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ABSTRACT
Histograms are a standard tool in data management for describing

multidimensional data. It is often convenient or even necessary

to define data independent histograms, to partition space in ad-

vance without observing the data itself. Specific motivations arise

in managing data when it is not suitable to frequently change the

boundaries between histogram cells. For example, when the data is

subject to many insertions and deletions; when data is distributed

across multiple systems; or when producing a privacy-preserving

representation of the data. The baseline approach is to consider an

equiwidth histogram, i.e., a regular grid over the space. However,

this is not optimal for the objective of splitting themultidimensional

space into (possibly overlapping) bins, such that each box can be

rebuilt using a set of non-overlapping bins with minimal excess

(or deficit) of volume. Thus, we investigate how to split the space

into bins and identify novel solutions that offer a good balance

of desirable properties. As many data processing tools require a

dataset as an input, we propose efficient methods how to obtain

synthetic point sets that match the histograms over the overlapping

bins.
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• Information systems → Multidimensional range search;
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1 INTRODUCTION
Aggregate range queries are a crucial primitive for data analytics.

These entail computing standard aggregates (such as SUM, COUNT,

MIN orMAX) over values that meet a selection criterion correspond-

ing to a geometric range. Typically, these are box ranges, specified
by the intersection of one-dimensional range queries (e.g., “18 ≤
∗
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AGE ≤ 65”) on each of 𝑑 dimensions. Many applications require us

to answer such queries quickly and accurately based on a summary

of the data, without requiring a complete scan of the full input. Of

particular relevance to this work are scenarios where the data may

change dynamically (subject to insertions and deletions of records),

and when the data is considered sensitive, and we wish to protect

the privacy of the individuals corresponding to individual tuples.

The canonical approach to this problem is to design and maintain

histograms over the data, recording the data density (and other sta-

tistics) of items falling within the buckets, or bins, of the histogram.

Even in one-dimension, there are multiple different histograms:

equi-width (divide the domain into equal-length portions); equi-

depth (choose bins so that an equal fraction of the input weight falls

in each); and “optimal” histograms, which minimize the squared

variation of weights within each bucket [20], to name but a few. In

multiple dimensions, finding an optimal partitioning of the space

based on the data becomes NP-hard [22], and many heuristics or ap-

proximations are proposed instead [15]. For a more comprehensive

overview, we recommend surveys of this topic [7, 15].

Our focus in this work is the notion of a data-independent his-
togram, where the bins are chosen and fixed without first examining

the data. There are a number of attractive features for this para-

digm. We can give guarantees that are robust to arbitrary data and

query distributions: the error, expressed in terms of the volume of

the region of uncertainty can be precisely bounded in terms of the

dimensionality of the space and the number of bins allocated to

the histogram. Data-independent histograms are straightforward

to update in the presence of dynamic data, precisely because their

bin boundaries never alter. Last, they are highly suited to privacy-

preserving publishing of data, as discussed below.

Much prior work which adopts data independent histograms ap-

pears to begin with the assumption that the best data-independent

partitioning of a space is to simply take a single, regular grid. The

starting point of our study is the observation that, while simple,

this approach is not optimal. Instead, we will show that approaches

based on keeping multiple histograms with different shaped bins

yield improved accuracy for the same space budget. We begin by

posing a problem, which we refer to as the continuous binning

problem. This problem is how to pick a small set of preselected

ranges such that any query range can be approximately composed

by them. This is for instance useful to maintain statistics for each

preselected range, which can then be combined to approximate

statistics for all query ranges. In order to facilitate the combination

of statistics, the composition is limited to be additive, i.e., the ranges

used to approximate a query range are not allowed to overlap each

other.

We make progress on these questions as follows. First, we intro-

duce a set of definitions to evaluate the quality of a data-independent

histogram. The quality of a set of preselected ranges can be judged

by its size, how well they allow to approximate each query range
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in terms of diverging (hyper)volume, how many preselected ranges

are needed to compose query ranges and how much overlap exists

between preselected ranges. Our main focus is on schemes which

ensure that any query from a family of queries can be answered

with bounded error in terms of the volume of space that the query

occupies. We refer to these as “𝛼-binnings”.

We study data independent histograms under choices such as the

amount of overlap between bins in the histogram. In the strict case

where there is no overlap between the preselected ranges, we call

it a flat binning. For a fixed approximation error, we prove a tight

lower bound for the size of flat binnings. As one might expect here,

the optimal flat binning is a regular grid, although the number of

bins must be very large in order to offer a fixed accuracy guarantee,

exponential in the data dimension, 𝑑 . Nevertheless, we show that

using exotic tilings one could not improve more than by constant

factors.

The bulk of our work is in studying the case when the preselected

ranges can overlap. Here, we can obtain considerably improved re-

sults. We study existing and novel approaches to data independent

histograms, and analyze their properties. The approaches we con-

sider draw preselected ranges from multiple grids, where each grid

offers a different trade-off between the precision along spatial di-

mensions. A natural approach is to collect many grids of all shapes

and sizes — based, say, on having cell dimensions of powers of

two. This “complete dyadic” approach improves on a uniform grid,

but not dramatically so. We obtain stronger results by identifying

a more restricted set of grids, inspired by the discrepancy theory

literature. Here, we collect grids with resolutions that are powers

of two, but restricted to those where each bin has the same fixed

area. For instance, in this “elementary dyadic” scheme, one could

have the grids with dimensions 1 × 16, 2 × 8, 4 × 4, 8 × 2 and 16 × 1.
The advantage of the elementary dyadic scheme is that it requires

fewer preselected ranges to achieve small approximation error. One

downside is that each data point is contained in many preselected

ranges, which can lead to larger update times and more noise in

case of privacy-preservation. To address these shortcomings, we

propose different ways to use a small number of grids and analyse

the properties in that case.

Our last algorithmic result is a novel binning scheme “varywidth”,

with a simple structure: we take a uniform grid, and create 𝑑 copies,

each of which refines the gridding in one of the 𝑑 dimensions. This

has a worst case cost (number of bins) in which we approximately

halve the exponent for the uniform grid, with a dependence of

(𝑑 + 1)/2 as opposed to 𝑑 . We plot the analytical comparisons of

the different schemes, which demonstrate that the novel methods

of elementary dyadic and varywidth are preferable to the more

familiar uniform and complete dyadic schemes.

We further evaluate these data independent histograms by con-

sidering applications and extensions. While a binning can be a

useful summary of a large point set, it is sometimes important to

also recreate a point set back from a binning. For a “flat” binning,

where all bins are disjoint, this is a trivial task. We discuss the

more complex case when bins overlap, and provide some candidate

approaches. Last, we consider applications for data-independent

schemes in the context of dynamic and privacy-sensitive data and

draw parallels to data-dependent indexing and summary schemes.

Table 1: Aggregators in the semigroup model (query answers
can be constructed from unions of disjoint fragments), and
aggregators in the group model (query answers can be con-
structed by adding/subtracting fragments).

semigroup group

Count / Sum yes yes [34]

Diff.-Priv.-Count/Sum yes yes

Average / Variance yes yes [34]

Min. / Max. / Top-k yes no

Approximate Min./Max. yes yes

Approximate Distinct yes yes

Random sample yes no

Approximate Quantiles yes [1] no

𝐹2 AMS / CM / ℓ1 sketches yes [3, 8, 12, 26] no

Heavy hitters yes [1] no

HyperLogLog yes [14] no

Exact Quantiles and Min/Max no no

2 PRELIMINARIES
In this section, we introduce the necessary definitions to describe

different histogram methodologies, and use these to describe exist-

ing approaches.

2.1 Formal Framework
Definition 2.1 (data space). The 𝑑-dimensional data space is a

unit cube in the 𝑑-dimensional Euclidean space.

Definition 2.2 (region). A region is a connected set of points in

the data space.

Definition 2.3 (bins and binning). A binning is a (possibly over-

lapping) set of regions (“bins”) whose union covers the whole space.

Hence, each point in the data space is contained in at least one

bin. In this work, we think of binnings as a collection of regions

(bins) that, through composition of the bins, can be used to answer

(approximately) aggregate range queries. For any query region, we

can seek a (maximal) bin-aligned contained region and a (minimal)

bin-aligned containing region (completely covering the query re-

gion). As a simple example, we can define a binning via a regular

grid with some fixed cell size. Then the grid’s cells can be thought of

as the bins, and for any query region we can find both the minimal

set of cells whose union contains the query region and the maximal

set of cells that are fully contained in the query region.

A binning can be used to approximately answer standard ag-

gregates such as SUM, COUNT, MAX and MIN. We just prepare

a query result for each bin (the appropriate weight of data points

within the bin), and apply the corresponding aggregate over the

weights in the bin aligned region for a query𝑄 : take the SUM of the

weights for the overall sum, or MAX for the overall max, etc. More

generally, we can apply any aggregator that has the semi-group

property to combine partial results per bin: see Table 1 for a list

and references.

Clearly, the better the bin-aligned regions of a binning match

the query region, the more precise we can expect the approximate

answers to be. We assume that although the data density may vary
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Figure 1: The elementary binning L𝑑
4
in 𝑑 = 2 dimensions is

the union of grids G16×1 ∪ G8×2 ∪ G4×4 ∪ G2×8 ∪ G1×16.

over the whole data space, locally it is more uniform, so that queries

are answered better provided the uncertainty in volume from the

binning is not too large.

Definition 2.4 (bin height). For a binning, we say that its bin
height is ℎ if any intersection of more than ℎ bins is empty. We say

that a binning is flat, iff it has bin height 1, in which case all bins

are disjoint.

2.2 Example Data-Independent Binning
Schemes

This section introduces data-independent binning techniques with

precedent in the literature.

Grids. The simplest example of a data-independent binning scheme

is given by a grid division of space.

Definition 2.5 (grid). A uniform grid in 𝑑 dimensions with pa-

rameters ℓ1, . . . ℓ𝑑 is given by the following collection of bins:

Gℓ
1
×ℓ

2
×...×ℓ𝑑 =

ℓ1⋃
𝑗1=1

ℓ2⋃
𝑗2=1

. . .

ℓ𝑑⋃
𝑗𝑑=1

( [
𝑗
1
− 1
ℓ
1

,
𝑗
1

ℓ
1

]
×
[
𝑗
2
− 1
ℓ
2

,
𝑗
2

ℓ
2

]
×...×

[
𝑗𝑑 − 1
ℓ𝑑

,
𝑗𝑑
ℓ𝑑

])
.

A grid Gℓ1×ℓ2×...×ℓ𝑑 is comprised of all cells of a regular grid with

ℓ𝑖 equi-width grid divisions in dimension 𝑖 . Each of the

∏𝑑
𝑖=1 ℓ𝑖 cells

has the same volume, 1/∏𝑑
𝑖=1 ℓ𝑖 . A few example grids are shown in

Figure 1.

Equiwidth and Marginal Binnings. While a grid itself provides

a binning, we will use grids in the following primarily as building

blocks for binnings that treat all dimensions the same way. A spe-

cial case of a a grid that has the same number of divisions in all

dimensions is an equiwidth binning:

Definition 2.6 (equiwidth binning). An equiwidth binningW𝑑
ℓ

with parameter ℓ is the grid G𝑑
ℓ×ℓ×...×ℓ .

We will also make use of a collection of grids where we only

divide one dimension at a time, called marginal binnings:

Definition 2.7 (marginal binning).

M𝑑
ℓ = G𝑑ℓ×1×...×1 ∪ G

𝑑
1×ℓ×...×1 ∪ G

𝑑
1×1×...×ℓ

As the purpose of a binning is to define a subset of queries

that can be combined to make representatives for all queries, an

equiwidth binning is limited to shifted (hyper-)cubes of the same

size and a marginal binning to shifted slabs of the same size.

Dyadic Binnings. A more diverse set of shapes can be covered if

we consider a greater range of edge lengths. While there are a very

large number of such grids if we consider all possible edge lengths,

we can obtain a useful selection if we restrict ourselves to grids

based on powers of two. We refer to binnings with this restriction

to powers of two as dyadic binnings:

Definition 2.8 (complete dyadic binning). The (complete) dyadic

binning with parameter𝑚 is given by the union

D𝑑
𝑚 =

⋃
ℓ1,ℓ2,...,ℓ𝑑 ∈{21,22,...,2𝑚 }

Gℓ1×ℓ2×...×ℓ𝑑

The complete dyadic binningD𝑑
𝑚 is the union of𝑚𝑑

grids, result-

ing in |D𝑑
𝑚 | = (2𝑚+1−1)𝑑 bins, where each bin is the cross product

of𝑑 dyadic intervals of the form [ 𝑗
2
𝑛 ,

𝑗+1
2
𝑛 ] for non-negative integers

𝑗 ≤ 2
𝑚

and 𝑛 ≤ 𝑚. In one dimension, it is therefore equivalent to

the set of dyadic intervals. A subset of the grids of D𝑑
𝑚 is shown in

Figure 1.

This concept has been widely used in related settings. For ex-

ample, it has been combined with “sketch” data structures in order

to answer multidimensional range queries, where the approach is

referred to as “dyadic decompositions” [7]. Here, a sketch is built

for each of the grids and each cell is treated like a value. In com-

putational geometry, a data-dependent variant of this idea is used

to approximate𝑂 (𝑛2) box-shaped range queries by𝑂 (𝑛) canonical
subsets (corresponding to bins of a dyadic binning), where 𝑛 is

the number of points. Consider a range tree over a set of points

where each point is contained in a distinct cell of a regular grid

with widths 2
𝑚 ×2𝑚 × . . .×2𝑚 . In this case the range tree implicitly

operates on a dyadic binning, i.e., each node will contain a set of

points that are contained in a set of cells whose union is a different

bin from D𝑑
𝑚 and the total number of nodes will be |D𝑑

𝑚 |.
Elementary Dyadic Binnings. Complete dyadic binnings have

lots of bins that are unions of other bins. In order to reduce the

level of redundancy, one can select only the bins with volume
1

2
𝑚 ,

which will result in the “elementary binning”:

Definition 2.9 (elementary dyadic binning).

L𝑑𝑚 =
⋃

𝑝1+𝑝2+...+𝑝𝑑 =𝑚

G
2
𝑝
1 × 2𝑝2 × ...× 2𝑝𝑑

Elementary dyadic binnings L𝑑𝑚 are formed by the union of all

grids G
2
𝑝
1 × 2𝑝2 × ...× 2𝑝𝑑 with non-negative integers 𝑝1, 𝑝2, . . . , 𝑝𝑑

that sum up to𝑚. As there are

(𝑚+𝑑−1
𝑑−1

)
distinct sequences of such

integers and each grid has 2
𝑚

bins, an elementary binning L𝑑𝑚
contains |L𝑑𝑚 | = 2

𝑚
(𝑚+𝑑−1

𝑑−1
)
bins. In one dimension, an elementary

dyadic binning reduces to an equiwidth binning.

For instance, L2

4
, where each grid has 2

𝑚 = 16 bins, is depicted

in Figure 1. It is comprised of bins along grids with resolutions

16 × 1, 8 × 2, 4 × 4, 2 × 8 and 1 × 16.
In discrepancy theory, the same concept as elementary binnings

appears under the term elementary intervals to generate near-

uniformly spread points, with applications in numerical integration

(quasi-Monte Carlo). The objective (in our terminology) is to gener-

ate a set of 𝑑 dimensional points within a data space such that the

number of points in any box minimizes the difference to a continu-

ous uniform distribution, which is referred to as the discrepancy.

It was shown that choosing a set of boxes that corresponds to our

notion of an elementary binning L𝑑𝑚 has (in low dimensionality) a

significantly lower discrepancy than random points. This connec-

tion is discussed further in Section 3.2. In the streaming literature,



𝑄−

𝑣𝑜𝑙 (𝑄+ \𝑄−) ≤ 𝛼

query region 𝑄

𝑄− ⊆ 𝑄 ⊆ 𝑄+

𝑄+

Figure 2: For 𝛼-binnings, the volume of any alignment region
𝑄+ \𝑄− (hatched region) is at most 𝛼 .

a data-dependent variant of elementary binnings is used as a sum-

mary structure for data points that can be constructed in 𝑑 stream

passes [32], which was refined for two dimensions in [36].

3 𝛼-BINNINGS
This section introduces a special class of binnings, namely,𝛼-binnings,

that for any query region provide a set of query-answering bins

whose union differs in at most volume 𝛼 from the query region.

Table 2 summarizes the binnings that have appeared previously in

the literature.

3.1 Definitions
In order to formally define the class of 𝛼-binnings, we introduce

definitions based on volumes of regions and their differences. First,

we denote the volume of a region 𝐴 as vol(𝐴). Then,
Definition 3.1. A pair of regions𝐴, 𝐵 are 𝛼-similar if vol(𝐴∪𝐵) −

vol(𝐴 ∩ 𝐵) ≤ 𝛼 .

Intuitively, two regions are 𝛼-similar if they “differ” in at most

an 𝛼 fraction of the data space.

Definition 3.2 (𝛼-binning). For any supported query region 𝑄 ∈
Q, an 𝛼-binning allows us to find two regions 𝑄+ and 𝑄−, such
that 𝑄+ and 𝑄− are 𝛼-similar. 𝑄− is the “contained region” for 𝑄 ,

so that 𝑄− = (𝑎1 ∪ 𝑎2 ∪ . . . ∪ 𝑎𝑛) ⊆ 𝑄 while 𝑄+ is the “con-

taining region” 𝑄+ = (𝑄− ∪ 𝑏1 ∪ 𝑏2 ∪ . . . ∪ 𝑏𝑚) ⊇ 𝑄 where

{𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚} are disjoint bins of the binning.
Thus, an𝛼-binning bounds any supported query region𝑄 ∈ Q by

a pair of regions𝑄− ⊆ 𝑄 ⊆ 𝑄+ that are 𝛼-similar to each other (and

hence also to 𝑄), each formed as a union of bins from the binning

(cf. Figure 2). This allows query answering for aggregators that

have semi-group semantics. For instance, if a maximum aggregate

is stored for each bin, then 𝑄− implies a lower and 𝑄+ an upper

bound for the maximum aggregate over 𝑄 . Table 1 enumerates

many other supported aggregators such as sketches, distinct value

estimators, or sum/average/variance aggregators. We abstract the

process of finding the bins to answer a given query as an alignment

mechanism.

Definition 3.3 (alignment mechanism and answering bins). An
alignment mechanism A for a binning maps any supported query

region 𝑄 ∈ Q to a set of answering bins, i.e., a set of disjoint bins
A(𝑄) = {𝑎1, 𝑎2, . . . , 𝑎𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚} that satisfies 𝑄− ⊆ 𝑄 ⊆ 𝑄+

for 𝑄− = (𝑎1 ∪ 𝑎2 ∪ . . . ∪ 𝑎𝑛) and 𝑄+ = (𝑎1 ∪ 𝑎2 ∪ . . . ∪ 𝑎𝑛 ∪ 𝑏1 ∪
𝑏2 ∪ . . . ∪ 𝑏𝑚).

Definition 3.4 (bin-aligned region and alignment region). For a
query region 𝑄 , a binning’s bin-aligned region 𝑄− ⊆ 𝑄 is the union

of all answering bins that are completely contained in 𝑄 . 𝑄 ’s align-
ment region 𝑄+ \𝑄− is the union of all answering bins that cross

the border of 𝑄 .

Fact 1. A binning is an 𝛼-binning if there exists an alignment
mechanism where the volume of the alignment region is at most 𝛼 .

For 𝑑-dimensional space, we focus in this work primarily on the

set of queries that we refer to as box ranges:

Definition 3.5 (R𝑑 ). The set of 𝑑-dimensional box ranges R𝑑 is

comprised of all axis-aligned (hyper-)boxes in the 𝑑-dimensional

euclidean space.

Canonical worst-case query for our binnings. For many of our

constructions, we can reason about the worst case error based on

a single query that occupies almost the entire space. Specifically,

for the class of 𝛼-binnings supporting 𝑑-dimensional box ranges

that are formed from the union of uniform grids, the query box

(parametrized by 𝑟 ) 𝑄max = [ 1
2𝑟 , 1 −

1

2𝑟 ]
𝑑
will provide a worst case.

We can observe that 𝑄max
has the largest alignment region for

any individual grid because the number of answering bins is pro-

portional to the query volume and as a result more bins can be

crossed along the borders of the space. The proximity to the space

border is chosen as
1

2𝑟 to ensure that grid cells at the border will

definitely be crossed. If the number of bins crossed by the query

box is maximised for all individual grids, it is also maximised for

their union, because answering bins are disjoint.

3.2 Discrepancy theory and 𝛼-binnings
As 𝛼-binnings can be thought of as space-partitionings for infin-

itely many uniformly spread points, it is natural that there should

be some connection to the notions of geometric discrepancy and

low-discrepancy point sets [16, 28, 30, 35], which define a measure

of how uniformly points are spread and aim to minimise it (with

applications in numerical integration, see Section 6 for more de-

tails on discrepancy theory). In this context, a relevant notion is

Niederreiter’s (𝑡,𝑚, 𝑠) − 𝑛𝑒𝑡𝑠 , which are 𝑠-dimensional point sets

that contain exactly 2
𝑡
points in each of 2

𝑚
boxes. For (𝑡,𝑚, 𝑠)-nets

over base 2 (also known as digital nets) these boxes coincide with

bins of an elementary binning L𝑑𝑚 as discussed in Section 2.2. We

can indeed generalise this notion in the following theorem to all

𝛼-binnings that have equal-volume bins :

Theorem 3.6. Let 𝑡,𝑚 be non-negative reals and 𝑃 be a set of 𝑑-
dimensional points. If an 𝛼-binning supports queriesQ, each of its bins
has the same volume and contains exactly 2

𝑡 points from 𝑃 , then the
discrepancy of 𝑃 is at mostmax𝑄 ∈Q | |𝑃 ∩𝑄 | − |𝑃 | vol(𝑄) | ≤ 2

𝑡𝛼 |𝑃 |.

Proof. Let𝑄 be some query in Q. Let𝐴 be the alignment region

with vol(𝐴) ≤ 𝛼 and (𝑄 \ 𝐴) ⊆ 𝑄 ⊆ (𝑄 ∪ 𝐴). Let 𝑣 be the bin

volume. The binning requires 2
𝑡
vol(𝑄 \𝐴)/𝑣 points to be contained

in (𝑄 \ 𝐴), because it is aligned with the bins and there should

exist vol(𝑄 \𝐴)/𝑣 bins in that region, with each bin containing 2
𝑡

points. For similar reasons, it also requires 2
𝑡
vol(𝐴)/𝑣 points to

be contained in 𝐴. Thus, the number of points in 𝑄 lies between

2
𝑡
vol(𝑄 \𝐴)/𝑣 and 2𝑡 vol(𝑄 \𝐴)/𝑣+2𝑡 vol(𝐴)/𝑣 . From vol(𝑄)−𝛼 ≤



Table 2: Binnings supporting box queries that appear in the literature

binning bins height number of answering bins type

equiwidthW𝑑
ℓ

ℓ𝑑 1 ℓ𝑑 grid, equal-volume bins

marginalsM𝑑
ℓ

𝑑ℓ 𝑑 ℓ union of grids, equal-volume bins

multiresolution [13]U𝑑
𝑚 2

𝑚+1 𝑚 2
𝑑 (𝑚 − 2) union of grids

complete dyadic [4, 5, 7, 31] D𝑑
𝑚 (2𝑚+1 − 1)𝑑 𝑚𝑑

2
𝑑 (𝑚 − 2)𝑑 union of grids

elementary dyadic [28, 29, 32] L𝑑𝑚
(𝑚+𝑑−1

𝑑−1
)
2
𝑚

(𝑚+𝑑−1
𝑑−1

)
= 𝑂 (𝑚𝑑−1) 2

𝑚
union of grids, equal-volume bins

vol(𝑄 \𝐴) ≤ vol(𝑄) it then follows that the number of points in 𝑄

lies between 2
𝑡 vol(𝑄)−𝛼

𝑣 and 2
𝑡 vol(𝑄)+𝛼

𝑣 . As the binning requires

the total number of points to be 2
𝑡𝑛 = 2

𝑡

𝑣 , it thus follows that

| vol(𝑄)𝑛 − 𝑥 | ≤ 2
𝑡𝛼𝑛 where 𝑥 is between (vol(𝑄) − 𝛼)2𝑡𝑛 and

(vol(𝑄) + 𝛼)2𝑡𝑛. □

3.3 Lower bounds for supporting R𝑑
This section proves lower bounds on the number of bins necessary

to provide an 𝛼-binning supporting box-shaped ranges using any

type of regions as bins.

Given a subset of overlapping bins, we define their intersection

volume as the volume of their mutual intersection. Our subsequent

results show that if a binning supports box ranges (boxes, for short),

then a subset of all boxes (equivalent to the bins of an elementary

dyadic binning) force the binning to have at least a certain amount

of bins, due to the limited intersection volume of such boxes. In

order to not require one separate bin for each of these boxes, a bin

region has to be contained in the intersection of multiple boxes,

because a bin can only contribute to the contained bin-aligned

region of a box if it is fully contained in the box (Definition 3.2).

First, we show that for this special subset of boxes, the intersec-

tion volume of multiple boxes can be tightly bounded. This will

be used to form a collection of queries as a hard instance that any

𝛼-binning must be able to handle.

Lemma 3.7. The intersection volume of
(𝑘+𝑑−1
𝑑−1

)
ormore bins, drawn

from an elementary dyadic binning L𝑑𝑚 , cannot be larger than 1

2
𝑚+𝑘 .

Conversely, in order to achieve intersection volume of 1

2
𝑚+𝑘 , we cannot

intersect more than
(𝑘+𝑑−1
𝑑−1

)
bins from L𝑑𝑚 .

Proof. Recall that the elementary dyadic binning is formed in

a highly structured way, so that every bin from any grid in L𝑑𝑚 has

the same volume, 2
−𝑚

. There are ℎ =
(𝑚+𝑑−1

𝑑−1
)
grids. We will use

𝑑-dimensional coordinate notation of the form 𝑅 = [𝑟1, 𝑟2, . . . 𝑟𝑑 ]
to refer to the grid with resolutions 2

𝑟1 × 2
𝑟2 × . . . 2𝑟𝑑 for each

of the resolutions in turn. We write |𝑅 | to denote

∑𝑑
𝑖=1 𝑟𝑖—note

that the volume of every cell in the grid 𝑅 is 2
−|𝑅 |

. We define the

intersection of grids to be the collection of new non-empty re-

gions formed by intersecting all pairs of bins from the two grids.

Observe that if we intersect two (dyadic) grids with resolutions

𝑅 and 𝑆 , we obtain a new grid whose resolution is (𝑅 ∩ 𝑆) :=

[max(𝑟1, 𝑠1),max(𝑟2, 𝑠2), . . .max(𝑟𝑑 , 𝑠𝑑 )]. Moreover, this intersec-

tion operation is associative, (𝑅∩𝑆 ∩𝑇 ) = (𝑅∩𝑆) ∩𝑇 = 𝑅∩ (𝑆 ∩𝑇 ).

Hence, if we take the intersection of all the grids in the elemen-

tary binning L𝑑𝑚 , we obtain the resolution [𝑚,𝑚, . . .𝑚], and so the
volume of the intersection of ℎ cells is at most 2

−𝑚𝑑
.

In order for a set of grids X ⊂ L𝑑𝑚 to have an intersection grid

with resolution 𝑇 s.t. each grid cell has volume
1

2
𝑘+𝑚 then we must

have |𝑇 | =𝑚 + 𝑘 . Then 𝑇 can be formed by the intersection of all

grids 𝑅 such that |𝑅 | =𝑚 with 𝑅 [𝑖] ≤ 𝑇 [𝑖] for all 1 ≤ 𝑖 ≤ 𝑑 . Then

we have |𝑇 − 𝑅 | = |𝑇 | − |𝑅 | = 𝑘 . That is, the difference between the

resolution vectors is also a 𝑑-vector whose (non-negative integer)

entries sum to 𝑘 . We can bound the number of such 𝑅 as

(𝑘+𝑑−1
𝑑−1

)
.

From this, we have our claimed results: if we intersect more

than

(𝑘+𝑑−1
𝑑−1

)
, then we will end up with a 𝑇 such that |𝑇 | > 𝑘 +𝑚.

Moreover, this is the largest volume that can be obtained through

intersection of no more than this many bins. □

Theorem 3.8 (Bound for𝛼-binnings supporting box-qeries).

An 𝛼-binning supporting R𝑑 has at least Ω( 1
2
𝑑

1

𝛼 log
𝑑−1 1

𝛼 ) bins.

Proof. In order to show a lower bound, wewill consider a family

of queries and argue that any binning that can support all these

queries with the required accuracy has at least the claimed number

of bins. For this query family, we will make use of the set of query

boxes corresponding to one of the binning approaches we have

already desribed.We use the bins of an elementary binningL𝑑𝑚 with

𝑚 = ⌊log
2
( 1

2𝛼 )⌋, such that each bin has at least volume 2𝛼 . Recall

from Section 2.2 that the total number of bins in this elementary

binning 𝑁 = |L𝑑𝑚 | = 2
𝑚

(𝑚+𝑑−1
𝑑−1

)
= Ω( 1𝛼 log

𝑑−1 1

𝛼 ). We refer to

each of these bins as an elementary box. We have that the height

of the elementary binning is ℎ =
(𝑚+𝑑−1

𝑑−1
)
.

We now consider an arbitrary 𝛼-binning which we will use to

answer a query that is an elementary box. For that box, some bins of

the binning may be used to form the contained bin-aligned region.

Note that the contained bin-aligned region for each elementary box

must be non-empty, since its volume is 2𝛼 , and so the contained

bin-aligned region must have volume at least (2𝛼 − 𝛼) = 𝛼 .

We say that a bin of our binning contributes to an elementary

box if it is fully contained in that box (and hence can be part of the

bin-aligned region 𝑄−). If a bin contributes to an elementary box,

the elementary box receives the volume of the bin.

Summing this over all 𝑁 boxes, we conclude that summed over

all bins the elementary boxes must receive a total volume of 𝑁𝛼

from the bins.

We now analyze the tradeoff between the number of boxes that

a bin contributes to, and the total volume received by the boxes.

By Lemma 3.7, we have that for any 0 ≤ 𝑘 ≤ 𝑚(𝑑 − 1) and
for 𝑑 ≥ 2, the intersection volume of

(𝑘+𝑑−1
𝑑−1

)
elementary boxes



is ≤ 1

2
𝑚+𝑘 . The larger the intersection volume and the fewer the

number of intersected boxes, the larger is the received volume per

bin.

In order for a bin to contribute to 𝑥 elementary boxes, it needs to

be contained in the intersection of all 𝑥 boxes. If a bin contributes

to

(𝑘+𝑑−1
𝑑−1

)
elementary boxes, each box can receive from the bin at

most 1/(2𝑘+𝑚) volume. Hence, the received volume from each bin

is at most

(𝑘+𝑑−1
𝑑−1

)
/2𝑘+𝑚 .

This means the number of bins needed is at least

2
𝑘+𝑚(𝑘+𝑑−1
𝑑−1

) 𝑁𝛼 ≥ 2
𝑘+𝑚(𝑘+𝑑−1
𝑑−1

) 𝑁 1

2
𝑚+2 =

2
𝑘(𝑘+𝑑−1

𝑑−1
) 𝑁
4

Now, it is left to minimise the term
2
𝑘

(𝑘+𝑑−1𝑑−1 )
over all valid choices

of 𝑘 . Consider the ratio of this term as we increase from 𝑘 to 𝑘 + 1:
it is 2(𝑘 + 1)/(𝑘 + 𝑑). For 𝑘 small, this ratio is below 1, leading to a

smaller value. The cross-over value is when 2(𝑘 + 1)/(𝑘 + 𝑑) = 1,

which is achieved exactly when 𝑘 = 𝑑 − 2. Hence, we minimize this

term by choosing 𝑘 = 𝑑 − 11. The term is then bounded by

2
𝑑−1(
2𝑑−2
𝑑−1

) ≥ 2
𝑑−1

4
𝑑−1 =

1

2
𝑑−1 .

It therefore follows that the minimal number of bins needed is at

least
1

2
𝑑−1

𝑁
4
= 1

2
𝑑
𝑁
2
= Ω( 1

2
𝑑

1

𝛼 log
𝑑−1 1

𝛼 ). □

A similar argument also provides a lower bound for flat binnings,

i.e., binnings which are restricted to a disjoint set of bins:

Theorem 3.9 (Bound for flat 𝛼-binnings supporting box

qeries). A flat 𝛼-binning supporting R𝑑 has at least Ω( 1

𝛼𝑑 ) bins.

Proof. We will again find a set of query boxes that any (flat) 𝛼-

binning must be able to answer. These query boxes will be derived

from a particular binning scheme. Consider the marginal binning

comprised of the 𝑑 grids Gℓ×1×...×1,G1×ℓ×...×1, . . . ,G1×1×...×ℓ with
ℓ = ⌊ 1

2𝛼 ⌋, s.t. each bin has volume
1

ℓ ≥ 2𝛼 . We refer to the bins of

this binning as marginal boxes, and use them as our query set.

In order for a flat binning to be an𝛼-binning for all thesemarginal

boxes (which are a subset of all boxes), the total contribution to

the containing bin-aligned regions of marginal boxes (𝑄+) needs
to be at least 𝑑ℓ 1ℓ = 𝑑 . However, if each bin contributes to just one

marginal box, the total contribution to 𝑄+ cannot be larger than
the volume of the unit cube, i.e., 1. In order to possibly increase the

total contribution from 1 to 𝑑 , each bin needs to intersect at least 𝑑

marginal boxes. Note, that at most 𝑑 marginal boxes intersect each

other. Going forward, we can therefore assume that every bin of

the flat binning intersects exactly 𝑑 marginal boxes.

Furthermore, an 𝛼-binning needs to contribute in total at least

𝑑ℓ𝛼 = 𝑑 ⌊ 1

2𝛼 ⌋𝛼 to the contained bin-aligned regions of marginal

boxes (𝑄−). In order for a bin to contribute to a contained bin-

aligned region of a box, it needs to be contained in the box, which

means in order to intersect 𝑑 marginal boxes, it needs to lie in the

intersection of 𝑑 boxes. This follows that a bin has a volume that is

at most as large as the intersection of 𝑑 marginal boxes, which is
1

ℓ𝑑
.

As a result, the maximal contribution per bin is
𝑑
ℓ𝑑
. In conclusion,

the binning needs at least 𝑑 ⌊ 1

2𝛼 ⌋𝛼
ℓ𝑑

𝑑
≥ ℓ𝑑

2
= Ω( 1

𝛼𝑑 ) bins. □

1
Note that it holds that 2

𝑑−2/
(
2𝑑−3
𝑑−1

)
= 2

𝑑−1/
(
2𝑑−2
𝑑−1

)
.
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G
2
3×21×20
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2
3×21×20

Figure 3: Fragmentation of a cube-shaped query box into
dyadic boxes (on the left) and equal-volume elementary
dyadic boxes (on the right) , with some indicated origin grids
of dyadic boxes.

As an aside, we conjecture that data-dependent binnings for

multisets of points of size 𝑛 have matching size lower bounds for

counts with additive error Y𝑛, because the 𝛼-binning setting is

essentially the same as summarising infinitely many uniformly

spread points. Thus, asymptotic bounds where Y basically goes to 0

implicitly forces 𝑛 to go to infinity and the points being uniformly

spread is one of many possible data distributions. For instance, for

a uniformly distributed data set, a multidimensional equi-depth

histogram reduces to an histogram along an equi-width binning.

3.4 Upper bounds for supporting R𝑑
Family of Subdyadic Binnings. A binning is subdyadic if it is a

union of grids whose resolutions are powers of two. We call them

subdyadic binnings, because each such binning with maximal grid

resolution𝑚 is a subset of the (complete) dyadic binning D𝑑
𝑚 . A

couple of examples are highlighted in Figure 4, which uses tables

to show which subsets of the complete dydadic binning are materi-

alized. We can hence express a subdyadic binning as a selection of

cells in a multidimensional table, where each cell corresponds to

one dyadic grid. For instance, the complete dyadic binning picks all

dyadic grids (up to a certain resolution), whereas the elementary

binning picks the grids corresponding to the leading diagonal in

the figure (where all resolutions sum up to the same number, i.e.,

the volume of the bins is equal).

A general method to query subdyadic binnings is to first split

the query into dyadic intervals along each dimension and then

assign each cross product of dyadic intervals (which we will call

dyadic boxes) over to the grid that has a cell with a matching region.

Figure 3 shows the three-dimensional dyadic boxes of the worst-

case query for𝑚 = 4. This suffices to answer queries for a (complete)

dyadic binning. However, in a subdyadic binning, the assigned grid

may not be present, and so we need to decide how to reassign the

dyadic box to a grid which is present.

If the dyadic boxes from one grid are reassigned to a finer grid, the

dyadic boxes are split into the cells of the finer grid, which increases

the number of query-answering bins. To keep this number as low

as possible, dyadic boxes of missing coarser grids should be passed



Elementary Dyadic Equiwidth Varywidth

L 6,6

L

L

L

2,2 L

1,1 L

0,0 L

0,3 W

3,0

0,4 V𝑥

0,2 V𝑦

2,0 4,0

Figure 4: Subdyadic binnings (elementary dyadic L, equi-
widthW and varywidthV) select different sets of grids from
a 𝑑-dimensional table (depicted 𝑑 = 2) where each coordinate
𝑎, 𝑏, . . . , 𝑧 contains the grid G

2
𝑎×2𝑏×...×2𝑧 .

Elementary Dyadic Equiwidth Varywidth

L ↓ ↓ ↓ ↓ ↓ ↓

↑ L ↓ ↓ ↓ ↓ ↓

→ ↑ L ↓ ↓ ↓ ↓

↑ → ↑ L ↓ ↓ ↓

→ ↑ → ↑ L ↓ ↓

↑ → ↑ → ↑ L ↓

→ ↑ → ↑ → ↑ L

→ → → ↓ ↓ ↓ ↓

→ → → ↓ ↓ ↓ ↓

→ → → ↓ ↓ ↓ ↓

→ → → W ← ← ←

→ ↑ → ↑ ← ← ←

↑ → ↑ ↑ ← ← ←

→ ↑ → ↑ ← ← ←

→ → ↓ ↓ ↓ ↓ ↓

→ → ↓ ↓ ↓ ↓ ↓

→ → V𝑥 ↓ ↓ ↓ ↓

↑ → ↑ ↓ ↓ ↓ ↓

→ ↑ → → V𝑦 ← ←

↑ → ↑ → ↑ ← ←

→ ↑ → ↑ ↑ ← ←

Figure 5: Querying hand-off rules for subdyadic binnings
depicted by paths from missing grids to selected grids (note,
that only the source and the target of the paths matter and
some path segments are arbitrary).

on to the closest selected grid in terms of 𝐿1 distance along the grid.

While there are often multiple grids at the same distance, at least

w.r.t. to the worst-case query it does not make a difference which

one is chosen.

While this covers how to redirect from coarser to finer grids, it

does not answer how to redirect from finer to coarser grids. We

leave the former as an open problem and only answer it for certain

subdyadic binnings. Figure 5 gives a pictorial encoding of how we

might progressively reassign dyadic boxes for different subdyadic

binnings so that we can eventually answer the query.

Equiwidth. An equiwidth binning is a subdyadic binning that

assigns dyadic boxes to the grid G[𝑚
𝑑
, 𝑚
𝑑
, . . . , 𝑚

𝑑
]. It is an asymp-

totically optimal 𝛼-binning (treating 𝑑 as a constant), if the bins are

not allowed to overlap each other:

Lemma 3.10 (upper bound for flat binnings). There exists a

flat 𝛼-binning supporting R𝑑 with Θ(( 2𝑑𝛼 )
𝑑 ) bins.

Proof. Each equiwidth binning with ℓ ≥ 2 grid divisions per

dimension and ℓ𝑑 bins is an 𝛼-binning for some 𝛼 . Note, that such

a binning is only subdyadic in case ℓ is a power of two.

As an equiwidth binning is a (uniform) grid, it follows from the

discussion in Section 3.1 that the largest alignment region is for

a query that almost touches the border of the space. This means

the maximal alignment region volume 𝛼 is the number of border

cells divided by total number of grid cells. The number of border

cells is the number of all cells ℓ𝑑 , less the number of non-border

cells (ℓ − 2)𝑑 . By ignoring some double-counting of cells, one can

obtain an upper bound by multiplying the number of cells ℓ𝑑−1

on each side by the number of sides 2𝑑 . From that, it follows 𝛼 =

ℓ𝑑−(ℓ−2)𝑑
ℓ𝑑

<
(2𝑑)ℓ𝑑−1

ℓ𝑑
. Solving for ℓ to obtain the target 𝛼 results in

ℓ < 2𝑑
𝛼 , and so the number of bins is less than

(2𝑑)𝑑
𝛼𝑑 . □

Elementary dyadic. For an elementary dyadic binning L𝑑𝑚 we

can define the assignment that for each missing grid G[𝑎, 𝑏, . . . , 𝑧]
with 𝑎 + 𝑏 + . . . + 𝑧 > 𝑚, all its dyadic boxes are handled by

G[𝑎, 𝐹𝑚 (𝑎, 𝑏), 𝐹𝑚 (𝑎, 𝑏, 𝑐), . . . , 𝐹𝑚 (𝑎, 𝑏, 𝑐, . . . , 𝑧)] where 𝐹𝑚 (𝑎, 𝑏) =

min{𝑏,𝑚−𝑎} and 𝐹𝑚 (𝑎, 𝑏, . . . , 𝑦, 𝑧) = min{𝑧,𝑚−𝐹 (𝑎, 𝑏 . . . , 𝑦). Such
a rule simply dictates that we greedily increase the resolutions, giv-

ing preference to the dimensions in order of appearance. Elementary

dyadic binnings are asymptotically the best-known approach, if the

bin height is unlimited:

Lemma 3.11 (upper bound for arbitrary binnings). There
exists an 𝛼-binning supporting R𝑑 with �̃� ( 1𝛼 log

2𝑑−2 2
𝑑

𝛼 ) bins and
height �̃� (log𝑑−1 2

𝑑

𝛼 ) where �̃� (. . .) omits poly(log log 1

𝛼 ) factors.

Proof. As an elementary dyadic binning is the union of (uni-

form) grids, it follows from the discussion in Section 3.1 that such a

constrained binning will always have the largest alignment region

volume 𝛼 for a “worst-case query” that almost touches the border

of the space. Thus, one can derive a sufficient number of bins to

achieve a certain 𝛼 .

Each query is split into 4+2(𝑚−2) fragments, where 4 fragments

are bins along one dimension and cannot be further split, while

2(𝑚 − 2) fragments can be further split into more parts in the

next dimensions (illustrated in Figure 3). In the last dimension,

each fragment is partially intersected by the worst-case query in at

most two bins. When 𝑑 = 1, the number of bins that are partially

intersected by the worst-case query is 𝑓𝑑 (𝑚) = 2 = Θ(1). For 𝑑 > 1

it is equal to 𝑓𝑑 (𝑚) = 4+2∑𝑚−2
𝑛=1 𝑓𝑑−1 (𝑛) = Θ(𝑚𝑑−1) (unless𝑚 ≤ 2,

in which case 𝑓𝑑 (𝑚) = 2
𝑚
. As each bin has volume

1

2
𝑚 , the maximal

alignment region volume 𝛼 =
𝑓𝑑 (𝑚)
2
𝑚 = 𝑂 (𝑚𝑑−1

2
𝑚 ).

Provided that 𝑑 divides𝑚, a dyadic binning will always contain

an equiwidth grid with Θ(2𝑚/𝑑 ) grid divisions per dimension, and

so it follows that
2𝑑

2
𝑚/𝑑 ≥ 𝛼 and 𝑚 ≤ log

2
( 2𝑑𝛼

𝑑 ) = 𝑑 log
2

2𝑑
𝛼 . We

use this upper bound for𝑚 to substitute for the numerator in the

expression for 𝛼 , but keep𝑚 in the denominator and solve for𝑚.

This yields 𝛼 = 𝑂 (𝑚𝑑−1
2
𝑚 ) ∈ 𝑂 (

𝑑𝑑−1 log𝑑−1 2𝑑
𝛼

2
𝑚 ). Solving for𝑚 re-

sults in𝑚 = 𝑂 (log 𝑑𝑑−1 log𝑑−1 2𝑑
𝛼

𝛼 ). Thus, after some simplifications

we obtain that the number of bins is𝑂

(
log

𝑑−1
(
log

𝑑−1 2
𝑑

𝛼

𝛼

)
log

𝑑−1 2
𝑑

𝛼

𝛼

)
□

3.5 Varywidth Binning Scheme
We now introduce a simple novel binning strategy with bounded

height, by seeking to remedy the deficiencies of the simple gridding

approach. It can be observed that an equiwidth binning with ℓ

cells per dimension accumulates all of its bin-alignment error along

the border of the query box. This query can be assumed to be of

maximal size, as any other box is simply the query box of maximal

size for a smaller grid. The border of the query box is comprised

of 3
𝑑 − 1 faces, of which 2

𝑑−𝑘 (𝑑
𝑘

)
are 𝑘-dimensional faces (e.g.,

corners are 0-dimensional faces, edges are 1-dimensional faces and



Table 3: Comparison of different 𝛼-binnings. �̃� (. . .) hides any poly(log log 1

𝛼 ) terms.

binning scheme supporting R𝑑 number of bins height ℎ number of query-answering bins

lower bound for flat binnings Ω( 1

𝛼𝑑 ) 1 Ω( 1

𝛼𝑑 )
equiwidth 𝑂 ( (2𝑑)

𝑑

𝛼𝑑 ) 1 𝑂 ( (2𝑑)
𝑑

𝛼𝑑 )

lower bound for arbitrary binnings Ω𝑑 ( 1𝛼 log
𝑑−1 1

𝛼 ) ≥ 1 -

varywidth 𝑂𝑑 ( 1

𝛼 (𝑑+1)/2
) 𝑑 𝑂𝑑 ( 1

𝛼 (𝑑+1)/2
)

elementary dyadic �̃�𝑑 ( 1𝛼 log
2𝑑−2 1

𝛼 ) �̃�𝑑 (log𝑑−1 1

𝛼 ) �̃�𝑑 ( 1𝛼 log
𝑑−1 1

𝛼 ))
dyadic 𝑂𝑑 ( 1

𝛼𝑑 ) �̃�𝑑 (log𝑑 1

𝛼 ) �̃�𝑑 (log𝑑 1

𝛼 )

sides are 𝑑 − 1 dimensional faces). There lie (ℓ − 2)𝑘 grid cells on

each 𝑘-dimensional face. Thus, if ℓ ≫ 𝑑 , most grid cells lie on the

sides of the box (i.e., 𝑑 − 1-dimensional faces) and the question of

whether a point is contained in the box is solely dependent on one

dimension (orthogonal to the side of the box). We can make use of

this by introducing bins that are “fat” in this one dimension, and

“skinny” in the remaining dimensions. That is, we further split bins

individually along each dimension into𝐶 parts, which results in an

𝐶ℓ × ℓ × . . .× ℓ grid, a ℓ ×𝐶ℓ × . . .× ℓ , . . . , and a ℓ × ℓ × . . .×𝐶ℓ grid.
Thus, there are 𝑑𝐶ℓ𝑑 bins in total with 𝑑 bin overlaps, although it

has almost the same bin-alignment error as an equiwidth histogram

with (𝐶ℓ)𝑑 bins.

Lemma 3.12 (upper bound for height 𝑑). There exists an 𝛼-
binning for 𝑑-dimensional box ranges with 𝑂

(
𝑑𝑑+2 ( 2𝛼 )

(𝑑+1)/2
)
bins

and bin height 𝑑 .

Proof. A varywidth binning has two parameters ℓ and𝐶 . It has

𝑑𝐶ℓ𝑑 bins along grids 𝐺1, . . . ,𝐺𝑑 where each grid 𝐺𝑖 has ℓ𝐶 grid

divisions in dimension 𝑖 , and ℓ divisions in the other dimensions.

A varywidth binning can be thought of as subdividing an equi-

width grid with ℓ𝑑 “big” cells. Each such “big” cell is subdivided in

each dimension with a sub-grid having 𝐶 grid divisions along that

dimension (and no grid divisions in the other dimensions). As with

the equiwidth binning, the worst case for bin-alignment error is a

query that covers almost the whole space, but does not touch the

border of the space. The bin-alignment error is therefore accumu-

lated along the borders of the data space, which is a cube. A cube

has 3
𝑑 − 1 faces, of which 2

𝑑−𝑘 (𝑑
𝑘

)
are 𝑘-dimensional faces. Along

each 𝑘-dimensional face, there are (ℓ − 2)𝑘 “big” cells, each having

a volume of
1

ℓ𝑑
. All subcells of a “big” cell on the border can be

partially intersected, except if the “big” cell lies on the border only

along one dimension, i.e., on one of the 2𝑑 sides of the hypercube

which are (𝑑 − 1)-dimensional faces. In this exceptional case only

one subcell is partially intersected, which has a volume of
1

ℓ𝑑𝐶
. The

reason only one subcell is partially intersected is because in each

“big cell” that lies on the sides, the worst case query extends be-

yond the cell in all but one dimension and for that dimension there

are 𝐶 divisions available through the “big cell”’s subgrid of that

dimension. Thus, the maximum volume of the alignment region is∑𝑑−2
𝑘=0

2
𝑑−𝑘 (𝑑

𝑘

)
(ℓ − 2)𝑘

ℓ𝑑
+ 2𝑑 (ℓ − 2)𝑑−1

ℓ𝑑𝐶

<
2𝑑 (𝑑 − 1)ℓ𝑑−2

ℓ𝑑
+ 2𝑑 (ℓ − 2)𝑑−1

ℓ𝑑𝐶

= 𝑂

(
2𝑑 (𝑑 − 1)

ℓ2
+ 𝑑

ℓ𝐶

)
.

For𝐶 = ℓ
2(𝑑−1) , the maximal volume of the alignment region is 𝛼 =

𝑂 ( 2𝑑 (𝑑−1)
ℓ2
) ≤ 𝑂 ( 2𝑑2

ℓ2
). Expressing ℓ through 𝛼 yields ℓ = 𝑂

(
𝑑

√︃
2

𝛼

)
and the number of bins is 𝑑ℓ𝑑+1 = 𝑂 (𝑑𝑑+2 ( 2𝛼 )

(𝑑+1)/2). □

4 SAMPLING
The previous sections have discussed different data independent

histogram constructions, and their ability to give upper and lower

bounds for range queries via an alignment mechanism. This enables

them to be used flexibly to answer a variety of different query types.

However, there are many data analysis problems which do not

immediately reduce to a collection of query regions. Consider, for

example, clustering algorithms, which are defined to take as input

a point set. For this reason, it is often useful to be able to extract a

representative point set from a histogram representation that stores

counts in each bin. We do not expect the output points to match the

input exactly (since the point of a histogram is to act as a form of

lossy compression), but we would like to ensure that they are con-

sistent with the description of the spatial distribution given by the

histogram. In this section, we describe two approaches that can be

applied to the histograms we consider. First, we consider a random

sampling approach to draw from the density distribution implied

by the histogram. Second, we adopted the sampling approach to

find point sets matchings the histogram counts exactly.

4.1 Sampling from distributions over binnings
Any histogram over a flat binning can be intepreted as a probability

distribution over the data space where bin counts are normalized to

sum up to one. Our challenge in this section is be able to sample in

accordancewithmultiple distributions, originating from histograms

for each flat binning. While the histograms cannot contradict each

other, they offer different pieces of information that have to be

pieced together to a coherent picture. In this context, it is helpful to

introduce the concept of atoms of a binning, which are intersections

of bins that are contained in all bin regions that intersect it, i.e., each

bin is a union of atoms and each bin either fully contains an atom

or does not intersect it. The coherent picture is a distribution over

the atoms. If one could find probabilities for atoms, s.t., the sum of

atom probabilities matches all bin probabilities, one could first draw

a random atom and then uniformly draw a point from that atom. A

challenge of such an approach is the sheer number of atoms, which

can be orders of magnitude larger than the number of bins and in

addition to that it is a challenging combinatorial problem. Thus, to



completely avoid dealing with atoms directly, we instead exploit

simple “intersection hierarchies” observed in the binnings such as

equi-width, marginal binnings, varywidth and (two-dimensional)

complete dyadic and elementary dyadic binnings.

The approach is not applicable to complete dyadic and elemen-

tary dyadic binnings in more than two dimensions, because their

hierarchies become too complicated. This also mirrors the increased

difficulty of obtaining low-discrepancy point sets in more than two

dimensions, as that requires generating point sets that count one

point in each bin of a dyadic binning. Thus, we leave this as an

open problem.

In case of a marginal binning, one can draw a random bin from

each flat binning and then intersect the result. We generalise this

idea by the following “intersection sampling” algorithm:

(1) Split the binning into a “root” binning and multiple “branch”

binnings according to the rules in Definition 4.2.

(2) Draw a random bin from the “root” binning according to its

bin probabilities.

(3) Remove all “branch” bins that do not intersect the selected

bin.

(4) Apply this sampling algorithm (in parallel) recursively to

each “branch”, reduced to the bins that intersect the selected

bin(s).

(5) Return the intersection of the random bin region with the

returned region from each recursive call per “branch”.

(6) If this is the end of the recursion, uniformly draw a point

from the returned region.

In step one, the binning is split into a root and multiple branches
where the root is a flat binning and the branches are disjunct sets

of non-root bins. In the remaining steps, a root bin is sampled, then

a bin from each branch that intersects the root bin is sampled and

at the end a point is sampled inside the intersection between the

root and branch bins. In order to obtain the selected bin from the

branches, the sampling approach is recursively applied.

In order for the approach to work, the choice of the root bin has

to adhere to the probabilities of the branch bins and the choice of

the branch bins have to be independent from each other. For the

discussion of these properties it is helpful to introduce the concept

of super regions:

Definition 4.1 (super region). A super region of a set of bins is a

union of disjoint bins that contains all bin regions that intersect it.

Super regions of multiple flat binnings are the regions for which

they require the same sum of probabilities, as there exists a union

of bins in each of those flat binnings that equals a super region.

Now, we can formalise the required property for the root-branch

splitting of the binning as follows:

Definition 4.2 (intersection hierarchy rules). A split of a binning

into a flat root binning 𝑅 and multiple branch binnings 𝐴, . . . , 𝑍 is

valid, iff it follows the following two rules:

(i) A bin from a branch binning has to intersect any root bin

that has the same super region, where the super region is

defined only over the bins from the root and that branch and

not the other branches.

(ii) A bin from a branch has to intersect any bin from another

branch that intersects the same root bin.

8 × 8

16 × 4 32 × 2 64 × 1

4 × 16 2 × 32 1 × 64

Figure 6: Recursive intersection hierarchy

Before we show how these properties ensure consistency, we

will take a look at how such rules can be satisfied with grids. The

grid with the highest minimal resolution in all dimensions can be

picked as the root and each branch can contain grids that have a

lower resolution in a distinct dimension.s For instance, suppose

the binning is comprised of the equi-width grids {8 × 8, 16 × 4, 4 ×
16, 32 × 2, 2 × 32, 64 × 1, 1 × 64}, then the bins from the grid 8 × 8
can be used as a root and {16 × 4, 32 × 2, 64 × 1} as one branch

and {4 × 16, 2 × 32, 1 × 64} as the other branch. This satisfies the
intersection hierarchy rules, because each branch has a unique

dimension in which it has a lower resolution, which after fixing a

root bin becomes irrelevant, such that each branch specialises in the

other dimension, i.e., it has in that dimension a higher resolution

than the other branches. Recursively applying this approach results

in the root grid choices of Figure 6. First a random bin is drawn from

the 8 × 8 grid and then the approach recursively continues for each

branch, e.g., the first branch {16 × 4, 32 × 2, 64 × 1}, any bins that

do not intersect the selected root bin are removed, which results in

subgrids with local resolution {2 × 1, 4 × 1, 8 × 1}, where the 2 × 1
grid can then subsequently be used as a root and {4× 1, 8× 1} form
a single branch.

In the following theorem, we now show how these properties

guarantee that the intersection sampling algorithm operates ac-

cording to all distributions over the flat binnings.

Theorem 4.3. If there is a joint distribution over the space consis-
tent with the bin probabilities and the intersection sampling algorithm
is applicable, the algorithm samples according to such a consistent
joint distribution.

Proof. The sampling algorithm splits the binning in each step

into root and branch bins as described in Definition 4.2. As root bins

are sampled directly, they are guaranteed to be sampled according

to their probabilities.

The second condition of Definition 4.2 ensures, that the selec-

tion of branch bins is conditionally independent from each other

upon selection of a root bin, because any branch bin choices would

intersect each other anyway and the algorithm can only exclude

choices thats do not intersect previous choices.

The first condition from Definition 4.2 means that one could first

select a super region summing probabilities over the unions of bins

they are comprised of and the choice of branch bins is conditionally

independent from the root bin choice upon selection of a super

region, because root bins and branch bins sharing the same super

region have to intersect each other. Furthermore, the choice of the

super region follows the same probabilities as the branch bins, as

the probability with which a super region has to be selected is by

definition equal to the sum of probabilities of the branch bins it is

composed of. The sampling algorithm is then recursively applied to



the branches, to ensure that not only the summed probabilities for

super regions are satisfied, but also of individual branch bins. □

4.2 Reconstructing point sets from histograms
over binnings

The previous section allows us to sample a point that is consistent

with every distribution implied by a stored binning. By repeatedly

sampling, we can build up a set of points. However, each point is

sampled independently, meaning that the point set is not guaran-

teed to agree with the stored bin counts. By contrast, in this section

we seek to build a point set of the same size as the original, which

will agree exactly with the stored counts for each bin. We modify

the previous approach to adjust the sampling probabilities after

each sample. Due to the intersection hierarchy rules followed by

the sampling approach, the only modification necessary is to adjust

bin probabilities as we go.

Theorem 4.4. If there exists a probability distribution over the
atoms of a binning that are consistent with the distributions over the
flat binnings and the intersection hierarchy rules can be applied to
a binning, one can construct a set of points that is consistent with a
histogram over the binning using the intersection sampling algorithm.

Proof. After each generated point the count of the containing

bin in each flat binning can be increased, such that once the bin is

“full” upon reaching the correct count it can be removed from further

consideration. The only way to not produce a consistent point set

would be if a non-full bin becomes unselectable due to other full

bins. As root bins are directly sampled, they can be selected as long

as they are not full. The selection of root bins and other branch

bins cannot influence the selection of a branch bin, because of

the conditional independence properties outlined in the proof of

Theorem 4.3. Thus, if a branch bin can no longer be selected, this

means either that the branch bin is full or that all root bins in the

super region are full, in which case the branch bin is also full. □

This discussion assumes that the bin counts are all mutually

consistent with some underlying assignment of points to atoms.

This might not be the case if, for example, there is some noise in the

bin counts. We can address this situation by harmonising the counts

in a way that does not increase their variance. This is described in

more detail in Section A.2, where noise is deliberately introduced

to bin counts in order to ensure privacy.

5 APPLICATIONS
As binnings are data-independent they are a great tool for dy-

namic data and privacy preservation applications, where any data-

dependent information can breach privacy. For the differential pri-

vacy setting, the binnings can either serve as a basis for histograms

or as a means to obtain a sample.

5.1 Histograms over dynamic data
Highly dynamic data makes it very challenging to maintain data-

dependent partitionings or even samples, as data removals require

an additional sample over the removals. As an alternative, it is

therefore common to utilise an equi-width binning.

The log-log plot in Figure 7 shows that varywidth and elementary

dyadic binnings can achieve more precision (quantified through

the maximal alignment error 𝛼) using fewer bins.

Equiwidth only does best for a low number of bins, whereas

elementary dyadic does best for large number of bins and varywidth

sits in between. A downside of elementary dyadic binnings, is

that the binning height is very large in comparison, which can be

undesirable in some cases.

As each update requires to modify one count in each flat binning,

the update costs are proportional to the binning height. While

an equi-width binning always has height 1 and a 𝑑-dimensional

varywidth binning has height 𝑑 , a 𝑑-dimensional elementary dyadic

binning has a height dependent on the number of bins, i.e,. for(𝑚+𝑑+1
𝑑−1

)
2
𝑚

bins it has height

(𝑚+𝑑+1
𝑑−1

)
where𝑚 is a positive integer.

For a thousand bins, the elementary dyadic binning has at least

height 8 in two dimensions (21 in three and 35 in four dimensions).

For a million bins, the elementary dyadic binning has at least height

16 in two dimensions (105 in three and 364 in four dimensions). For a

billion (10
9
) bins, the elementary dyadic binning has at least height

26 in two dimensions (253 in three and 1540 in four dimensions).

In conclusion, an elementary dyadic binning is more precise with

more bins, but requires larger update costs. Varywidth appears to

be a good compromise in that regard.

5.2 Differential Privacy
Differential privacy deals with sensitive data from individuals. At-

tackers that aim to breach the privacy of individuals might possess

all but one record. In such a case, a released statistic over the data

makes it easy to discern if an individual participated in it. To pre-

vent such breaches, a random statistic is published skewed towards

the correct statistic and the presence or absence of an individual

changes the probabilities only slightly. For histograms, the the ran-

dom statistics are counts with added random noise, usually from a

Laplace distribution. For more details we refer the reader to [11].

Using existing techniques, the noisy bin counts can be har-

monised to generate a sample according to the bin counts. One

can then assess the spatial precision of the sample, i.e., how far

points deviate from their correct positions quantified by the maxi-

mal alignment region volume, and the count precision of the sample,

i.e., howmany noise points are added and howmany original points

are removed quantified by the variance of aggregates.

The plot in Figure 8 (cf. Appendix) shows on the 𝑦-axis the

achieved spatial precision as a function of counting precision on the

𝑥-axis. In this setting, binning techniques do best that require few

bins, but also have a small bin height. This is achieved by consistent

varywidth (varywidth with an additional grid that contains the

super regions of the other grids) achieves both a better spatial

as well as a better counting precision than other binnings. An

extensive discussion can be found in the Appendix that details how

to harmonise bin counts and which properties the sample inherits

from the binning.

6 RELATEDWORK
In the literature, most works focus on flat binnings, e.g., tilings. In

this is shown that a regular grid (equiwidth) is asymptotically the

best flat binning for box queries, which means that using alternative
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Figure 7: Number of bins of different schemes for box ranges

type of tilings such as hexagons can only lead to constant-factor

improvements (that can depend on the number of dimensions).

Index structures share a lot of commonalities with binnings on

a more abstract level. The goals of reducing querying and update

times can be compared to that of reducing the number of answering

bins of queries and the height of a binning. Indexing schemes [19,

24, 29] strip the indices down to the most bare-bone parts to better

reason about lower bounds for querying and storage costs. Lower

Bounds for Orthogonal Range Searching [2, 6] have some links to

lower/upper bounds for 𝛼-binnings, as we can think of 𝛼-binnings

as summaries over infinitely large uniformly spread datasets.

Subpavings [10, 21, 23] approximate arbitrary regions by a union

of freely chosen boxes that contains the region and one that is con-

tained in the region. They have many applications to set-inversion

and other non-linear problems. One can think of subpavings as

how to build query regions from a binning with infinitely many

box-shaped bins, in way that reduces number of answering bins

and the alignment error 𝛼 .

Geometric discrepancy [27] is closely linked to 𝛼-binnings as it

also deals with uniformity and 𝐿∞-norms. We identify the dyadic

boxes in (t,m,s)-nets [28] as the elementary binning and show that if

an equal-volume 𝛼-binning sees the same number of points across

the bins, that has implications for the uniform spread of the point

sets. We thereby generalise the notion of (t,m,s)-nets to arbitrary

binnings and utilise the 𝛼-binning property to derive discrepancy

upper bounds of the point set. An open question is if lower bounds

for the discrepancy of a point set have any implication on the num-

ber of bins of 𝛼-binnings, or vice versa. Y-approximations [17, 27]

summarise a set of points through a subset that behaves almost

identically for the ranges of interest. While 𝛼-binnings do not di-

rectly construct point sets, they do implicitly describe a point set

via the bin regions and binning structure.

Dyadic boxes that form cross products over dyadic intervals can

be found in almost any field that aims to reason over a continuous

space, e.g, dyadic decompositions for sketches [7] and wavelets.

Range trees over space partitions [33, 41] can also be thought of in

this way, as each node of the tree will correspond to a dyadic box.

A data-dependent analogue can be found in the summary literature

[32, 37], that can be seen as a set of equi-depth histograms (each

bucket containing the same number of points) where each one has

the same number of space divisions, but the divisions are spread

differently across dimensions, or as a range tree where we strip

away all the lower-levels, so that each node contains the same

number of points and then only keep the space partitioning.

In this work binnings are also used to obtain differentially private

versions of a dataset (see extensive discussion in the Appendix).

There are many works that take steps towards non-parametric

differentially-private synthetic data generation [9, 25, 38–40, 42],

but unlike this work they cannot guarantee a limited variance of

aggregates along bin-aligned regions. To achieve these guarantees

a sample is drawn from histograms over 𝛼-binnings, where the

noise counts are harmonised [18] such that the leaf level mirrors

the small variance of higher-level hierarchies.

7 CONCLUSION AND FUTUREWORK
This work revisits binnings, shifting the focus away from data to

supported queries and how they can be approximated. Apart from

establishing some lower bounds and identifying existing upper

bounds in the literature, a novel type of binning termed varywidth

is analysed and determined to offer excellent properties in the

differential privacy setting. It is shown that a (consistent) vary-

width binning offers the best trade-off between spatial precision

and variance accumulated over differentially private aggregates.

In future work, non-box queries (e.g., half-space queries) could be

prioritised and the group model (allowing subtracting fragments)

could be explored. Another aspect this work touches upon are the

family of subdyadic binnings that share a universal querying al-

gorithm, which starts from the dyadic decomposition and hands

off the dyadic boxes to a select subset of the grids. Finding optimal

subdyadic binnings, generating points from subdyadic binnings

and how to optimally hand-off dyadic boxes are still open problems.
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box can be used as an unbiased estimator of the count of 𝑂 with at

most variance a .

In this section, we adopt the following workflow:

Data Points

Perturbed

Histogram

Generated

Points

(𝛼, a)-similar

Achieving both small space discretisation error 𝛼 and count

estimation error a appears challenging if not impossible, but our

goal here is to explore the trade-offs between both.

Differential privacy has arisen as the most popular notion for

privacy-preserving data publication, because it offers a very strong

notion of privacy. The intent is that from differentially-private

statistics over a dataset it should not be possible to infer with

confidence whether an individual participated in the dataset or

not. A core use of differential privacy is to release statistics over

histograms (typically counts). In this setting, data-independent

histograms are of particular value, since they ensure that the focus

can be on maximizing the accuracy of the counts, without requiring

extra treatment to ensure that the description of the binning meets

the privacy bounds.

The canonical approach to achieve differential privacy is the

Laplace mechanism, which for histograms replaces counts with

random variables following a Laplacian distribution. The variance

of these random variables is chosen large enough to obscure an

individual participating in a count.

In this section, we first deal with how to allocate privacy budget

between overlapping bins, as the noise added to the counts has

to match how much information is revealed for individual points.

While one could naively split the privacy equally between all bins, it

is not optimal with regards to a . Then we tackle how to ensure that

the added noise does not cause inconsistencies by pooling multiple

random variables. At the end, we compare different binnings for

which trade-offs between 𝛼 and a they are guaranteed to achieve

for any dataset.

For a flat binning, each data point participates only in one bin

count, but in arbitrary binnings, it contributes to multiple bin

counts, which has to be accounted for when adding artificial noise

to the counts. As overlapping grids allow better results for 𝛼, a , we

study the problems of how to split the privacy budget between

them when optimising for the worst-case, how to keep the counts

consistent and how to generate points that match their counts.

A.1 Privacy Budget Allocation
As histograms with overlapping bins expose data points multiple

times, the privacy budget needs to be allocated between overlapping

bins, making use of sequential composition results.

Definition A.2. The Laplacian histogram mechanism with pri-

vacy budget allocation function ` replaces the count of each bin 𝑎

with the random variable Lap(count(𝑎), 1

` (𝑎) ).

Definition A.3. A binning has DP-aggregate variance 𝑣 if there

exists a privacy allocation function ` that maps each bin to a real

in (0, 1] s.t. each set of intersecting bins 𝑆 satisfy

∑
𝑠∈𝑆 ` (𝑠) ≤

1 and for each query 𝑄 and answering bins A(𝑄) it holds that∑
𝑎∈A(𝑄)

2

` (𝑎)2 ≤ 𝑣 .

Fact 2. Let 𝐿0, 𝐿1, . . . , 𝐿𝑘 with 𝑘 ≥ 1 be i.i.d. random variables

with 𝐿𝑗 ∼ Lap(0,
√︃

_
2
) and 𝑋 ∼ ∑𝑘

𝑖=0 𝐿𝑖 . Then Var(𝑋 ) = 𝑘_.

This fact follows since, for independent variables 𝑋1, . . . , 𝑋𝑛 , it

holds that Var(∑𝑛
𝑖=1 𝑋𝑖 ) =

∑𝑛
𝑖=1 Var(𝑋𝑖 ) and Var(𝐿𝑖 ) = _.

The Laplace mechanism ensures differential privacy by adding

a Laplacian random variable to each count. As range queries are

composed bymultiple bins whose counts have to be summed up, the

count of range queries is the sum of random variables distributed

by a Laplace distribution. As the random variables are independent

of each other, the variance over the sum is simply the sum over the

individual variances.

Fact 3. Any binning with height ℎ and at most 𝛽 answering bins
has DP-aggregate variance 𝑣 ≤ 2ℎ2𝛽

The result follows simply by setting ` (𝑥) = 1

ℎ
for every bin 𝑥 . A

better result can be achieved, if we take into account from which

grid (or more generally flat binning) most answering bins come

from, so that we can allot more privacy budget to that grid:

Definition A.4 (answering dimensions). Let ℎ ∈ N. A binning

has answering dimensions {𝑤1,𝑤2, . . . ,𝑤ℎ} if there exists a set of
flat binnings {𝐹1, 𝐹2, . . . , 𝐹ℎ}, s.t. for each query 𝑄 and answering

bins A it is satisfied that |A ∩ 𝐹1 | ≤ 𝑤1, |A ∩ 𝐹2 | ≤ 𝑤2, . . . , and

|A ∩ 𝐹ℎ | ≤ 𝑤ℎ .

Intuitively, the answering dimensions is a histogram that tells us

how many answering bins come from distinct bins without telling

us where exactly it comes from. This is sufficient to determine a

worst-case guarantee for the aggregate variance:

Lemma A.5. Any binning with answering dimensions𝑤1, . . . ,𝑤ℎ

has DP-aggregate variance 𝑣 ≤ 2( 3

√
𝑤1 + 3

√
𝑤2 + . . . + 3

√
𝑤ℎ)3.

Proof. Find a set of flat binnings {𝐹1, 𝐹2, . . . , 𝐹ℎ} s.t. for each
query 𝑄 there is a set of answering bins A that satisfies |A ∩
𝐹1 | ≤ 𝑤1, |A ∩ 𝐹2 | ≤ 𝑤2, . . . , and |A ∩ 𝐹ℎ | ≤ 𝑤ℎ . Letting `𝑖
denote the privacy allocation to buckets of flat binning 𝐹𝑖 , we aim

to minimize the resulting DP-aggregate variance; that is, minimize∑
𝑖
2𝑤𝑖

`2
𝑖

subject to the constraint

∑
𝑖 `𝑖 ≤ 1. Forming the Lagrangean:

𝐿(`1, . . . , `ℎ, _) =
∑︁
𝑖

2𝑤𝑖

`2
𝑖

+ _(
∑︁
𝑖

`𝑖 − 1),

and setting the partial derivatives
𝜕𝐿
𝜕`𝑖

= 0, we find that the optimal

privacy budget allocation is given by `𝑖 =
3
√
𝑤𝑖

3
√
𝑤1+ 3
√
𝑤2+...+ 3

√
𝑤ℎ

for

𝑖 = 1, . . . , ℎ. □

Adding noise to counts of binnings that are not flat can introduce

inconsistencies. In the next sectionwe show how noise can be added

in a consistent way that can even reduce the overall variance.

A.2 Harmonised Bin Counts over Hierarchies
In this section we show how existing techniques can be used to

achieve both consistent bin counts as well as not increasing the

variance. For simplicity, we restrict ourselves to bins that follow a

tree hierarchy:
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Figure 8: Differentially Private (DP) Aggregate variance of different 𝛼-binnings

Definition A.6 (tree binning). A tree binning is a binning that

allows us to order the bins within a hierarchy, such that the bin

corresponding to each node is the union of the bins at the children

nodes.

Surprisingly, although the previously discussed binnings are very

structured, only marginal binnings, multiresolution and equiwidth

are tree binnings, whereas dyadic elementary and varywidth are

not. However, we can convert varywidth to a tree binning by adding

the coarser grid shared by the grids:

Definition A.7 (Consistent varywidth). A consistent varywidth

binning is comprised of the usual𝑑 finer gridsG𝐶ℓ×ℓ ...×ℓ , Gℓ×𝐶ℓ...×ℓ ,
. . . , Gℓ×ℓ ...×𝐶ℓ along with the coarser grid Gℓ×ℓ ...×ℓ ,

In order to make bin counts from a tree binning consistent, we

adapt the least-squares minimization from [18]. This effectively

makes the counts 𝐿1, 𝐿2, . . . , 𝐿𝑘 of 𝑘 smaller bins consistent with

the count 𝐿0 over the larger bin (i.e., the union of the smaller bins),

by subtracting the average over 𝐿1, 𝐿2, . . . , 𝐿𝑘 and adding
𝐿0
𝑘
, s.t., the

sum over the new counts 𝐿∗
1
, 𝐿∗

2
, . . . , 𝐿∗

𝑘
will equal to 𝐿0. Applying

this concept to our setting, we similarly pool multiple noise terms

together. We can then show, with a mild assumption on the privacy

budget splitting, that the sum of variances does not increase, i.e.,

if Var(𝐿0) is at most 𝑘 times larger than Var(𝐿𝑗 ), it holds that

Var(𝐿∗
𝑗
) ≤ Var(𝐿𝑗 ):

Lemma A.8. Let 𝐿0, 𝐿1, . . . , 𝐿𝑘 with 𝑘 ≥ 1 be a set of of i.i.d. ran-

dom variables with 𝐿𝑗 ∼ Lap(0,
√︃

_
2
) and 𝐿0 ∼ Lap(0,

√︃
𝑚_
2
) where

𝑚 ≤ 𝑘 .
For 𝐿∗

𝑗
= 𝐿𝑗 + (

𝐿0−
∑𝑘

𝑖=1 𝐿𝑖
𝑘

), the expected values remain the same,

i.e., E[𝐿∗
𝑗
] = E[𝐿𝑗 ] and E[∑𝑘

𝑖=1 𝐿
∗
𝑗
] = E[𝐿0], and the variances do

not increase, i.e., Var(𝐿∗
𝑗
) ≤ Var(𝐿𝑗 ) and Var(

∑𝑘
𝑖=1 𝐿

∗
𝑗
) = Var(𝐿0).

Proof. For independent variables 𝑋1, . . . , 𝑋𝑛 it holds that

Var(
𝑛∑︁
𝑖=1

𝑎𝑖𝑋𝑖 ) =
𝑛∑︁
𝑖=1

𝑎2𝑖 Var(𝑋𝑖 ) .

From Var(𝐿𝑖 ) = _, it then follows that

Var

(
𝐿𝑗+

(
𝐿0 −

∑𝑘
𝑖=1 𝐿𝑖

𝑘

) )
= Var

©«𝐿𝑗 𝑘 − 1𝑘
+
𝐿0 −

∑𝑗−1
𝑖=1

𝐿𝑖 −
∑𝑘
𝑖=𝑗+1 𝐿𝑖

𝑘

ª®¬
=

(
𝑘 − 1
𝑘

)
2

_︸︷︷︸
Var(𝐿𝑗 )

+
(
1

𝑘

)
2

(𝑚_)︸︷︷︸
Var(𝐿0)

+(𝑘 − 1)
(
1

𝑘

)
2

_︸︷︷︸
Var(𝐿𝑖 )

=
(𝑘 − 1)2 + (𝑘 − 1) +𝑚

𝑘2
_

=
𝑘 (𝑘 − 1) +𝑚

𝑘2
_ ≤ 𝑘2 − 𝑘 + 𝑘

𝑘2
_ ≤ _

□

A.3 Error tradeoff of binning schemes
To better understand the tradeoffs between volume errors (captured

by 𝛼), and privacy noise (captured by the aggregate variance of

the binning, as derived above), we plot these values for different

binnings as we vary the number of bins. The log-log plot in Figure 8

shows the achieved spatial precision (on the 𝑦-axis) against the

aggregate variance (on the 𝑥-axis).

In this setting, the binning techniques that do best require few

bins, and also have a small height. This is best exemplified by con-

sistent varywidth (varywidth with the additional grid containing

the super regions of the other grids), which achieves both a better

spatial accuracy as well as a better counting precision than other

binnings. This achieves orders of magnitude better results than the

standard dyadic and uniform grid approaches from the literature

in 2 or 3 dimensions. The second choice method, “multiresolution”,

is the subdyadic scheme that generalizes quadtrees.
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