂)e. Then, our bounds on d̂ imply that

2k∗−3

c2
< EG[F0(S)] < 2k∗−2 or

1

8c2
<

EG[F0(S)]

2k∗
<

1

4
(3)

Now, consider the RV Zk∗ . From Equations (2)–(3), application of
the Markov inequality gives

PrG,h[Zk∗ > 1] < 2−k∗EG[F0(S)] < 1
4
.

So at level k∗, we have Zk∗ ≤ 1 (i.e., Zk∗ ∈ {0, 1}) with
probability ≥ 3/4. Again, we assume Zk∗ ∈ {0, 1} and adjust the
final probability of error by adding 1/4. In this case, at level k∗,
EG,h[Zk∗] = EG,h[Xk∗] = Eh[pk∗(h)] = 2−k∗EG[F0(S)]
(where the last equality follows from Equation (2)). Now, over

all possible choices of h(), the RV pk∗(h) satisfies

Varh[pk∗(h)] ≤ Eh[p2
k∗(h)] ≤ Eh[pk∗(h)] = 2−k∗EG[F0(S)],

(since k∗(h) ∈ [0, 1]). Assuming m iid instantiations (using in-
dependently chosen hash functions h1(), h2(), . . . , hm()) of our
probabilistic FM sketch, we define the sample-average estimator
p̂ =

Pm
i=1 pk∗(hi)/m for the expectation Eh[pk∗(h)] (Line 5 in

our pFMestimate algorithm). From the Chebyshev bound:
Pr

h
|2k∗ p̂ − EG[F0(S)]| > εEG[F0(S)]

i
<

Varh[pk∗ (h)]

mε2E2
h
[pk∗ (h)]

≤ 2k∗

mε2EG[F0(S)]
< 8c2

mε2

(where the last inequality follows from the above equation).
So 2k∗ p̂ is a randomized ε-relative error estimator of EG[F0(S)]

with an overall error probability upper bounded by m+1
mc

+ 1
4
+

8c2

mε2
, where m is the number of iid pFM sketches used for averag-

ing pk∗(hi) instances, and c is a constant > 2. Assuming a small ε
(say, ≤ 1/4), we can now choose m and c to ensure that this error

286

probability is upper bounded by a constant < 1/2. We can now use
O(log(1/δ)) iid instantiations of the above procedure to bring the
overall error probability down to δ (Lines 4–6 of pFMestimate).
Thus, we have an (ε, δ) randomized estimator for EG[F0(S)] using
O(log(1/δ)

ε2
) pFM sketch summaries.

Estimating VarG[F0(S). Computing VarG[F0(S)] initially seems
harder than computing EG[F0(S)]. As we demonstrate, however,
the complexity of building a good estimator is no harder, by reduc-
tion to the expectation-estimation problem.

LEMMA 4.5. Given a method to (ε, δ) approximate EG[F0(S)],
the quantity VarG[F0S)] can be estimated (using the same space)
with error at most 3εEG[F0(S)] with probability at least 1− 2δ.

Proof:Given a probabilistic stream S = (〈ti, pi〉 : i = 1, . . . , N),
we define a new stream S2 = (〈ti, 2pi − p2

i 〉 : 1 ≤ i ≤ N), and
compute EG[F0(S2)]. We claim that EG[F0(S2)]− EG[F0(S)] =
VarG[F0(S)]. We prove this claim by studying properties of pt,
where pt denotes the probability that t does not occur in a ground
stream of S, i.e. pt =

P
t6∈G,G∈grnd(S) Pr[G] =

Q
i,ti=t(1− pi).

Thus, EG[F0(S)] =
PM

t=1 pt =
PM

t=1 1− pt and
EG[F0(S2)] =

PM
t=1 1−

Pt6∈G,
G∈grnd(S2) Pr[G] =

PM
t=1 1− p2

t .

So EG[F0(S2)]− EG[F0(S)] =
PM

t=1(1− p2
t)−

PM
t=1(1− pt)

=
PM

t=1 pt(1− pt) = VarG[F0(S)],

since Lemma 4.1 showed that VarG[F0(S)] =
PM

t=1 pt(1− pt).
We observe that 1− p2

t = 2pt − p2
t ≤ 2pt, and thus

EG[F0(S2)] =

MX
t=1

1− p2
t ≤ 2

MX
t=1

pt = 2EG[F0(S)].

Thus, if we (ε, δ) approximate EG[F0(S2)], the error is at most
2εEG[F0(S)] with probability at least 1 − δ. Combining this with
an (ε, δ) approximation of EG[F0(S)] yields an approximation of
VarG[F0(S)] which is within 3εEG[F0(S)] with probability at least
1− 2δ by the union bound.

Our proof argument demonstrates that we can compute VarG[F0(S)]
using two distinct pFM sketches: one for estimating EG[F0(S)]
over the original stream S = (〈ai, pi〉 : 1 ≤ i ≤ N), and one for
estimating EG[F0(S2)] over a “modified” stream S2 = (〈ai, 2pi−
p2

i 〉 : 1 ≤ i ≤ N). But we can be even more space efficient:
observe that our pFM sketch summaries find

pFM[b] = Pr[h−1(b) 6= φ in grnd(S)]

=1− Pr[h−1(b) = φ in grnd(S)] = 1−
Y

t,h(t)=b

pt

If we built a pFM summary pFM2 of S2 using the same hash func-
tion h(), we want to find pFM2[b] = 1−

Q
t,h(t)=b p2

t . But,

1−
Y

t,h(t)=b

p2
t = 1− (

Y
t,h(t)=b

pt)
2 = 1− (1− pFM[b])2.

Thus, we can actually estimate both EG[F0(S)] and EG[F0(S2)]
using the information stored in a single pFM sketch data structure.

5. SECOND MOMENT AND JOIN SIZE
We next consider the complexity of computing the expectation

and variance of the second frequency moment of a probabilistic
stream. Later, we will go on to study the related question of the
expected join size between two probabilistic streams.

5.1 Expectation of F2 using pAMS
We introduce an estimation technique based on the randomized

sketches of Alon et al. [2], which we call “probabilistic AMS”, or
pAMS for short. We proceed by reducing the problem from com-
puting over exponentially many ground streams to tracking infor-
mation about the up to M distinct tuples in the stream, then show
how to approximate this information in sublinear space.

THEOREM 5.1. We can compute an estimator F̂2 for EG[F2(S)]

such that |EG[F2(S)]−F̂2| ≤ εEG[F2(S)] with probability at least
1− δ in space O(1

ε2
log 1/δ).

Proof:We first analyze the problem to show an algorithm that com-
putes the exact value of EG[F2(S)] in space linear in M . Let St

denote the substream of S corresponding only to tuples t, i.e. St =
{〈ti, pi〉 ∈ S, ti = t}. Let Xt be a random variable which captures
the distribution of the occurrences of t (ft). Since each 〈t, pi〉 ∈ St

can be thought of as defining an (independent) Bernoulli random
variable, we can write E[Xt] = ft =

P
〈t,pi〉∈St

pi. Moreover,
each Bernoulli variable has variance equal to pi(1− pi) and by the
summation of variances Var[Xt] =

P
i pi(1− pi). Now we have

E[X2
t] = Var[Xt]+E[Xt]

2 =
X

〈ti,pi〉∈St

pi(1−pi)+(
X

〈ti,pi〉∈St

pi)
2

For a given t, this sum can be tracked in constant space: let
vt =

P
〈ti,pi〉∈St

pi and wt =
P

〈ti,pi〉∈St
p2

i . Then we need
to compute v2

t − wt + vt. Each of vt and wt are easy to update
as each tuple from S, 〈t, pi〉, is seen: we set vt ← vt + pi and
wt ← wt + p2

i . Finally observe that

EG[F2(S)] =

MX
t=1

E[X2
t] =

MX
t=1

(v2
t + vt − wt),

showing that EG[F2(S)] can be found exactly in space O(M).
In order to compute EG[F2(S)] in small space (sublinear in the

number of domain size, M), we define the random variable Y =PM
t=1 X2

t . By linearity of expectation,

EG[F2(S)] = E[Y] =

MX
t=1

(
X

〈ti,pi〉∈St

pi − p2
i) + (

X
〈ti,pi〉∈St

pi)
2)

The first term is precisely VarG[F1(S)], which we have already
shown can be computed exactly in constant space by tracking the
sum of all variances of each tuple, i.e.

P
〈ti,pi〉∈S pi(1− pi). The

last term is a streaming second frequency moment computation ap-
plied to the stream of probabilities S. We can treat S as a non-
probabilistic stream which defines the vector K1 such that

K1[t] = vt =
P

〈ti,pi〉∈S,t=ti
pi,

and write this term as ‖K1‖22, the square of the L2 norm of the
vector V . Using the Alon et al. sketching technique, we can find
‖K̂1‖22 which is an (ε, δ) estimator for ‖K1‖2 in space O(1

ε2
log 1

δ
)

[2, 10]. Thus we define our estimator
F̂2(S) = VarG[F1(S)] + ‖K̂1‖22.

Since VarG[F1(S)] ≥ 0 provided all 0 ≤ pi ≤ 1, the sum of
the first and third terms above is a non-negative quantity; hence,
summing a (1 ± ε) estimator for ‖K1‖2 with exact values for
VarG[F1(S)] yields an estimator for EG[F2(S)] that is within a
(1 ± ε) factor with probability at least 1 − δ. In other words, our
probabilistic AMS technique (pAMS) is a guaranteed (ε, δ) estima-
tor for EG[F2(S)]. Importantly, the space used is independent of
M , the number of distinct items in the stream and |S| = N , the
length of the stream.

287

EXAMPLE 5.2. We again use the stream S = (〈x, 1
2
〉, 〈y, 1

4
〉,

〈y, 1
3
〉). Here we can compute over all ground streams

EG[F2(S)] = 1(1
4

+ 5
24

) + 2 5
24

+ 4 1
24

+ 5 1
24

= 5
4
.

By the above analysis, we have
vx = 1

2
and wx = 1

4
; vy = 7

12
and wy = 25

144
.

Thus, we can confirm that
EG[F2(S)] = (1

2
+ 1

4
− 1

4
) + (7

12
+ 49

144
− 25

144
) = 5

4
.

5.2 Variance of F2 using pAMS
To compute E[F2(S)], we made use of the facts that the expec-

tation of the sum of independent random variables is equal to the
sum of the expectations (linearity of expectation), and that the vari-
ance of the sum is equal to the sum of the variances (linearity of
variance). These are two cases of more general properties of ran-
dom variables based on the cumulants of the variables, denoted by
κj [X]. The first cumulant of a random variable X , κ1[X], is just
the mean of the distribution, E[X]. The second cumulant is the
variance: κ2[X] = Var[X]. Higher cumulants can be expressed in
terms of the central moments of the variable: for example,

κ3[X] = E[(X−E[X])3] and κ4[X] = E[(X−E[X])4]−3Var[X]2.

The important property of cumulants that we will make extensive
use of is that, for independent random variables X and Y ,

∀j ∈ N. κj [X + Y] = κj [X] + κj [Y]

that is, cumulants generalize the linearity of expectation and vari-
ance to higher moments of independent variables.

THEOREM 5.3. We can approximate VarG[F2(S)] with addi-
tive error εEG[F2(S)]3/2 in space O(1

ε2
log 1

δ
).

Proof:By expanding and rearranging, we can write
E[X4] = κ4[X] + 4κ3[X]κ1[X] + 3κ2

2[X] + 6κ2[X]κ2
1[X] + κ4

1[X]
E[X2]2 = (κ2

1[X] + κ2[X])2 = κ4
1[X] + κ2

2[X] + 2κ2
1[X]κ2[X]

Var[X2] = E[X4]− E[X2]2

= κ4[X] + 4κ3[X]κ1[X] + 2κ2
2[X] + 4κ2[X]κ2

1[X]
Writing B(p) for a Bernoulli random variable with parameter p,

we have the following equalities:

κ1[B(p)] = E[B(p)] = p κ2[B(p)] = Var[B(p)] = p(1− p)
κ3[B(p)] = (1− 2p)p(1− p) κ4[B(p)] = (1− 6p + 6p2)p(1− p)

Note that since 0 ≤ p ≤ 1, we have
0≤ κ2[B(p)] ≤ κ1[B(p)] ≤ 1

−κ2[B(p)]≤ κ3[B(p)] ≤ κ2[B(p)]
−κ2[B(p)]/2≤ κ4[B(p)] = (1− 6κ2[B(p)])κ2[B(p)] ≤ κ2[B(p)]

Thus κ3[B(p)] and κ4[B(p)] may be negative, but for any ran-
dom variable Var[X2] must be non-negative (indeed, for a Bernoulli
random variable, B(p) = B(p)2 = B(p)4 and so Var[B(p)2] =
Var[B(p)] = κ2[B(p)]). By summation of cumulants, for an RV
Xt corresponding to the number of occurrences of t in S, we have

κk[Xt] =
P

〈ti,pi〉∈St
κk[B(pi)].

We will write vectors Kj such that Kj [t] = κj [Xt] (hence, K1

is as before). By summation of variance, we can write

VarG[F2(S)] =

MX
t=1

K4[t]+4K3[t]K1[t]+2K2
2 [t]+4K2

1 [t]K2[t]

The first term, which we denote κ4[S], can be computed exactly
in constant space, as it is a sum of a function of each pi in turn.
The other three terms are more complex, but can be dealt with using
techniques from computing over deterministic streams. The second
and third terms are both the inner-product of vectors of dimension

M , where each entry is the sum of values derived from individ-
ual tuples in S. These can be approximated using the sketching
technique of Alon et al. [1]. The fourth term can be thought of
as a three-way join between relations encoded as vectors x, y, z,
where it happens that x = y. This can be approximated using
the technique of Dobra et al. [9]. Thus we can build an estimatordVarG[F2(S)] by building four AMS sketches, one each for the vec-
tors K3 and K2, and two for K1 (two are needed to estimate the
last term), plus the exact computation of ‖K4‖1 in constant space.
Our estimator is formed as:dVar = κ4[S] + 4K̂3 ·K1 + ‖K̂2‖22 + 4 ̂K1 ·K1 ·K2,

where K̂3 ·K1 is the (approximate) dot product of the vectors
K3 and K1, and ̂K1 ·K1 ·K3 is the (approximate) three-way dot
product of those vectors. With probability at least 1 − δ, the error
|VarG[F2(S)]−dVar| is at most

ε(4‖K3‖2‖K1‖2 + ‖K2‖22 + 4‖K1‖22‖K2‖2).
By the above observations on the relative size of the cumulants

from which the vectors are formed, we have
|κ3[B(p)]| ≤ κ2[B(p)] ≤ κ1[B(p)].

Each variable Xt is formed as the sum of Bernoulli random vari-
ables, giving |κ3[Xt]| ≤ κ2[Xt] ≤ κ1[Xt] and hence ‖K3‖2 ≤
‖K2‖2 ≤ ‖K1‖2. As a result, the error from the approximation is
bounded by 9‖K1‖22‖K2‖2. To write this in terms of the quan-
tities we are estimating, we observe that ‖K2‖2 ≤ ‖K1‖2 for
any stream, and note that EG[F2(S)] = (‖K1||22 + ‖K2‖1), so
‖K1‖32 ≤ EG[F2(S)]3/2. We note that a similar line of reasoning
using the cumulant representation can show that VarG[F2(S)] ≤
EG[F2(S)]3/2, meaning that this bound is reasonable. We con-
clude that using our pAMS technique, we can build an estimator in
constant space, independent of N and M , so (after rescaling of ε
by a constant ≤ 9):
Pr[|dVarG[F2(S)]− VarG[F2(S)]| ≥ εEG[F2(S)]3/2] ≤ 1− δ.

EXAMPLE 5.4. We study computing Var[F2(S)] for S = (〈x, 1
2
〉,

〈y, 1
4
〉, 〈y, 1

3
〉), to demonstrate the reduction to computation of cu-

mulants. First, over all ground streams we compute
EG[F2(S)2] = 1(6

24
+ 5

24
) + 4 5

24
+ 25 1

24
+ 16 1

24
= 3,

so VarG[F2(S)] = EG[F2(S)2]− EG[F2(S)]2 = 3− 25
16

= 23
16

.
For the cumulant based approach, we have the vectors
K1 = [1

2
, 7

12
], K2 = [1

4
, 59

144
], K3 = [0, 145

864
], K4 = [−1

8
, −337

3456
].

Thus we confirm that, as claimed, VarG[F2(S)] = 23
16

=

(−1
8

+ −337
3456

)+4(7
12
· 145
864

)+4(1
4
· 1
2

2
+ 59

144
· 7
12

2
)+2(1

4

2
+ 59

144

2
).

5.3 Expected Join Size with pAMS
Consider two streams S1 and S2, and we wish to evaluate

EG[|S1 ./ S2|], i.e. the expected join size between all possible
grounded streams of S1 and S2. This initially seems even more
challenging, since we are now reasoning over a space of 2|S1| ×
2|S2| possible worlds. In fact, we can again use pAMS sketches.

THEOREM 5.5. In one pass we can compute an estimate J of
EG[|S1 ./ S2|] such that |J − EG[|S1 ./ S2|]| ≤ ε‖S1‖2‖S2‖2
with probability at least 1− δ in space O(1

ε2
log 1/δ).

Proof:Let K1(S1) and K1(S2) be the vectors of first cumulants as
defined above. Expanding out the definitions and using the inde-
pendence of S1 and S2 we find EG[S1 ./ S2] = K1(S1) ·K1(S2),
the dot product of the two vectors. Using sketches again we can
compute the estimate J = ̂K1(S1) ·K1(S2) and, by properties of
the sketches, the error is bounded by

|J − EG[|S1 ./ S2|]| ≤ ε‖S1‖2‖S2‖2

288

with probability at least 1− δ using a summary for each stream of
size O(1

ε
log 1/δ), independent of M and N . This summary can

be maintained incrementally as each new 〈ti, pi〉 is read.

Note that in the case that each pi is 1 (a deterministic stream),
this is identical to the regular join size estimation using sketches,
as one would hope.

EXAMPLE 5.6. Consider again our example stream, S = (〈x, 1
2
〉,

〈y, 1
4
〉, 〈y, 1

3
〉), and let S1 = S2 = S be two independent streams

which happen to have the same distribution. Even with this tiny ex-
ample, it is somewhat laborious to evaluate all 25 possible combi-
nations of grounded streams in order to compute EG[|S1 ./ S2|] =
85
144

. In comparison, it is straightforward to find
px,1 = px,2 = 1

2
, py,1 = py,2 = 7

12
,

and so compute EG[|S1 ./ S2|] = 1
2

2
+ 7

12

2
= 85

144
.

Note that this is a different answer compared to EG[F2(S)] on
the same stream, whereas for ground stream computations, the size
of the join between a stream and itself is equal to the second fre-
quency moment of the stream. There is no contradiction here: note
that S1 and S2 are two independent streams. The join of two in-
dependent streams with the same distribution is different from the
self-join of a single probabilistic stream (i.e. EG[F2(S)]), since the
former must consider all possible combinations of ground streams.
In fact, we can always be sure that EG[|S ./ S|] ≤ EG[F2(S)],
since we can write EG[|S ./ S|] = ‖S‖22, whereas EG[F2(S)] =
‖S‖22 + VarG[F1(S)]. Equality occurs when all probabilities are 0
or 1, i.e. deterministic streams. This highlights an important exam-
ple where our intuitions from dealing with deterministic streams do
not directly carry over to the world(s) of probabilistic streams.

6. HIGHER MOMENTS ESTIMATION
We extend our approach to higher frequency moments (Fk > 2)

and higher central moments (EG[(X − EG[X])k], k > 2).

6.1 Higher Central Moments
The central moments of a distribution are defined as

Ck[X] = EG[(X − EG[X])k]

for k ∈ N. It follows that C1[X] = 0, and C2[X] = E[(X −
E[X])2] = Var[X]. The higher central moments further define the
distribution. By analogy to our earlier definitions, we can define
for probabilistic streams and aggregate F :

Ck,G[F] =EG[(F (S)− EG[F (S)])k]

=
X

G∈grnd(S)

Pr[G](F (G)− EG[F (S)])k

They can also be written in terms of cumulants. For example,
C3[X] = κ3[X], and thus we can compute C3,G[F1(S)] in con-
stant space. Continuing:

C4[X] =κ4[X] + 3κ2[X]2

C5[X] =κ5[X] + 10κ3[X]κ2[X]

C6[X] =κ6[X] + 15κ4[X]κ2[X] + 15κ3
2[X]

Thus C4,G[F1(S)], C5,G[F1(S)] and C6,G[F1(S)] can also be com-
puted exactly in constant space: we can compute each κk,G[F1(S)]
exactly in constant space for k ≤ 6, by computing κk[B(pi)] of
each individual Bernoulli random variable defined by a 〈ti, pi〉 tu-
ple, and using the summability of cumulants to get the correct re-
sult. This method works for all higher cumulants and central mo-
ments κk[F1(S)] and Ck,G[F1(S)], thus we can completely char-
acterize the kth central moments in O(k) space.

EXAMPLE 6.1. Consider computing C4,G[F1(S)], where S =
(〈x, 1

2
〉, 〈y, 1

4
〉, 〈y, 1

3
〉), as usual. We find EG[F1(S)] = 13

12
, and

thus EG[(F1(S)− EG[F1(S)])4] =
−13
12

4 1
4

+ −1
12

4 11
24

+ 11
12

4 1
4

+ 23
24

4 1
24
≈ 1.0832.

We compute κ2[F1(S)] = VarG[F1(S)] = 95
144

, and
κ4[F1(S)] = 1

4
(1− 3

2
) + 2

9
(1− 4

3
) + 3

16
(1− 9

8
) = −769

3456
.

Thus using the cumulants approach we find

κ4[F1(S)] + 3κ2
2[F1(S)] = C4,G[F1(S)](≈ 1.0832).

Computing C3,G[F0(S)]. Now that we have completely character-
ized all central moments based on F1 exactly, we turn our attention
to central moments based on the F0 aggregate, In Section 4.1 we
showed how to estimate C2,G[F0(S)] (that is, VarG[F0(S)]) by re-
ducing to the estimation of EG[F0(S2]) of a derived stream S2. The
same approach can work for C3,G[F0(S)].

THEOREM 6.2. Given an (ε, δ) estimator for EG[F0(S)], the
quantity C3,G[F0(S)] can be estimated with error at most
13εEG[F0(S)] with probability at least 1− 3δ.

Proof:As before, define S2 = 〈ti, 2pi−p2
i 〉 and additionally define

S3 = 〈ti, 3pi − 3p2
i + p3

i 〉. Observe that both new streams gener-
ate new probabilities which are well behaved, i.e., lie in the range
[0 . . . 1]. We claim that

EG[F0(S)]− 3EG[(F0(S2)] + 2EG[F0(S3)] = C3,G[F0(S)].

Defining pt = 1 − pt, we have EG[F0(S3)] =
PM

t=1 1 − p3
t And

so, simplifying to the definition of κ3[Xt]:
EG[F0(S)]− 3EG[F0(S2)] + 2EG[F0(S3)] =

PM
t=1 pt − 3p2

t + 2p3
t

which is C3,G[F0(S)]. From Lemma 4.5, we have EG[F0(S2)] ≤
2EG[F0(S)]. Similarly, we can observe that

3pt − 3p2
t + p3

t ≤ 3pt − 2p2
t − p2

t (1− pt) ≤ 3pt.

So EG[F0(S3)] ≤ 3EG[F0(S)]. Consequently, the net error in the
estimate of C3,G[F0(S)] is bounded by (1+2·3+3·2)EG[F0(S)],
with probability at least 1− 3δ by the union bound.

We note that the same idea of keeping a single pFM sketch and
deriving a sketch pFM2 of S2 and pFM3 of S3 works here, mean-
ing that the estimation can be made using a single sketch.

Similar techniques can be adapted for higher central frequency
moments, Ck,G[F0(S)], although they become more involved, as
the terms become harder to approximate, and the relevant constants
increase, so we omit the lengthy details. Likewise, we can build
estimators for Ck,G[F2(S)] by generalizing the technique we used
for VarG[F2(S)], but these also become quite involved and are of
lesser value compared to EG[F2(S)] and VarG[F2(S)], so we do
not discuss them further here.

6.2 Higher Frequency Moments
A similar technique cam be applied to approximate the expected

value of higher frequency moments. We focus on EG[F3(S)], the
expected value of the third frequency moment, defined as

EG[F3(S)] =
P

G∈grnd(S) Pr[G] · F3(G).
We make use of properties of the third cumulant, κ3[X], which

can also be written as
κ3[X] = E[X3]− 3κ1[X]κ2[X]− κ3

1[X].
Thus, to find EG[F3(S)] we compute

EG[F3(S)] =
PM

t=1 κ3[Xt] + 3κ1[Xt]κ2[Xt] + κ3
1[Xt]

We address each of these terms in turn. We already know that
we can compute κ3[S], the third cumulant of the whole stream,
exactly with a single variable. The second term is an inner product

289

between the vectors K2 and K1 that were defined in Section 5.2
on estimating VarG[F2(S)]. Using the AMS sketching technique,
this quantity can be estimated up to error ε‖K1‖2‖K2‖2 in space
O(1

ε2
log 1

δ
). Lastly, we need to estimatePM

t=1 κ1[Xt]
3 =

PM
t=1(

P
〈ti,pi〉∈St

pi)
3,

which is a (generalized version of a) third moment computation of
the stream of pi’s. In order to approximate this, we define a vari-
ation of the generic AMS estimator for the more general problem
of estimating the Fk(S) for any k [2], and prove that it gives the
necessary accuracy2. Note that the original estimator is only de-
fined for “unary” streams where each arrival of an item counts for
an increment of exactly one for the frequency of that item, and so
requires some careful analysis and proof.

Estimator for Fk on Streams of Fractional Values. We define
the generalized kth frequency moment as:

Fk(S) =
PM

t=1(
P

〈ti,pi〉∈St
pi)

k).
Note that this is quite distinct from the definition of EG[Fk]

above: this question does not respect the semantics of S being a
probabilistic stream, instead treating it as a deterministic stream
of fractional non-negative updates. We can think of it as ‖V ‖kk, in
terms of a vector norm on a vector V defined by the stream. We de-
fine an estimator as follows. Let Pj =

P
〈ti,pi〉∈S,i<j pj , i.e. Pj is

EG[F1(S)] for the stream seen so far. From the stream, randomly
sample the t-th tuple, 〈tj , pj〉, with probability pj/Pj . This can be
done using a weighted version of standard reservoir sampling: track
the value of Pj =

Pj
i=1 pi, and sample the next tuple j (replacing

the currently sampled item) with probability pj/Pj . It follows in-
ductively that the probability of an item surviving this process is ex-
actly pj/Pj , as required. Then compute pt,j =

P
〈ti,pi〉,i>j,ti=t pi,

the sum of probabilities of all tuples containing t which occur after
the sampled j−th tuple. We output the estimator

Ej = ((pj + pt,j)
k − pk

t,j)Pj/pj .

THEOREM 6.3. Taking the mean of O(k
ε2

M1−1/k) copies of
the estimator Ej , and the median of O(log 1/δ) means gives an
(ε, δ) approximation ‖V̂ ‖kk for Fk(S) in one pass.

Thus we can estimate the
PM

t=1 κ3
1[Xt] = ‖K1‖33 term in the

expression for EG[F3(S)] in space sublinear in the support size of
the stream M , and independent of the stream length N . Putting
these together, we form our estimator for EG[F3(S)] as F̂3 =

3K̂1 ·K2 + ‖K̂1‖33 + κ3[S]. With probability at least 1− δ,
|F̂3 − EG[F3(S)]| ≤ ε(3‖K1‖2‖K2‖2 + ‖K1‖33).

Note that the κ3[S] term may be negative, however one can show
EG[F3(S)] ≥ ‖K1‖33, which is non-negative. If we assume that
the average value of K1 is no less than 1 (i.e., ‖K1‖1 ≥ M), and
recalling that ‖K2‖2 ≤ ‖K1‖2 (see proof of Theorem 5.3), we can
prove ‖K1‖22 ≤ ‖K1‖33, giving a bound on the error as 4ε‖K1‖33.
Thus, after rescaling ε by a constant at most 4, we have a relative
error approximation in sublinear space, and so we conclude,

THEOREM 6.4. In one pass, we can find an (ε, δ) estimator for
EG[F3(S)] in space O(1

ε2
M2/3 log 1/δ), if EG[F1(S)] ≥M .

7. EXPERIMENTAL RESULTS
We implemented our algorithms for the main frequency moments

F0, F1 and F2 in C: probabilistic FM (pFM), probabilistic AMS
(pAMS), and the universal sampling algorithm using FM and AMS
2We comment that the algorithm of Ganguly et al [12] can also be used to
obtain an improved dependency on M but a higher dependency on ε.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

)

Total space (KB)

Time cost of E[F0(S)] estimation

pFM
sampling

Figure 3: Time for EG[F0(S)] estimation

estimators, so our results are fairly compared. We exhaustively
computed the exact answers to our aggregates, in order to compare
them to the approximate values we obtain from our algorithms. Our
experiments were performed on standard desktop class machines.
We found our algorithms to be very efficient, and we report timings
as a general guide to relative performance, since the exact behavior
will vary depending on optimizations, cache policy and so on.

Data Sets. We considered a variety of real and synthetic data.
For synthetic data, we created each tuple 〈ti, pi〉 independently by
drawing each ti from a Zipfian distribution, and each pi uniform
from the range [0, 1]. This captures many settings where data is
drawn from distributions with skew, and with a variety of uncer-
tainty values. We vary the skewness parameter of the Zipfian dis-
tribution from z = 0.0 (uniform) to z = 2.0 (highly skewed). In
each experiment, we generated 106 tuples from this distribution.
We also used a real data set from the MYSTIQ project3 which in-
cludes approximately 250,000 probabilistic tuples. Each tuple links
a film in the IMDB database to a product in Amazon.com’s inven-
tory, and includes a “probability of match” value. So EG[F0(S)]
is the expected number of (distinct) matched titles matched, and
EG[F2(S)] is the expected self-join size.

Experiments on F0 Estimation. Our experiments on F0 estima-
tion are shown in Figure 2. We see that, given a fixed amount of
space, the universal sampling algorithm consistently obtains an ap-
proximation of EG[F0(S)] that is within a few percentage points,
while the Probabilistic FM approach is typically between 5% to
10% relative error from uniform to skewed data (Figure 2(a)). Partly
this is due to the space efficiency of the algorithms: the universal al-
gorithm can use FM sketches which are based on bitmaps, whereas
for each bit in a regular FM sketch the pFM structure uses a 64 bit
integer; thus, it uses 64 times as many structures in the same space.
The trend is for the accuracy to improve as more space becomes
available (Figure 2(b)). Because the FM algorithm is itself ran-
domized, accuracy does not improve uniformly with more space,
but rather the trend is for the variability to decrease as more space
is used, as seen more clearly in Figure 2(c). The conclusion ap-
pears to be that for the task of estimating EG[F0(S)], the universal
algorithm is the most accurate within a given space bound. How-
ever, there is a price to pay in terms of the time cost. Since it has 64
times as many data structures, the time to update is correspondingly
slower. Figure 3 shows that processing time increases linearly with
space for both algorithms, as predicted by our analysis. But the
universal algorithm is about thirty times slower to process a million
tuples in our implementation (it manipulates bit vectors instead of
floating-point numbers, so is not fully 64 times slower).

3See http://www.cs.washington.edu/homes/suciu/
project-mystiq.html; we thank the authors for sharing their data.

290

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
el

at
iv

e
E

rr
or

 %

Zipf distribution parameter

Accuracy of E[F0(S)] estimation on Synthetic Data

pFM
sampling

(a) EG[F0(S)], 32KB space

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of E[F0(S)] estimation on Synthetic Data

pFM z=0.0
pFM z=0.8

sampling z=0.0
sampling z=0.8

(b) EG[F0(S)], Zipfian data

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of E[F0(S)] estimation on IMDB Data

pFM
sampling

(c) EG[F0(S)], IMDB data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
el

at
iv

e
E

rr
or

 %

Zipf distribution parameter

Accuracy of Var(F0) estimation on Synthetic Data

Probabilistic FM
Ground Streams

(d) VarG[F0(S)], 32KB space

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of Probabilistic FM Var(F0) estimation

Zpifian z=0.0
Zipfian z=0.4
Zipfian z=0.8
Zipfian z=1.2

(e) VarG[F0(S)], Zipfian Data

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of Var(F0) and Var(F2) on IMDB Data

Var(F0) estimation
Var(F2) estimation

(f) VarG[F0(S)] and VarG[F2(S)], IMDB data

Figure 2: Results on EG[F0(S)] and VarG[F0(S)] estimation on real and synthetic data

When it comes to computing VarG[F0(S)], the tables are turned,
and quite dramatically so. The probabilistic FM algorithm consis-
tently achieves a relative accuracy within 10-20% with a moderate
amount of memory (recall, its guarantee is in terms of EG[F0(S)],
not VarG[F0(S)]). Meanwhile, computing the variance of the sam-
ples found by the universal algorithm yields estimates that are many
orders of magnitude adrift. The reason for this is given in Sec-
tion 3.1: By studying the output of the algorithms, we verified that
it obtains a very accurate estimate of EG[F0(S)]2 and EG[F0(S)]2.
But these terms are both very large compared to VarG[F0(S)], so
the final error becomes huge, in relative terms. Meanwhile, the
probabilistic FM algorithm, which gives a guarantee on its error
proportional to EG[F0(S)] instead of EG[F0(S)]2, can give much
better estimates. This is true across a broad range of synthetic data
(Figures 2(d) and 2(e)), and on real data (Figure 2(f)), with a trend
for improving accuracy as space increases.
Experiments on F2 Estimation. Our experimental results on F2

estimation are shown in Figure 4. Again, the universal algorithm
does well with an average of 2–3% error for estimating EG[F2(S)]
on all data types, and improving accuracy as the given space in-
creases (Figures 4(b) and 4(c)). Data with moderate skew seems
to be the most challenging for the probabilistic AMS algorithm,
which obtained accuracy of better than 6% throughout. Timing
results are quite comparable: our implementation of pAMS used
64 bit floating point values where the universal algorithm uses the
same structure but with 32 bit integers. So the universal algorithm
did twice as many hashing operations, but then uses integer arith-
metic to update counts. On our set up, the time cost was about the
same for both algorithms: approximately 1 second for our algo-
rithms to completely process a data set of 106 items for EG[F2(S)]
estimation, independent of the total summary size. This increases
to 4 seconds for VarG[F2(S)], since our algorithm requires four
sketches: one for each of the vectors K3 and K2, and two for K1

(to perform the estimation of K1 ·K1 ·K2). Thus either algorithm
scales well to large quantities of data and restricted resources.

Again for VarG[F2(S)] estimation, we see the limitation of the
universal algorithm. Only when the data set is extremely skewed
(z > 1) does it have a chance of making any reasonable estimate.
This is for the same reason as in the F0 case: the error in its esti-
mate is proportional to EG[F2(S)]2, which is very large in compar-
ison to VarG[F2(S)]. Our analysis shows that the error in pAMS
estimation depends in the worst case on EG[F2(S)]3/2, which is
enough of an edge to make its estimates quite tolerably accurate.
The hard case for both algorithms is on more uniform data. Fig-
ure 4(e) shows that increasing the space for probabilistic FM im-
proves the accuracy for the ‘hard’ data, while the error on more
skewed data is close to zero throughout. The same conclusion is
shown on the IMDB data in Figure 2(f). Likewise, increasing the
amount of space available did tend to improve the accuracy of the
universal algorithm, but not to sufficiently reliable levels even for
highly skewed data. Interestingly, increasing the number of ground
streams used to make the estimate did not seem to reliably improve
the quality, and in fact tended to reduce the accuracy.

Lastly, we looked at estimating VarG[F1(S)] using the universal
algorithm. Note that we can compute this exactly in constant space
using our analysis from Section 3.2. However, this was a useful
example to study since there is no error introduced in computing F1

of the ground stream: it is precisely the number of items observed
in that stream (consequently, the skewness of the synthetic Zipfian
distribution is irrelevant for this aggregate). Figure 4(f) shows that
increasing the number of ground streams does seem to improve the
accuracy, but somewhat slowly and unreliably. Even with 1000
ground streams, the expected accuracy is above 5% relative error.
For other aggregates, drawing even a hundred ground streams is
not always be feasible, since this entails storing 100 separate AMS
or FM summary structures, each of which is typically 10s of KBs

291

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
el

at
iv

e
E

rr
or

 %

Zipf distribution parameter

Accuracy of E[F2(S)] estimation on Synthetic Data

pAMS
sampling

(a) EG[F2(S)], 80KB space

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of E[F2(S)] estimation as sketch size varies

pAMS, Zipfian z=0.0
sampling, Zipfian z=0.0

pAMS, Zipfian z=0.8
sampling, Zipfian z=0.8

(b) EG[F2(S)], Zipfian data

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of E[F2(S)] estimation on Real Data

pAMS
sampling

(c) EG[F2(S)], IMDB data

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
el

at
iv

e
E

rr
or

 %

Zipf distribution parameter

Accuracy of Var(F2) estimation on Synthetic Data

Probabilistic AMS
Ground Streams

(d) VarG[F2(S)], 80KB space

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

R
el

at
iv

e
E

rr
or

 %

Total space (KB)

Accuracy of Probabilistic AMS Var(F2) estimation

Zipfian z=0.0
Zipfian z=0.4
Zipfian z=0.8
Zipfian z=1.2

(e) VarG[F2(S)], Zipf skewness = 0.5

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 200 400 600 800 1000

R
el

at
iv

e
E

rr
or

 %

Number of ground streams

Accuracy of Var[F1(S)] estimation with ground streams

IDMB data
Synthetic Data

(f) VarG[F1(S)]

Figure 4: Results on EG[F2(S)], VarG[F2(S)] and VarG[F1(S)] estimation

or more. Moreover, the throughput decreases by a factor of 100s
compared to the probabilistic sketching methods we propose here.
Experimental Conclusions. From our experiments, we conclude
that, given a fixed amount of space, the universal sampling algo-
rithm obtains high accuracy for computing the first central mo-
ment, such as EG[F0(S)] or EG[F2(S)]. But, some cases such
as EG[F0(S)] it can be many times slower than the probabilistic
equivalent, which is somewhat less accurate. For the second cen-
tral moment, VarG[F0(S)] and VarG[F2(S)], we can do dramat-
ically better using methods tailored to the aggregate. This seems
the only way to obtain efficient estimates of these quantities, since
the amount of space to estimate them well using the universal algo-
rithm is greater than the space needed to run the exact algorithm.

8. REFERENCES
[1] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking join and

self-join sizes in limited storage. In ACM PODS, 1999.
[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of

approximating the frequency moments. In ACM STOC, 1996.
[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models

and issues in data stream systems. In ACM PODS, 2002.
[4] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and

L. Trevisian. Counting distinct elements in a data stream. In
RANDOM, 2002.

[5] O. Benjelloun, A. Das Sarma, C. Halevy, and J. Widom. Uldbs:
Databases with uncertainty and lineage. In VLDB, 2006.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space-
and time-efficient deterministic algorithms for biased quantiles over
data streams. In PODS, 2006.

[7] G. Cormode and S. Muthukrishnan. Improved data stream summary:
The count-min sketch and its applications. J. Alg., 55(1), 2005.

[8] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. In VLDB, 2004.

[9] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi. Processing
complex aggregate queries over data streams. In SIGMOD, 2002.

[10] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An
approximate L1-difference algorithm for massive data streams. In
IEEE FOCS, 1999.

[11] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
database applications. J. Computer and System Sciences, 31, 1985.

[12] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler algorithm
for estimating frequency moments of data streams. In SODA, 2006

[13] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data
streams: You only get one look. In SIGMOD, 2002.

[14] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate
queries. In VLDB, 2001.

[15] M. Greenwald and S. Khanna. Space-efficient online computation of
quantile summaries. In SIGMOD, 2001.

[16] T.S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for
probabilistic data. In SODA, 2007.

[17] T.S. Jayram, R. Krshnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng.
Bulletin, 29(1), 2006.

[18] T.S. Jayram, A. McGregor, S. Muthukrishnan, E. Vee. Estimating
Statistical Aggregates on Probabilistic Data Streams. In PODS, 2007.

[19] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting
input data errors probabilistically using integrity constraints. In
MobiDE, 2006.

[20] G.S. Manku and R. Motwani. Approximate frequency counts over
data streams. In VLDB, 2002.

[21] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation
of frequent and top-k elements in data streams. In ICDT, 2005.

[22] J. Misra and D. Gries. Finding repeated elements. Science of Comp.
Programming, 2, 1982.

[23] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working
models for uncertain data. In IEEE ICDE, 2006.

[24] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and
beyond: New aggregation techniques for sensor networks. In SenSys,
2004.

292

