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Abstract—Traditional data management systems map infor-
mation using centralized and static data structures. Modern
applications need to process in real time datasets much larger
than system memory. To achieve this, they use dynamic entities
that are updated with streaming input data over a sliding window.
For efficient and high performance processing, approximate
sketch synopses of input streams have been proposed as effective
means for the summarization of streaming data over large sliding
windows with probabilistic accuracy guarantees.

This work presents a system-level solution to accelerate the Ex-
ponential Count-Min (ECM) sketch algorithm on reconfigurable
technology. Different reconfigurable architectures for the sketch
structure that correspond to different cost and performance
tradeoffs are presented. We map the proposed system-level
ECM sketch architectures to a high-end modern HPC platform
to achieve guaranteed and best-effort update rates up to 150
and 180 million tuples per second respectively. We compare
the performance of the implemented system against the best
optimized multi-thread software alternative and show that our
scalable full-system accelerators outperform software solutions
by 5-7.5x for Virtex6 devices and in excess of 10x for current
Ultrascale devices.

I. INTRODUCTION

The requirement to process in real time continuous, high-
volume data streams is common in many emerging application
environments, such as network monitoring for detection of
denial-of-service (DoS) attacks, monitoring market data to
guide algorithmic trading, and adaptive online advertising.
Unlike conventional data processing algorithms for stored data
that can utilize several passes over the data, data-stream pro-
cessing algorithms often rely on building concise, approximate
sketch synopses of the input streams in real time. Such sketch
structures typically require small space and update time (both
significantly sub-linear in the size of the data), and can be
used to provide approximate query answers with guarantees
on the quality of the approximation. These answers are more
than sufficient for typical exploratory analysis of massive data,
where the goal is to detect interesting statistical patterns rather
than obtain precise answers.

In this work we focus on Exponential Count-Min (ECM)
sketches that enable the maintenance of distribution statistics
for fast-paced data streams over sliding windows [14], [15].
Supported queries include frequency queries (e.g, how many
packets did IP address 141.1.1.2 send in the last 2 seconds?),
and inner product queries (e.g. what is the inner product of the
distribution vector of two streams over the last ten seconds?).

Accordingly, they can be used as the primary data structure to
maintain heavy hitters, to estimate entropy of the frequency
distribution of a stream, and to estimate the similarity of
two streams, over varying-length sliding windows. A single-
threaded CPU-based implementation of ECM sketches pro-
vides throughput of around 10 Million updates per second on
recent hardware (cf., Section V-B).

This impressive throughput, however, is still not sufficient
in many cases. As an example, consider network routing:
modern network switches support up to 150 Million packets
per second. Clearly, keeping even approximate statistics at
this rate is extremely challenging, and even multi-core CPUs
run into bottlenecks such as locks and memory-bandwidth
saturation [3], [12]. Hence, hardware accelerators are under
consideration for the problem at hand.

GPUs and FPGAs are widely used for big data and stream
management [1], [6], [8], [10], [16], [22]. Compared to
GPUs, FPGAs have distinct advantages whenever guaranteed
throughput is required, and have lower energy footprint and
lower Total Cost of Ownership (TCO) vs. state-of-the-art
GPUs and manycore processors [4], [7], [9]. Prototypical
examples of FPGA-accelerated applications include high-
frequency trading, and network management.1

In this work, we consider hardware acceleration of ECM
sketches. Our two motivating application areas -that stem from
our collaborations with companies- are finance and network
monitoring. Since FPGAs are already extensively utilized in
these fields, we focus on FPGA accelerators. The implemen-
tation of ECM sketches over FPGAs raises two fundamental
challenges. First, the developer needs to pre-allocate all FPGA
resources (memory and logic) according to the worst-case
complexity of the implemented algorithms. In the case of ECM
sketches, the worst-case complexity is logarithmic to the size
of the sliding window, whereas the amortized complexity is
constant and low. This means that the FPGA resources will be
underutilized, opening a potential for smarter approaches and
increased utilization. Second, we need to handle concurrent
accesses (R/W) on the same memory location, i.e, more than
one updates that need to modify the same counter in a single
cycle. This second challenge is also relevant to the traditional
CPU-based ECM sketch implementation.

1See, e.g., the NetFPGA initiative (http://netfpga.org/) which develops line-
speed NICs, firewalls, and multiport switches on cheap FPGA hardware.
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Fig. 1. Updating an ECM sketch.

To address these challenges we examine the design space
of the FPGA implementations for the sketch. Each of the pro-
posed implementations in Sections III-IV comes with distinct
trade-offs on cost and throughput. We start by discussing a
direct mapping of the ECM sketch to reconfigurable hard-
ware, in order to illustrate the basic challenges. Section III-A
proposes a fully pipelined and fast mapping with guaranteed
throughput, which, however, is too expensive in terms of
hardware resources and can only be used with small sliding
window sizes. In Section III-B we extend the first architecture
by reducing its BRAM memory requirements, and in Section
III-C we increase the memory capacity by incorporating
DRAM in our architecture so that it can support arbitrarily
large sliding window sizes, yet without a drastic reduction of
the performance. Finally, Section IV discusses our final archi-
tecture which is resilient to skew and supports parallel updates.
Section V presents the evaluation the proposed architectures
in terms of cost and throughput using traces of real network
and financial data as well as two generated traces.

II. ECM SKETCHES

ECM sketch belongs to a family of synopses that allow
single-pass summarization of high-dimensional streams over
both time-based and count-based sliding windows. The sketch,
first introduced in [14], [15], is employed to estimate point
(frequency) queries and inner product/join size queries, and
it can be employed to address a broad range of problems,
such as maintaining frequency statistics, finding heavy hitters,
and computing quantiles in the sliding-window model. In the
domain of network monitoring, which we will be using as a
running example throughout the text, the data stream consists
of the network packets observed by a router; queries supported
by ECM sketch include, e.g., estimating the number of packets
sent by any IP address or the number of packets exchanged
between a source and a target IP address, and tracking the
top-k IP addresses that send the most packets.

The sketch consists of a set of d hash functions
f1, f2, . . . , fd, and a 2-dimensional array of counters of width

w and depth d (cf., Figure 1). The hash functions map each
item from the input domain (i.e., each source IP address) to
one counter per row. The counters are modeled as internal
data structures that support sliding window queries over binary
streams (e.g., exponential histograms or randomized waves).
Each stream arrival at time t is handled as follows: first, the
key – the source IP address – is hashed by using each of the d
hash functions, pointing to one counter per row (e.g., counter 2
at the first row in the example of Figure 1). The corresponding
counters are retrieved from the array, and updated by adding
one arrival at time t. The updating process of the counters
depends on the data structure chosen for implementing the
counters. To estimate the frequency of a key – e.g., the number
of packets sent by an IP address – we again hash the key
using the same d hash functions, to map the key to the d
corresponding counters. We then retrieve the counters from
the array and query each of them individually, and return the
minimum value of all counters as an estimate. In this work we
consider exponential histograms for maintaining the individual
counters, since these are widely used and are more compact
than alternatives relying on randomization (e.g., randomized
waves), typically by one to two orders of magnitude.

Exponential histograms. Exponential histograms (EH) [5]
are deterministic structures proposed to address the basic
counting problem, i.e., for counting the number of true bits
in the last N arrivals over a bit stream. They operate by
breaking the sliding window range into smaller windows,
called buckets, to enable efficient maintenance of the statistics.
Each bucket contains the aggregate statistics, i.e., number
of arrivals and bucket bounds (starting and completion time
of the bucket), for the corresponding subrange. Buckets that
no longer overlap with the sliding window are expired and
discarded from the structure. To compute an aggregate over
the whole (or a part of) sliding window, the statistics from all
buckets overlapping with the query range are aggregated. For
example, for basic counting, aggregation is a summation of the
number of true bits in the buckets. A possible estimation error
can be introduced due to the oldest bucket inside the query
range, which usually has only a partial overlap with the query.
Therefore, the maximum possible estimation error is bounded
by the size of the last bucket.

To reduce the space requirements, exponential histograms
maintain buckets of exponentially increasing sizes. Bucket
boundaries are chosen such that the ratio of the size of each
bucket b with the sum of the sizes of all buckets more
recent than b is upper bounded. In particular, (invariant 1)
is maintained for all buckets j: Cj/2(1 +

∑j−1
i=1 Ci)) ≤ ε,

where ε denotes the maximum acceptable relative error and
Cj denotes the size of bucket j (number of true bits arrived
in the bucket range), with bucket 1 being the most recent
bucket. (Invariant 2) helps us bound the space: the bucket
sizes are nondecreasing powers of 2, i.e., Ci ∈ {1, 2, 4, . . .}
and ∀i : Ci ≤ Ci+1, and for every bucket size other than the
size of the last bucket, there are at least d1/(2ε)e and at most
1+d1/(2ε)e buckets. We refer to all buckets with the same size
as a bucket level. The combination of the two invariants leads



to a bound of log 2N
k bucket levels, each containing at most

k
2 + 1 buckets of the same size, with k = d1/εe. Therefore,
each exponential histogram has a total of O( 1ε logN) buckets,
and a space complexity of O( 1ε log

2N) – in bits.
To insert an item in the exponential histogram we first create

a new bucket of size 1 for the item, add it in the front of the
list of buckets, i.e., at position 1, and verify that invariant 2 is
valid for buckets of size 1. Whenever invariant 2 is invalidated,
i.e., there are more than 1+d1/(2ε)e buckets of the same size
s, the two oldest ones are merged and replaced with a bucket
of size 2s. Notice that a single step of this process may not
fully resolve the violation of the invariant, since it may lead
to more than d1+1/(2ε)e buckets of size 2s. In this case, the
merging algorithm is applied recursively until it finds a bucket
size for which there are at most d1+1/(2ε)e buckets. We call
this a cascading update.

Example. Figure 1 presents an ECM sketch with ε = 0.5. At
time t = 31, a message from IP address 132.1.3.4 arrives,
and is mapped to the corresponding d EHs using f1, . . . fd.
Consider the EH at row d, which is depicted in the figure.
After adding the new bucket of size 1 at t = 31, we have
more than 1 + d1/(2ε)e = 2 buckets of size 1. Therefore, the
two older buckets of size 1 (the ones that end at time 26 and
28) will be replaced by a new bucket of size 2, which ends at
time 28. This will still not fully resolve invariant 2, since we
will now have three buckets of size 2. Therefore, the two older
buckets of size 2 (the ones ending at time 19 and 23) will be
merged to a single bucket of size 4, resolving the invariant.

Configuration of ECM sketches. For values 0 < ε < 1
and 0 < δ < 1, the ECM sketch is configured such that it
provides frequency estimates with an error less than εN , with
probability at least 1− δ (N denotes the length of the sliding
window). Following from Theorem 3 of [15], we configure
the ECM sketch by setting the number of rows d = dln 1/δe,
the number of columns w = de(1 + ε)/εe, and parameter k
of the individual exponential histograms to k = d1/εe. This
configuration minimizes the space complexity of the sketch.

Update complexity. Due to the possibility of recursive
(cascading) updates, the worst-case complexity of updates in
exponential histograms is O(logN), whereas the amortized
complexity is constant, with an expected of 2 merges per
update. For ECM sketches based on exponential histograms,
the worst-case complexity boils down to O(d logN), whereas
the amortized complexity is O(d), with d typically in the range
of 3 to 5. Since real-world applications often require large
sliding window lengths, the discrepancy between the worst-
case and expected cost per update typically exceeds an order
of magnitude.

III. FPGA-BASED ARCHITECTURES FOR ECM SKETCHES

Mapping the ECM sketch into hardware is not obvious.
The ECM structure, shown at the top of Figure 1, consists
of d rows of w EHs, and the size of each EH scales as
O(dlogN) (where N is the window size). This makes a fully
parallel implementation of d ∗ w independent EHs infeasible.
Next, we present three architectures that efficiently map the

EH data into reconfigurable logic. The first is a simple, fully
pipelined architecture that supports one update per cycle but is
costly. The second architecture exploits the nature of the ECM
sketches to reduce the required memory resources. The third
aims to support larger window sizes via the use of DRAM.

A. Pipelined Architecture: Handling one insertion per cycle

The straightforward fully pipelined (FP) architecture, shown
in Figure 2, consists of d parallel modules that map the ECM
sketch rows and the corresponding Hash functions. Each ECM
row consists of w EHs, and each EH contains L bucket levels.
L is determined from the sliding window size and ECM sketch
parameters, and grows as O(log(2N/k)+1), with k = d1/εe.
Updating an EH’s buckets on each tuple arrival is a sequential
process that lends itself directly to pipelining. Therefore, we
model an EH as a linear pipeline of L bucket levels. Exploiting
the fact that exactly one EH within each row is updated for
every tuple, we group the contents of the w EH of each row
into BRAM space using the EH offset as an index. Each time
a new tuple arrives at a bucket level, all the corresponding EH
values are loaded concurrently to the shift list module from
the parallel memory modules. Then, these values are shifted
and, finally, they are stored back to the next memory modules.
If the update of a specific bucket level creates a new update
that needs to pass to the next bucket level (spillover), it is
stored in the pipeline register so that it is performed in the
next bucket level at the following clock cycle.

The advantages of the proposed architecture are twofold:
parallelism, and guaranteed, single cycle throughput. Each of
the d ECM rows operate independently, and, within the row,
the bucket pipeline prevents the occasional long operation tail
to impede processing throughput. Unfortunately, these benefits
come at the cost of high (BRAM) resource utilization. Hard-
ware resources are dimensioned for the worst case scenario,
i.e. for incoming tuples that update all existing levels of the
exponential histograms, even though the worst-case scenario
is rare. In fact, for each update, the expected number of levels
that will need to be updated is 2 (cf. Section II). For the ECM
sketch parameters we use in our evaluation, implementing this
architecture along with the system peripherals required more
than the 1440 BRAMs provided by the Virtex6 FPGA featured
in our platform. While this architecture is feasible for moderate
to small window sizes and in larger FPGAs, its wastefulness
in terms of memory motivated us to consider improvements.

B. Cost-Aware, Full Bandwidth Architecture

To optimize the required resources for the ECM sketch, we
exploited two observations: (i) the later parts of the bucket
pipeline is rarely used, and (ii) the BRAMs that are used for
each bucket are underutilized: only w entries are used and
the rest are empty. With w being a relatively small number
(55 in our evaluation setup compared to the 512 minimum
entries in a BRAM), this leaves a good portion of each BRAM
unexploited.

For each of the ECM sketch rows, instead of providing the
full -L level deep- bucket pipeline, the proposed cost-aware
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Fig. 2. The Fully Pipelined ECM sketch Architecture groups and maps the EHs of each row ECM structure on parallel reconfigurable components.

Hash 
Func ...BL #1 BL #LBL #L-1BL #2

ECM WorkerHash 
Func

BL #1

Fig. 3. Cost-Aware ECM sketch architecture: basic idea.

(CA) architecture provides a two stage pipeline. The first stage
maps the first bucket level (BL # 1) as in the FP case, while the
second stage (called Worker) maps the rest of the bucket levels
and corresponding processing. Figure 3 depicts the main idea
for this architecture. When a new tuple arrives, it updates the
first bucket level of each EH. If this update creates a spillover,
it is passed to the Worker stage, which is a single Bucket
stage augmented to perform serial bucket processing. If there
are further spills, the processing will continue using the loop-
back Update FIFO. If new spills arrive from the first stage
before the Worker is finished, these are queued in the New
Merge FIFO for later processing.

The benefit of this approach is the reduced cost in logic
and BRAMs since only two bucket levels are instantiated.
However, the processing bandwidth of this architecture is not
guaranteed: while an average update touches only two buckets,
occasionally it will touch more than two and the Worker
module will remain busy for multiple cycles. In addition,
merging too many buckets into one does reduce the total
BRAMs as they fit all the bucket data. To address these
concerns, we instantiate multiple workers per row as shown
in Figure 4, essentially over-provisioning the architecture to
offer more than average Worker processing bandwidth. This
over-provisioning increases logic but not BRAM requirements.

The CA architecture strikes a good balance between re-
sources and performance, but the use of BRAMs for storing
bucket data limits the size of the sliding window that can be
supported. This is the motivation for the hybrid architecture
presented in the following section.

C. Hybrid Architecture: Supporting Large Window Sizes

To extend the Cost-Aware ECM sketch architecture to
support larger window sizes we build on the observation that
-on the average- buckets towards the end of the window are

EH Id
Hash 

Func 1

ECM row 1...
Bucket 

Level #1

Window 
Size

EH Id
Hash 

Func d

ECM row d

Bucket 
Level #1

ECM Worker #0

...

ECM Worker #P

ECM Worker #1

ECM Worker #P-1

Tuple

Fig. 4. The full Cost-aware ECM sketch reconfigurable architecture consists
of parallel ECM workers for updating data to upper bucket levels.

rarely updated, so larger window sizes cost in terms of storage
but not in terms of processing requirements.

The Hybrid architecture is based on three processing stages
(cf., Figure 5). As in the previous case, the first stage is the
hashing of the input tuples. Then, and similar to the CA
architecture, we have d independent ”FrontStage” modules
(one per ECM row), followed by a Worker module. Hybrid
FrontStage modules implement the first K bucket levels in
fully pipelined way, followed by a single (instead of P in CA)
Worker module that stores all EH data for the K + 1 . . . L
bucket levels in DRAM. The large DRAM size allows the
Hybrid architecture to support arbitrarily large windows.
K, i.e., the number of the mapped levels, is determined

by the available FPGA resources, and should be as high as
possible to reduce the load on the DRAM-based BackStage
worker. The BackStage handles the spillovers from the K-th
level of each row. Its internal structure is similar to the Worker
of Figure 3, but it stores all the EH data in DRAM instead of
BRAM. If multiple DRAM ports are available to the FPGA,
multiple BackStage modules can be instantiated to provide
additional backstage processing bandwidth. This additional
bandwidth will not increase the overall ECM processing
throughput; it will only make the system more robust to bursts
or long tail tuple arrivals, which is also desirable.

IV. SUPPORTING MULTIPLE UPDATES PER CYCLE

Exceeding processing throughput of one tuple per cycle
for a single input stream mandates the support of multiple
insertions per cycle. To insert T tuples, we need to hash the
tuples to determine the T ∗ d EHs that need to be updated.
Clearly, this is not possible unless we increase the parallelism
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Fig. 5. The Hybrid architecture uses parallel FrontStages and a shared BackStage for updating the bucket levels that are stored in external memory.

in the architecture. Therefore we need more than d FrontStage
pipelines, each of which will implement a subset of the
ECM sketch row. Assuming that we have multiple FrontStage
modules, we rely on the statistical properties of the hash
functions to distribute the load evenly.

We start with the DRAM-based architecture of the previous
sub-section, and extend it to provide T ∗d front stage modules.
Note that it is not strictly necessary that the number of
FrontStage modules is be a multiple of d, but the imple-
mentation is simpler if it is. With T ∗ d hash functions we
can accept T tuples, and commence their processing in the
corresponding FrontStage pipelines. The EHs that correspond
to the entire ECM sketch are distributed and mapped into the
T FrontStages and the hash functions are adapted accordingly.

Figure 6 presents the proposed Multi-Threaded (MT) ar-
chitecture. As multiple input tuples arrive, they are hashed
in parallel and their EHs IDs are passed to the basic ECM
structure. In case that two or more of the incoming tuples
collide on an EH, they are enqueued to be served sequentially.
Updates to different EHs or different bucket levels of a single
EH can proceed concurrently. If the update of the first K bucket
levels of the mapped ECM structure leads to a spill-over, it
is enqueued to be served by the ECM BackStage module, as
described in Section III-C.

While it is easy to see that the design offers the required
parallelism to process multiple tuples, we are assuming an
even distribution of the load to the FrontStages. In all previous
architectures we are guaranteed to update a single EH per
row and per tuple. With multiple input tuples, updates to
the same EH are possible. To make matters worse, real-
world distributions are often highly skewed, i.e., an IP address
undertaking a DoS attack will send many more network
packets compared to other IP addresses. These packets will
lead to updates at the same EHs, and the proposed architecture
will need to handle these packets serially, effectively killing the
parallelism. Since queuing itself cannot address this challenge,
we provide additional guaranteed throughput pipelines for a
small number of ”heavy hitters”.

To provide an ”escape” path for heavy hitters, FrontStage
modules instantiate a parallel pipeline for a single EH, using
just logic and not BRAMs. A heavy hitter detection block
that uses lightweight statistics determines the culprit of a
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Fig. 6. Multi-tuple per cycle architecture for the ECM sketch; up to P tuples
are hashed and directed to the T ∗ d Frontstage modules.

saturation in the input queue. Then, the heavy hitter traffic is
split between the main FrontStage pipeline and the additional
one. We assume that we can dequeue up to two elements per
cycle from the queue and steer them to the correct pipeline.

When the system is overloaded with tuples that update the
same EH, we split the EH into two sub-EHs, each of which
receives and records half of the updates, effectively doubling
the processing bandwidth. When the input rate spike subsides,
the system disables the escape path and steers future updates
to the main pipeline. Queries on this EH are answered com-
bining the data of the two sub-EHs in an addive fashion.The
mathematical properties of ECM sketches guarantee that the
error bounds (quality) of the answer are not affected.

V. EXPERIMENTAL EVALUATION

This section evaluates the performance of the proposed
reconfigurable architectures for the ECM sketch algorithm.

A. ECM Sketch Setup and Parameters

The ECM sketch data structure size has three parameters,
(i) N , the sliding window size, (ii) ε, the error factor, and (iii)
δ, the probability that the estimation error exceeds ε. Unless
otherwise mentioned, the window size for our experiments is
fixed to two million time units. Typical values for the error
rate (ε) and the probability value (δ) are between [0.05, 0.25].
We set ε = 0.05 and δ = 0.05, as these correspond to the best-
quality sketches. The sketches were configured following the
discussion in Section II, in order to minimize space complexity
and satisfy the chosen ε and δ values. For the presented
configuration, this led to w = 55, d = 3, and k = 11.

The parameters of our architectures are K, the number of
mapped EH levels, and P , the number of parallel Frontstage



Dataset #Tuples Update Rate (Million (106) Tuples/sec)
SWx1/x24 FP CA Hybrid MT

Random1 108 10.6/16.4 150† 145.1 101.3 178.2
Random2 108 10.8/19.9 150† 147.3 101.2 177.8

SNMP 3.1 ∗ 107 11.4/26.6 150† 141.1 101.3 173.0
CAIDA 108 10.2/19.6 150† 147.9 101.2 183.3

WC 108 12.2/24.6 150† 147.1 101.1 148.5

TABLE I
PERFORMANCE (TUPLE PROCESSING RATE) FOR SOFTWARE (SINGLE AND

24 PARALLEL THREADS) AND SINGLE-FPGA RECONFIGURABLE
ARCHITECTURES. † FP PERFORMANCE IS ESTIMATED.

modules for the Hybrid architecture and the number of parallel
workers for the CA architecture. For the CA architecture P
was set to 6, i.e. two parallel workers for each ECM sketch
row, due to restrictions in BRAMs for storing the sketch data.
For the Hybrid and the MT architectures K was set to 5. This
value was determined due to high resource utilization of the
FPGA. Last, for the performance evaluation we used T of 3,
and a total of 10 FrontStages.

B. Performance and Cost Evaluation

For our experiments we used three real-life trace data sets:
(i) the Crawdad SNMP Fall 03/04 [11], (ii) the CAIDA
Anonymized Internet Traces 20112, and (iii) WC, the data set
from world cup98 [2], and two randomly generated traces.

We implemented and evaluated the performance of the
four proposed architectures (denoted as Fully Pipelined (FP),
Cost-aware (CA), Hybrid, and Multi-tuple (MT), respectively),
on a Micron (formerly Convey) HC-2ex FPGA-based high-
end server that features two six-core Intel Xeon E5-2640
processors, 128 GBytes of main memory, and four Xilinx
Virtex-6 LX760 FPGAs with 474240 LUTs, 948480 flip flops,
and 1440x18 Kbit BRAMs. The FPGA implementations use
only one of the four FPGAs clocked at 150MHz, a frequency
set by the HC-2ex system logic.

Performance was measured as the update rate achieved
for each of the datasets and is shown in Table I. Software
performance was measured using the original single-threaded
implementation [15]. We also report the performance of a
multi-threaded version of the same code scaling the number
of threads up to 24 (the limit of logical processor cores
in our system). The parallel software performance saturates
at 24 threads and achieves only an overall 2x improvement
over single thread due to the high overhead of fine grain
locking. The FP implementation could not fit in the FPGA due
to BRAM restrictions; we mapped the entire design without
the HC-2ex fixed interface logic and its post-P&R operating
frequency is 160MHz, so we estimate that if it would fit (for a
larger FPGA) its operating frequency would be limited by the
interface logic at 150MHz. Based on this operating frequency
and the fact that it guarantees a processing throughput of one
tuple per cycle, we infer that its throughput will be 150Mtuples
per second, which is about 15 and 6 times faster than the
single- and the multi-threaded software. The CA architecture
also achieves close to 150Mtuples per second, loosing some

2Available from http://www.caida.org/data/

Virtex6 FP CA Hybrid MTResources
LUTs 137,9K/29% 22,3K/5% 86,3K/18% 223,3K/47%
FFs 57,0K/6% 5,7K/1% 38,5K/4% 141,6K/15%

BRAMs 1071/74% 357/25% 651/45% 847/59%
TABLE II

ACCELERATOR RESOURCE UTILIZATION ON A VIRTEX6 FPGA. NOTE
THAT THE COMPLETE SYSTEM USE MORE RESOURCES FOR THE FIXED

FUNCTIONALITY, MEMORY CONTROLLER ETC.

performance due to the occasional Worker overload. The Hy-
brid architecture, while very flexible, does incur conflicts that
bring its performance down to 100Mtuples per second, which
still is 5-10x faster than software. The reduced processing
throughput is the price for supporting larger window sizes.
Finally, the MT architecture is able to sustain processing
throughput of 170-180Mtuples per second. The architecture
can accept 3 tuples per cycle but the EH conflicts lower the
sustained processing rate. Notice that the baseline for compar-
isons of the MT architecture is the performance of the Hybrid
architecture (which also uses DRAM for storage); therefore,
the performance improvement by processing multiple tuples is
1.7-1.8x. Also notice that performance varies with the input
dataset, with SNMP and WC being the most difficult ones. The
effects though are negligible or small across the architectures
(the worst effect is for the MT-WC combination).

Table II presents the resource requirements for each accel-
erator architecture, excluding the system logic; in our platform
the fixed interfaces, memory controller, etc, use an additional
17% of logic resources and 31% of BRAMs. We can see that
CA requires 5 times less logic and 3 times fewer BRAMs
compared to FP. We also note that the Hybrid cost is slightly
less than that of FP, indicating that supporting larger window
sizes via DRAM is certainly feasible. The MT cost in logic
compared to that of FP is roughly proportional to the increased
throughput it offers.

C. Discussion

The evaluation of the proposed architectures was performed
on a Virtex-6 FPGA, and the performance was restricted in the
clock frequency by the various system interfaces (memory,
bus, etc). Our work can directly benefit from newer devices
that are both faster and larger. For example, mid-range Kintex
devices provide in the range of 2,000 BRAMs and high-
end ones more than 4,000 BRAMs, while Virtex high-end
devices provide up to 7,560 BRAMs. To estimate this effect,
we mapped our FP logic onto a VCU110 board that features
a Virtex UltraScale XCVU190 FPGA. Table III lists the
resource utilization and operating frequencies for our proposed
architectures. Given the available BRAMs, we can instantiate
the entire FP and CA architectures and achieve post place-and-
route operating frequencies of 260 and 222 MHz respectively,
with corresponding processing rates of about 260 and 214
Mtuples per second. Furthermore, the additional resources can
be used to support larger window sizes and/or tighter error
bounds (ε and δ). The Hybrid and the MT architectures achieve
an operating frequency of 244 and 170 MHz, and processing
throughput of 165 and 198 Mtuples per second respectively.



UltraScale FP CA Hybrid MTResources
LUT 62.6K/15% 26.1K/6% 35.8K/8.5% 371.6K/87%
FF 21.5K/2% 8.7K/1% 6.8K/1% 110.4K/13%

BRAM 535/67% 220/28% 168/21% 504/63%
Freq (MHz) 260 222 244 170
Performance 260 214 165 198(Mtuples/sec)

TABLE III
ACCELERATOR RESOURCE UTILIZATION ON AN ULTRASCALE FPGA.
NOTE THAT THE COMPLETE SYSTEM WILL USE MORE RESOURCES FOR

THE FIXED FUNCTIONALITY, MEMORY CONTROLLER ETC.

Supporting multiple tuples per cycle is challenging: the
escape path is an affordable solution but limited both in
scope (only one heavy hitter per front-stage module) and in
throughput (up to two tuples per second). Borrowing from the
CA architecture, we could use multi-ported bucket modules as
a FrontStage, and back them with multiple single ported bucket
pipelines, striking a reasonable cost-performance trade-off.

Another approach to increase processing rate is to use
multiple FPGAs. If the system supports multiple independent
ECM sketches, this is relatively straightforward: the incom-
ing tuples will have to be distributed to the corresponding
FPGA for processing. However partitioning a single ECM
into multiple FPGAs is not straightforward and we expect the
synchronization overhead to be significant.

VI. RELATED WORK

Fast streaming data processing is critical in many emerging
applications where real-time response is required [24]. Re-
cent works focus on system modeling and design techniques
to facilitate streaming applications by exploiting task- and
data-level parallelism. Sketch, a highly accurate data stream
summarization technique, recently gained much interest in
the FPGA research community. SSketch algorithm [18], [19]
is the first automated computing framework for FPGA-based
online analysis of big data with dense (non-sparse) correlation
matrices. It uses streaming input for adaptive learning and
updating a corresponding ensemble of lower dimensional data
structures. The framework uses a scalable approach for dy-
namic sketching of massive datasets that works by factorizing
the original (densely correlated) large matrix and achieves up
to 200x speedup compared to software on a general purpose
processor. The SSketch approach is distinct from ECM sketch,
thus we can not move on a direct performance comparison.

Saavedra et al [20] implemented the Countmin-CU sketch
algorithm with the H3 family of hash functions on a reconfig-
urable platform. The sketch is stored in on-chip memory, and
the architecture exploits the parallelism available in the data
by simultaneously processing each row of the sketch. Their
prototype can process up to a specific number of input ele-
ments and achieve twofold performance acceleration. Tong et
al [23] proposed online based algorithms for two widely used
sketches: Count-min and K-ary Sketch. Their implementation
focus on 2 key network anomaly detection tasks: heavy hitter
detection and heavy change detection. Their system throughput
reaches up to 100-150 Gbps for various system configurations.
The current work can not directly be compared as the ECM

sketch combines two sketches, i.e., CountMin and Exponential
Histograms, into a single framework,i.e. ECM sketch. On the
other hand, our system offers up to one order of magnitude
higher update rates with no restrictions as far as the input size
dataset and for much higher complex processing than single
CountMin workload.

Sadoghi et al [21] presented an efficient multi-query event
stream platform that supports only query processing over high-
frequency event streams. They used reconfigurable hardware
and achieved query processing over 1 Gb/s Ethernet link.
Najafi et al [13] demonstrated an online reconfigurable event
stream query processor, i.e., Flexible Query Processor. Their
work focused on addressing performance limitations experi-
enced with general purpose processors needing to operate at
line rate using FPGAs. The previous works focused on accel-
erating query processing over streaming data. Our proposed
architectures map both update and query processing over ECM
sketch structure with the same performance.

Significant research effort has also been applied to acceler-
ating traditional and in-memory database systems. Papaphilip-
pou et al offer a survey of database acceleration frameworks
and implementations [17]. While these approaches are very
interesting, they focus mainly on the sort, select, join, etc.
database operators on datasets that fit in the disk or the
main memory, and can be accessed repeatedly to provide
exact answers to the queries. As such they are not directly
comparable to our work.

VII. CONCLUSIONS

In this work, we explored the potential of FPGAs to
efficiently conduct summarization of high-dimensional streams
over time-based sliding windows. We mapped a sketch struc-
ture, i.e. ECM sketch, on a high-performance reconfigurable
platform using different architectures that correspond to dif-
ferent cost-performance trade-offs. Compared to the best op-
timized state-of-the-art software implementation, our imple-
mented architectures achieve 5-7.5x higher processing rate for
both simulated and real data. When we map the proposed
architectures to recent UltraScale devices the processing rate
reaches 260 Mtuples per second or a 10x speedup compared
to software.

While the single-node performance we achieved is signifi-
cant, it is never sufficient as network speeds and application
demands are ever growing. As future work, we intend to
further explore the challenges of processing multiple tuples per
cycle, exploiting the advantages of the tight coupling between
the CPU and FPGA in the Intel Harp platform, and compare
with GPU-based mapping of the ECM sketch structure.
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