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• Omnibus outlier detection solution for wireless sensor networks.
• Trades-off communication for outlier accuracy with predictable guarantees.
• Accommodates both uni- and multi-dimensional outlier definitions.
• Operates under various streaming window models.
• Incorporates a wide variety of similarity measures to judge outliers.
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a b s t r a c t

Wireless Sensor Networks (WSNs) have become an integral part of cutting edge technological paradigms
such as the Internet-of-Things (IoT) which incorporates a variety of smart application scenarios. WSNs
include tiny sensors (motes), with constrained hardware capabilities and limited power supply that can
collaboratively function in an unsupervised manner for a long period of time. Their purpose is to con-
tinuously monitor quantities of interest and provide answers to application queries. Sensor data streams
are inherently spatiotemporal in nature, both because mote measurements form multidimensional time
series anddue to the spatial reference on thedata based on the realm sensedby amote.Motes are designed
to be inexpensive, and thus sensory hardware is prone to temporary or permanent failures yielding faulty
measurements. Suchmeasurementsmayunpredictably forge a query answer,while truthful but abnormal
mote samples may indicate undergoing phenomena. Therefore, outlier detection in sensor networks is of
utmost importance.

With limited power supply and communication being by far the main culprit in energy drain, outlier
detection techniques inWSNs should achieve appropriate balance between reducing communication and
providing real-time, continuously updated outlier reports. Prior works employ probabilistic or best effort
approaches to accomplish the task, which either unpredictably compromise outlier detection accuracy
or fail to explicitly tune the amount of communicated data. In this work, we introduce an omnibus
outlier detection solution over spatiotemporally referenced sensor data that is capable of: (a) directly
trading communication reduction for outlier detection quality with predictable accuracy guarantees,
(b) accommodating both uni- and multi-dimensional outlier definitions, (c) operating under various
streaming window models and (d) incorporating a wide variety of similarity measures to judge outliers.
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1. Introduction

Emerging technological paradigms such as the Internet-of-
Things (IoT) promise to flood the world with computing devices
that will effectively collaborate to transform platforms and envi-
ronments into sensitive, responsive and smart systems. Cutting
edge technology related to smart grids, smart cities, intelligent
transportation, remote patient health monitoring are infrastruc-
ture systems the common vision of which is associated with IoT. In
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IoT platforms a wide area, physical infrastructure is configured to
effectively perform intelligent monitoring and information man-
agement via the usage of networked devices. Devices are intercon-
nected to transmit useful measurement information and control
instructions via distributed sensor networks. Therefore, wireless
sensor networks recently find themselves needed in awide variety
of so-called ‘‘smart’’ application fields. Wireless sensor networks
consist of tiny sensor nodes (motes) equipped with limited mem-
ory and CPU capacity, wireless communication (of few tens of
meters range) infrastructure and constrained power supply. Motes
are placed in environments of interest where they are required
to self-organize and function in an unsupervised manner for a
long period of time. Together with the aforementioned elements,
sensory devices placed on motes are capable of sensing their
surrounding and provide information about a variety of features
such as temperature, humidity, soil texture, noise levels, velocity,
acceleration of pinpointed moving objects etc. Acquired measure-
ments of attributes are taking place in continuous data processing
procedures [1] (e.g., aggregate query answering) duringwhich they
are locally processed and are subsequently communicated to a
distant base station in a multi-hop fashion.

Sensor data are inherently spatiotemporal in nature. Motes
periodically collect measurements describing their surrounding
forming respective, multidimensional time series. Moreover, as
is the case with IoT platforms and other large scale application
fields, sensor networksmonitor awide areawith each device being
appointed to sensing its own realm, thus attributing an additional
spatial dimension, as a reference to the collected temporal data.
Therefore, analyzing distributed datasets stemming from various
motes mainly involves discovering patterns and structures by
diving into spatial and temporal correlations of neighboring or
distant sensors’ time variant readings.

In principle, sensor nodes are designed to be inexpensive and,
as such, their sensing particles often malfunction or occasionally
acquire spurious values causing a distortion on the monitored
features [2–5]. Similar noisy measurements can also be obtained
due to environmental interference [6,4]. Motes with extraordinary
samples stemming from such hardware failures should be de-
tected and get isolated since they may forge the outcome of query
processing [2]. On the other hand, abnormal values in acquired
samples may represent interesting undergoing phenomenawithin
the sensor network setting, such as a fire burst or a flood.

A tremendous effort has been devoted to accomplishing the
challenging task of outlier detection in sensor network environ-
ments [7,2–5]. The difficulty in developing outlier detection tech-
niques in the resource constrained, sensor setting mainly stems
from the existence of conflicting requirements. Pinpointed outliers
need to be delivered in a continuous fashion, as (due to the rapidly
changing data distributions of mote produced streams) the results
may quickly become outdated. Moreover, motes cannot individ-
ually determine if they sample extraordinary measurements and
need to examine their similarity with neighboring motes to sup-
port their obtained measurements, as spatial correlations exist for
motes monitoring the same surrounding [2–5]. While the demand
for continuous outlier reports through correlationdiscovery entails
communication of sensor measurements, data transmission and
reception are the main factor of energy drain [1] for the battery
powered sensors. Should sensors deplete their residual energy, the
whole networks’ connectivity is lost thus decreasing its lifetime.
Therefore, outlier detection techniques in sensor networks should
achieve appropriate balance between reducing communication
and providing real-time, continuously updated outlier reports.

Prior works [7] attempt to incorporate these constraints and
reduce communication following, for instance, probabilistic or best
effort approaches [8,2]. Nevertheless, all these approaches attempt
to place certain criteria under which communication between

motes (directly or through a parent node) will take place and
apply some kind of heuristics (e.g., election of motes producing the
most representative samples) to probe only a subset of the sensor
nodes. However, none of them provides explicit guarantees, neither
regarding the amount of data that they require to be communicated
in the sensor network nor with respect to the accuracy of the extracted
outlier sensors.

Prior work.

The TACO framework [4,5] was the first to introduce an outlier
detection technique that satisfies both the aforementioned crite-
ria. A plausible observation made in TACO as well as in most of
related works [7,9] is that outlier detection should be conducted
distributively and in-network, as the central collection of data in
a basestation is infeasible due to the cumulative effect in the
amount of transmitted data in a multi-hop fashion. TACO formu-
lates an in-network, continuous outlier identification procedure
which utilizes a Locality Sensitive Hashing (LSH) [10] based data
compression scheme to reduce the amount of transmitted data
and simultaneously provide the means to predict the accuracy of
the similarity tests between motes upon using those compressed
representations. As a result, the future network operation and
the outlier accuracy can be forecasted to the major extent. In
particular, TACO first utilizes LSH in order to encode the latest ω

measurements collected by each sensor node as a bitmap of d≪ ω

bits. This encoding is performed locally at each node. The encoding
that is utilized trades accuracy for bandwidth, by simply varying
the desired level of dimensionality reduction and provides tunable
accuracy guarantees based on the d parameter mentioned above.
Assuming a clustered network organization [11–14], motes com-
municate their bitmaps to their clusterhead, which can estimate
the similarity amongst the latest values of any pair of sensors in
its cluster by comparing their bitmaps. Based on the performed
similarity tests, and a desired minimum support specified by the
posed query, each clusterhead generates a list of potential outlier
nodes. At a second (inter-cluster) phase of the algorithm, this list
is then communicated among the clusterheads, in order to allow
potential outliers to gain support frommeasurements of nodes that
lie within other clusters. TACO can incorporate a variety of metrics
for judging mote similarity that may be useful in a wide range of
applications. The whole process is sketched in Fig. 1.

Our contributions.

Although the framework in [4,5] manages to predictably bal-
ance conflicting constraints in a tunable manner, it also consol-
idates important limitations. Initially, it is capable of detecting
outlier sensor nodes taking into account only one dimension-
monitored attribute. Nonetheless, weird samples’ determination
based on multidimensional outlier definitions can find itself quite
needed and in fact the inability of certain techniques to operate in
multiple dimensions has been pointed out as an important draw-
back in comparative analyses [7]. From an application viewpoint, a
handy and plausible observation is that inmost practical scenarios,
a distinction between dirty readings and interesting phenomena
can be achieved by reckoning that dirty readings usually appear
on individual sensory elements. For instance, a rain drop can cause
the humidity sensor of the popular MICAmote to report spikes [2],
while dusty temperature sensories are evidently uncapable of ob-
serving truthful environmental conditions. In contrast to the case
of dirty mote readings, unusual samples depicting interesting phe-
nomena more often than not affect the whole bunch of monitored
quantities. As an example, a fire burst near a mote will cause
its temperature and radiance values to steeply increase, while
humidity values will be downgraded. Additionally, in an industrial
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Fig. 1. Main stages of our outlier detection process.

application, all motes placed on a malfunctioning production ma-
chine will experience significant vibrations, high noise as well as
heat levels.

A second limitation of the framework in [4,5] is that it oper-
ates on a per tumble fashion, where tumbles [15] are defined as
disjoint windows of observations obtained by each mote. Many
applications however need to base their decisions on long term
observations [16] and hence, dictate the adoption of largewindows
of acquired samples. Utilizing a tumble in such cases would cause
delays and it would hinder the continuous delivery of outlier
results with high frequency, since for each tumble motes need to
first fill in an, each time, emptied window. Evidently, in such cases
a sliding window (i.e. a window where the most aged observation
expires and the latest one is appended to it) appears the most
suitable choice that [4,5] fail to consolidate.

Concentrating on the previously discussed aspects, in this work
we overcome this pair of limitations. The integration of multidi-
mensional outlier detection and sliding window operation by our
approaches leads to superior results since by tackling with each
limitation separately, we not only achieve to override it, but also
attribute extra features that are missing from any related frame-
work. In particular, by enablingmultidimensional outlier detection
and sliding window operation we end up with four modes of
operation during the outlier detection process. Namely, (a) uni-
dimensional outlier definition and tumble operation as in prior
work [4,5], (b) multidimensional outlier definition and tumble
operation, (c) unidimensional outlier definition and sliding win-
dow operation and finally (d) multidimensional outlier definition
and sliding window operation. From the above operational modes,
(b), (c), (d) are introduced in this work. Additionally, we show
that our techniques preserve the ability to (i) trade bandwidth for
accuracy in a straightforward manner and (ii) employ a variety of
commonly used similarity measures for judging outliers and their
generalizations tomultidimensional cases. Consequently, the suite
of algorithms we propose in this work comprises an omnibus out-
lier detection solution for wireless sensor networks with tunable
quality guarantees.

The proposed approaches are straightforwardly related to time
series data compression under various temporal (window)models,
while leveraging the spatial dimension of the data both at the
architectural level via the employed clustered sensor network
scheme, as well as during the intra- and inter-cluster processing
phases. Based on these, our techniques provide communication
efficient algorithms for large-scale (for instance, in IoT), distributed
implementations of perhaps the most interesting data mining task

in the sensor network setting, namely real-time outlier detection.
It is important to note that our techniques can easily be adapted to
serve other analytics tasks in resource constrained environments
that require distributed, pairwise correlation estimation andmon-
itoring, including clustering (i.e., the dual to the outlier detection
problem), novelty and intrusion detection among others.

The contributions of this work are:

• We introduce a suite of outlier detection techniques which
are capable of operating over uni- or multidimensional
outlier definitions as well as tumble or sliding streaming
window paradigms along with combinations of them. We,
thus end up with four modes of operation readily available
to a wide class of application needs.
• For each operational mode, we introduce algorithms for

data handling and transformation that preserve the ability
to trade bandwidth consumption for accuracy during the
outlier detection procedure.Moreover, ourmethods possess
the ability to employ various useful similarity measures in
our generic outlier definition.
• We present an extensive theoretic analysis on the quality

guarantees that can be provided during the outlier detection
procedure for each operational mode which is in direct
relation to the desired degree of bandwidth consumption
decrement.
• We conduct a detailed experimental analysis using a vari-

ety of real datasets and parameter settings. Our evaluation
shows that our techniques remain accurate with average
accuracy revolving around 80% in most of the cited cases
and often exceeding 90%, while ensuring communication
savings above 2.5 and up to a factor of 20.

Roadmap.

The rest of the paper is organized as follows. In Section 2 we
present preliminary concepts related to the sensor network archi-
tecture and mote data organization as well as the employed uni-
and multidimensional outlier definitions. We also reason about
the variety of similarity measures that are supported by our tech-
niques. Section 3 presents the unidimensional outlier definition
and tumbling window operational mode which is the only one
supported by prior work [4,5]. Section 4 details multidimensional
outlier detection and tumble operation, unidimensional outlier
detection and sliding window operation and multidimensional
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Table 1
Data organization at the sensor level. Eachmote Si maintains amatrixU i comprised
of ξ rows for the u1, . . . , uξ monitored attributes and ω columns for the most re-
cent measurements contained in the specified window size.

outlier detection and sliding window operation introduced in the
current work with appropriate theoretic analysis. Related work is
discussed in Section 5, before illustrating the results of our experi-
mental evaluation in Section 6. Finally, Section 7 elaborates on the
applicability of our techniques in a spectrum of IoT scenarios with
privacy/security requirements and Section 8 includes concluding
remarks.

2. Preliminaries

2.1. Network and data organization

We adopt an underlying network structure where motes are
organized into clusters (shown as dotted circles in Fig. 1) using
any existing network clustering algorithm [14,13]. An outlier de-
tection query is propagated by a base station to the clusterheads,
which, in turn, disseminate these queries to sensors within their
cluster.

We assume that each mote in the network samples values for ξ
monitored attributes and the outlier detection query has specified
that decisions should be based to theω most recentmeasurements
obtained by motes. Consequently, the data organization at every
sensor node is in the form of an U i

∈ Rξ×ω matrix as depicted
in Table 1. Columns c1, . . . , cω are ordered based on the time that
attribute values were sampled by the corresponding sensories of
mote Si i.e. c1 contains the most aged observations of attributes
while cω includes the latest samples. Obviously, motes also employ
a common order for the rows of U i such that the rth row of the
matrix corresponds to the same monitored attribute across the
sensor network participants.

2.2. Outlier definition

As in [2,4,5,3,6], we do not aim to compute outliers based on
motes’ latest reading but, instead, take into consideration their
most recent measurements contained in a window of ω size. We
first formally define the notion of an outlier for the unidimensional
case [4,5].

2.2.1. Unidimensional outlier definition
Since unidimensional outlier definition focuses on each mon-

itored attribute separately, the ω most recent measurements of
the rth attribute (row in Table 1) kept by a mote Si form a vector
ui
r ∈ Rω . Given a similarity metric sim:Rω

× Rω
→ [0, 1] and a

similarity threshold φr we consider the readings by motes Si and Sj
with respect to their rth attribute similar if

sim(ui
r , u

j
r ) > φr . (1)

Overall, we classify a mote as an outlier if its ui
r ∈ Rω vector is

not found to be similar with the corresponding vectors of at least
minSupr other motes in the network.

The above, is a popular unidimensional outlier definition for
sensor networks also employed in [2,4,5,3,6]. The utilization of
the minSupr parameter renders the outlier detection techniques
built upon the above definition resilient to cases when spurious

Table 2
Computation of some supported similarity metrics for unidimensional outlier de-
tection. Vectors ui

r , u
j
r contain the latest ω measurements of nodes Si and Sj . In

the table E(.), σ , cov refer to the mean, the standard deviation and the covariance,
respectively.

Similarity metric Calculation of similarity

Cosine similarity cos(θ (ui
r , u

j
r )) =

uir ·u
j
r

∥uir ∥·∥u
j
r ∥

⇔ θ (ui
r , u

j
r ) = arccos uir ·u

j
r

∥uir ∥·∥u
j
r ∥

Correlation coefficient corr(ui
r , u

j
r ) =

cov(uir ,u
j
r )

σ
uir

σ
ujr

=

=
E(uir u

j
r )−E(uir )E(u

j
r )

√
E(ui2r )−E2(uir )

√
E(uj2r )−E2(ujr )

Euclidean distance dist(u′ir , u
′j
r ) = ∥u′ir − u′jr ∥

Table 3
Generalization of similarity measures for matrix data. Matrices U i,U j contain the
latest ω measurements of nodes Si and Sj for ξ monitored attributes. In the latter
table, Tr(A) constitutes the trace of a matrix A, while AT is the conjugate transpose
of A. Additionally, ∥A∥F stands for the Frobenius norm of A defined as ∥A∥F =√
Tr(A · AT ).

Similarity metric Calculation of similarity

Inner product RIN (U i,U j) = Tr(U iT
·U j)

∥U i∥F ·∥U j∥F

RV coefficient RV (U i,U j) = Tr(U iU iT
·U jU jT )

∥U i ·U iT ∥F ·∥U j ·U jT ∥F

Matrix distance RF (U i,U j) = ∥ U iU iT

∥U i ·U iT ∥F
−

U jU jT

∥U j ·U jT ∥F
∥
F

measurements or totally abnormal observations simultaneously
appear in the windows of multiple sensors.

2.2.2. Multidimensional outlier definition
We then formulate the generalization of the previous definition

for the multidimensional case. Assuming that each mote Si obtains
samples for ξ monitored attributes, U i denotes the corresponding
matrix with ξ rows andω columns (the window size) as in Table 1.
For a similarity metric sim:Rξ×ω

× Rξ×ω
→ [0, 1] and a similarity

threshold Φ , we consider the readings by motes Si and Sj similar if

sim(U i,U j) > Φ. (2)

Aswith theunidimensional case,we classify amote as an outlier
if its U i matrix is not found to be similar with the corresponding
matrices of at leastminSup othermotes in the network. Notice that
for ξ = 1 the latter definition reduces to the single attribute case,
but we choose to make a distinction between them for clarity and
ease of exposition. Moreover, we note that in both uni- or multi-
dimensional outlier definitions, the minimum support parameter
can be expressed either as an absolute number of motes or a
percentage of nodes in the clusters.

2.3. Similarity measures

Having formally presented the definition of an outlier in our
setting, we concentrate on the particular sim measures that can
be utilized in order to determine the similarity between pairs
of motes in Inequalities (1) and (2). An important observation is
that, in a sensor network environment, correlations among sensor
measurements are more important than the absolute numbers of
sampled values [2,4]. For instance, considering motes that observe
physical quantities such as noise levels, temperature etc.; the ab-
solute values of the acquired readings depend, for example, on
the distance of a mote from the cause of the monitored event
i.e., a passing car or a fire respectively. Thus, correlations among
readings in space and time are more important than the absolute
values [2,4,6].
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Motivated by the above fact, our framework encompasses a
wide variety of similarity measures that are able to capture such
correlations [4,5] in its unidimensional outlier detection operation
(i.e. using Inequality (1) and the minimum support parameter).
Table 2 presents some of the supported similarity metrics regard-
ing the Cosine Similarity, the Correlation Coefficient and the Vector
(Euclidean) Distance. Note that in the table E(.), σ , cov refer to
the mean, the standard deviation and the covariance, respectively.
Furthermore, note that due to our previous discussion in the case of
the vector distance, u′ir , u

′j
r refer to the normalized versions of ui

r , u
j
r ,

since as proven in [5] the Euclidean distance of normalized vectors
enables us to capture the correlation among sensor readings and
simultaneously allows the incorporation of distance based outlier
definitions. These similarity measures (and also others discussed
below) are supported by our solutions for the unidimensional out-
lier definition case and for both tumble as well as sliding window
operational modes.

As regards our multidimensional outlier definition (Inequal-
ity (2)), Table 3 lists versions of the previously discussed measures
able to capture matrix correlations [17,18]. In particular, the In-
ner Product Correlation constitutes a generalization of the Cosine
similarity [17], the RV-Coefficient is a multidimensional version of
the Correlation Coefficient [18], while the Matrix Distance refers
to measuring the relative (dis)similarity between matrices [18]. In
the latter table, Tr(A) constitutes the trace of a matrix A, while AT

is the conjugate transpose of A. Additionally, ∥A∥F stands for the
Frobenius norm of A defined as ∥A∥F =

√
Tr(A · AT ).

In what follows we will concentrate on the Cosine Similarity
and Inner Product Correlation cases as running examples for the
uni- and multi-dimensional outlier detection, respectively. That is
because: (a) when considering unidimensional outlier definitions
cos(θ (ui

r , u
j
r )) serves as the building block for encompassing the

other measures noted in Table 2 in the outlier detection process
(see [5]) and (b) in Table 3 it is evident that the RV (U i,U j) =
RIN (U i

· U iT ,U j
· U jT ) and also RF (U i,U j) =

√
2 ·

√
1− RV (U i,U j)

holds [18].
It is important to emphasize that the framework is not limited

to using just the triplet of similarity measures presented in the
tables. In [5] it is shown that similarity measures like the Tanimoto
Coefficient and the Jaccard Index can also be used and remain
applicable to the operational modes that are introduced in the
currentwork for unidimensional outlier detection. In addition, [17]
exhibits how a number of other (e.g. spectra or orientation inde-
pendent) matrix correlation measures can be expressed in an RIN
form and are thus commutatively supported in multidimensional
outlier definitions and the corresponding operational modes pre-
sented here.

3. Basic TACO framework

In this section we exhibit the operation of the TACO framework
for the unidimensional outlier detection case utilizing a tumble of
measurements. Recall that, aswenoted in our introductory section,
tumbles are defined as disjoint windows [15] of attribute samples
and as a result every rowof theU i matrix (shown in Table 1) expires
altogether so as to be filled with new measurements for the next
tumbles of attributes.Wemention beforehand, that this is the only
operational mode that is supported by [4,5].

3.1. Tumble window operation — unidimensional outlier detection
(TWO-UnO) operational mode

3.1.1. TWO-UnO processing at the sensor level
At a first step, TWO-UnO applies LSH to the value vectors of

quantities sampled by motes. LSH [10] schemes have the property

of dimensionality reduction while preserving similarity between
vectors under comparison. In our setting, for each monitored
attribute ui

r ∈ Rω , mote Si encodes its latestω measurements using
a bitmap of d≪ ω · B(ui

rk) bits, where B(ui
rk) denotes the size of the

binary representation of a single measurement. In particular, the
performed data compression is based on the Random Hyperplane
Projection (RHP) LSH scheme, formally presented in the following
theorem.

Theorem 1 (Random Hyperplane Projection (RHP) [10,19]). Assume
we are given a collection of vectors defined on the ω dimensional
space. We choose a family of hash functions as follows: We produce
a spherically symmetric random vector ρ of unit length from this ω

dimensional space. We define a hash function hρ as:

hρ(ui
r ) =

{
1 ,if ρ · ui

r ≥ 0
0 ,if ρ · ui

r < 0

For any two vectors ui
r , u

j
rϵRω:

P = P[hρ(ui
r ) = hρ(uj

r )] = 1−
θ (ui

r , u
j
r )

π
□ (3)

Eq. (3) can be rewritten as:

θ (ui
r , u

j
r ) = π · (1− P) (4)

Note that Eq. (4) expresses angle similarity as the product of the
potential range of the angle between the two vectors (π ), with the
probability of equality in the result of the hash function application
(P). Thus, after repeating a stochastic procedure using d random
vectors ρ, the final embodiment in the hamming cube results
in [20]:

Dh(X i
ur , X

j
ur ) = d · (1− P) (5)

where X i
ur , X

j
ur ∈ [0, 1]

d are the bitmaps (of length d) produced and
Dh(X i

ur , X
j
ur ) =

∑d
ℓ=1|X

i
urℓ−X j

urℓ | is their hamming distance. Hence,
we finally derive:

θ (ui
r , u

j
r )

π
=

Dh(X i
ur , X

j
ur )

d
(6)

Having encapsulated a common seed parameter in the outlier
detection query, eachmote Si is able to produce the same d random
vectors ρ, determine the d signs of ρ · ui

r inner products as devised
by Theorem 1 and come up with a bitmap X i

ur ∈ [0, 1]
d for

its ui
r attribute. This compressed bitmap representation is then

transmitted to the clusterhead that Si belongs.

3.1.2. TWO-UnO intracluster processing
Upon the receipt of the bitmaps of everymotewithin its cluster,

a clusterhead Ci is to obtain similarity estimations for the rthmon-
itored attribute. Eq. (6) provides the means to compute the angle
(and thus the cosine similarity) between the initial value vectors
based on the hamming distance of their corresponding bitmaps.
Moreover, according to Eq. (6) the posed similarity threshold φrθ
can be expressed in terms of a hamming distance threshold as
φrDh

= d φrθ
π

. As a consequence, Ci performs pairwise similarity
checks and classifies two motes as similar if Dh(X i

ur , X
j
ur ) ≤ φrDh

in
which case it also increases the support of the correspondingmotes
by one i.e. Supir ← Supir + 1 and Supjr ← Supjr + 1 is performed.
Afterwards, Ci placesmotes that do not reach the requiredminSupr
in a list of potential outliers PotOutCi in the form of ⟨Si, X i

ur , Sup
i
r⟩

triplets. Note that these potential outliers are expected to be only
a small fraction of motes participating in a cluster.
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Table 4
Frequently used symbols.

Symbol Description

Si The ith sensor node.
ω Window (tumble or sliding) size.
ξ Number of monitored mote attributes.
d Bitmap length.
U i The matrix of ξ × ω dimensionality containing the values of all

monitored attributes of mote Si .
ui
r The value vector of the rth attribute (rth row in U i) of mote Si .

c ik The kth column in U i of mote Si .
ui
rk The value of the cell at the rth row and kth column in U i of mote Si .

θ (x, y) The angle between vectors x, y.
X i , X i

u The bitmap encoding produced after applying LSH to matrix U i and a
vector u (respectively) of mote Si .

Dh(X, Y ) The hamming distance between a pair of bitmaps X, Y .
Φ , Φθ Cosine and angle similarity threshold (respectively) in the

multidimensional case.
φr , φrθ Cosine and angle similarity threshold (respectively) in the

unidimensional case (rth attribute).
ΦDh , φrDh

Similarity threshold based on hamming distance for the multi- and
unidimensional (rth attribute) case, respectively.

Supi , Supir The support of mote Si for the multi- and unidimensional (rth
attribute) case, respectively.

minSup, minSupr The minimum support parameter for the multi- and unidimensional
case, respectively.

λ Batch size (1 ≤ λ ≤ ω) used in SWO-UnO operational mode.
ui
rbk

The batch at the rth row (attribute) in U i of size λ, that ends at the kth
column of U i . Used in SWO-UnO operational mode.

3.1.3. TWO-UnO intercluster processing
The extracted PotOutCi lists of motes with Supir < minSupr

are not final outliers since the outlier detection query may have
allowed motes in different clusters to be tested for similarity as
well. For instance, users may allow motes within a certain radius
to be able to witness each other, irrespectively of whether they
have been assigned to the same cluster, as they are expected to
be able to sense similar conditions. As another example, users may
have specified that only readings from vibration sensors attached
on identical (but distant to be assigned to the same clusterhead)
engines in a machine room are comparable. Motes in the lists
extracted by cluster Ci that are not subjected to such kind of
specifications can be directly reported to the query source. Oth-
erwise, ⟨Si, X i

ur , Sup
i
r⟩ triplets need to be communicated among

clusters. Given the current cluster as the starting node, query-
specified clusterheads as intermediate sites and the base station
for the destination, the intercluster communication problem is
modeled as a TSP according to which PotOutCis are exchanged
between clusterheads participating in the path. The TSP problem
can be solved either by the base station after clusterhead election
or adopting a greedy distributed algorithm that forwards potential
outliers to the nearest cluster which has not been visited yet.
The latter routing paradigm can be directly supported by utilizing
a geographic aware routing protocol such as GPSR [21] at the
clusterheads level. Every ⟨Si, X i

ur , Sup
i
r⟩ ∈ PotOutCi that manages to

reach minSupr is excluded from the list that will be forwarded to
the next clusterhead, while if it does not it will be finally reported
to the basestation. The described procedure is repeated upon the
formation of a new tumble.

3.1.4. TWO-UnO analysis
As regards the quality guarantees that are provided by the

framework, we initially focus on the ability of the estimated
Dh(X i

ur ,X j
ur )

d to approximate the true value of θ (uir ,u
j
r )

π
in Eq. (6). The

following theorem relates the accuracy of the approximation to the
bandwidth consumption that the application is willing to sacrifice.

Theorem 2 ([5]). To estimate θ (uir ,u
j
r )

π
with precision ϵ and probability

at least 1 − δ (0 < ϵ, δ < 1) using Eq. (6), sensor nodes need to
produce bitmaps of O(ℓog(2/δ)/(2ϵ2)) length.

By keeping the estimated hamming distance close to its ex-
pected value (Eq. (6)), it is more likely to perform a correct simi-
larity test. More precisely, wewant to quantify the probability that
if ui

r , u
j
r are similar θ (ui

r , u
j
r ) ≤ φrθ then Dh(X i

ur , X
j
ur ) ≤ φrDh

and
accordingly for dissimilar vectors.

Theorem 3 ([5]). For θ (ui
r , u

j
r ) > 0 and for bitmaps of d =

O(ℓog(2/δ)/(2ϵ2)) length (Theorem2), clusterheads performa correct
similarity test by means of Dh(X i

ur , X
j
ur ) (Eq. (6)) with probability at

least 1− e
−

(θ (uir ,u
j
r )−φrθ )2

θ (uir ,u
j
r )

d
2π2

.

The above theorem essentially states that the probability of an
incorrect similarity test at a clusterhead using TWO-UnOdecreases
exponentially with |θ (ui

r , u
j
r )− φrθ |. Note that when θ (ui

r , u
j
r ) = 0

the produced bitmapswill be identical and thus the framework can
always correctly classify ui

r , u
j
r as similar [5].

Bandwidth vs Accuracy Trade off. According to Theorem 2,
the tighter the quality guarantees of the framework become,
i.e., both (ϵ, δ) decrease; the size of the bitmaps, proportional to
ℓog(2/δ)/(2ϵ2), increases. This exhibits how TWO-UnO straight-
forwardly trades bandwidth usage for estimation accuracy. Fur-
thermore, according to Theorem 3, the error probability δ of a
similarity test steeply decreases for lower φrθ values. This exhibits
that the technique is expectedlymore accuratewith stricter outlier
definitions expressed by lower φrθ .

4. Our omnibus outlier detection solution and quality guaran-
tees

We now proceed to the introduction of our algorithmic suite
as described in Section 1. In this section, we (a) enable support
for multidimensional outlier detection upon operating on a per
tumble fashion, (b) introduce multidimensional outlier detection
techniques for a slidingwindow paradigm and (c) provide the abil-
ity for unidimensional outlier detection under sliding windows, as
well. We choose to present our algorithms using the above order
for ease of exposition and to better exhibit the flow behind the
fostered rationale.
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4.1. Tumble window operation — multidimensional outlier detection
(TWO-MuO) operational mode

In Section 2 we presented a formal definition based on which
multidimensional outlier detection is to take place within the net-
work setting, whilewe also reasoned about focusing on the RIN (see
Table 3)matrix correlationmetric. The first challenge that we need
to confront in our effort to incorporate multidimensional outlier
definitions in our framework comes from the fact that the nature
of the data that need to be encoded and subsequently compared
for similarity is now different. In particular, instead of vectors as
in Section 3, we now face the situation of comparing matrices.
More importantly, Theorem 1 can be applied to vectors instead of
matrices and is designed to preserve the angle (and thus the cosine)
similarity rather than RIN .

Let Vec be an isomorphism such that Vec : Rξ×ω
→ Rξω . This es-

sentially is a linear transformation that rendersmatrices to vectors
by stacking the columns of any processed matrix. According to the
data organization in Table 1, at a mote Si, column c1 is placed on
the top of the stack while c2, . . . , cω are appended to it forming
a single vector of ξ · ω dimension, that is Vec(U i). Let us focus
on the elements involved in RIN calculation (see Table 3), starting
with the numerator Tr(U iT

·U j). The proposition below shows how
the trace of matrix multiplication can be equivalently transformed
to the inner product of their Vec form. Notice that in our setting
motes possess Rξ×ω matrices and as such they are always of proper
dimension.

Proposition 1. The trace of the product of two properly dimensioned
matrices, equals the inner product of their Vec forms. In our setting:
Tr(U iT

· U j) = Vec(U i) · Vec(U j).

Proof. The trace of the matrix yielded by U iT
· U j is the sum of its

diagonal elements. If we symbolize uiT
k the kth row ofU iT and c jk the

kth column of U j then Tr(U iT
·U j) =

ω∑
k=1

uiT
k · c

j
k = Vec(U i) ·Vec(U j).

Formally, Vec(U i) · Vec(U j) is actually Vec(U i)T · Vec(U j), but we
omit the T sign from the vector as is common in inner product
notation. □

We then concentrate on the denominator of RIN computational
formula (Table 3). The following corollary is a direct outcome of
Proposition 1.

Corollary 1. The Frobenius norm of a matrix equals the L2 norm of its
Vec form. In our setting: ∥U i

∥F = ∥Vec(U i)∥.

Based on Proposition 1 and Corollary 1:

RIN (U i,U j) = cos(θ (Vec(U i), Vec(U j)))⇔

Rθ
IN (U

i,U j) = arccos(RIN (U i,U j)) = θ (Vec(U i), Vec(U j)) (7)

4.1.1. TWO-MuO processing at the sensor level
In the previous paragraphs we achieved to express the U i

∈

Rξ×ω matrix locally maintained at mote Si as a Rξω vector. As a
result, the first step towards multidimensional outlier detection
in a per tumble fashion, comes at the sensor level where every
mote in the network applies the Vec operator and appropriately
transforms acquired samples of data. Because of the transforma-
tion Vec(U i) ∈ Rξω , Theorem 1 (which operates on vectors rather
thanmatrices) is now applicable. Hence, motes can utilize the RHP
scheme to produce X i bitmaps forU i, knowing that at the next step
clusterheads will indeed be able to deduce existing correlations
using the bitmaps due to Eqs. (6) and (7). This time, to allow for
communication savings, the length of the bitmap should be chosen
to be d ≪ ξ · ω · B(ui

rk) (instead of d ≪ ω · B(ui
rk) in the

unidimensional case). Subsequently, X i bitmaps are transmitted to
the corresponding clusterheads.

Fig. 2. TWO-MuO upper bound on the probability of erroneous similarity test
varying Rθ

IN , Φθ .

4.1.2. TWO-MuO intra- & intercluster processing
Initially, by combining Eqs. (6) and (7) we have:

Rθ
IN (U

i,U j)
π

=
Dh(X i, X j)

d
(8)

Given an RIN−similarity thresholdΦ specified by the posed outlier
detection query, clusterheads are able to transform this threshold
to an equivalent Φθ = arccos(Φ) using Eq. (7) and then to a
corresponding hamming distance threshold ΦDh = dΦθ

π
by Eq. (8).

That point forward the outlier detection procedure continuous as
with the TWO-UnO case both during the intra- and intercluster
processing phases. If Dh(X i, X j) ≤ ΦDh then Supi ← Supi +
1, Supi ← Supi + 1 is performed, while motes that do not reach
the necessary minSup are placed in PotOutCi lists. Recall, that since
in this operationalmode the outlier identification is still performed
in a per tumble fashion, the whole U i matrix (tumble) expires so as
to be filled with new measurements and the procedure presented
here is again applied on the upcoming tumbles.

4.1.3. TWO-MuO analysis
Lemma 1 elaborates on the accuracy of the approximation of

the above Eq. (8) generalizing Theorem 2.

Lemma 1. Rθ
IN (U i,U j)

π
can be estimatedwith precision ϵ and probability

at least 1 − δ using Eq. (8), when sensor nodes produce bitmaps of
O(ℓog(2/δ)/(2ϵ2)) length.

Besides, as regards the accuracy of the performed similarity
tests, Lemma 2 adjusts Theorem 3 for themultidimensional outlier
detection — tumble operation case.

Lemma 2. For Rθ
IN (U

i,U j) > 0 and for bitmaps of d =

O(ℓog(2/δ)/(2ϵ2)) length (Lemma 1), clusterheads perform a correct
similarity test bymeans of Dh(X i, X j) (Eq. (8))with probability at least

1− e
−

(RθIN (Ui,Uj)−Φθ )
2

RθIN (Ui,Uj)
d

2π2
.

The proofs are straightforward according to our discussion in
this subsection and are omitted. Again notice that the above lemma
states that the probability of incorrect estimation in the TWO-MuO
operational mode decreases exponentially with |Rθ

IN (U
i,U j)−Φθ |.

Bandwidth vs Accuracy Trade off. Again, based on Lemma 1,
the tighter the quality guarantees of the framework become,
i.e., both (ϵ, δ) decrease; the size of the bitmaps, proportional
to ℓog(2/δ)/(2ϵ2), increases. This exhibits that TWO-MuO trades
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Table 5
Exemplary exposition of the changes Si ’s data undertake when operating in a slid-
ing window paradigm.

bandwidth for accuracy similarly to TWO-UnO. Furthermore, ac-
cording to Lemma 2, the value that bounds the probability of an in-
correct similarity test, decreases more steeply for lower Φθ values.
Fig. 2 illustrates the values of the upper bound on the probability
of an incorrect similarity test at the clusterhead level, based on
Lemma 2 (vertical axis) varying Rθ

IN for three different cases of Φθ .
It can easily be observed that the surface covered by each curve
corresponding to 10, 30, 60 degrees of angle similarity thresholds,
increases with Φθ . Hence, TWO-MuO is expectedly more accurate
with stricter outlier definitions expressed by low Φθ s.

TWO-MuO Trade off Practical Example. In case of picking a neg-
ligible δ (for instance δ = 0.001) and ϵ = 0.05, the proper
bitmap size is a fraction (e.g. 1/2, 1/4, 1/8, 1/16 etc. see [4,5]) of
maximum 83 bytes, which involves the consumed bandwidth for Si
per tumble. For instance, for |Rθ

IN (U
i,U j)− Φθ | = 0.35 rad and for

Rθ
IN (U

i,U j) = π/12 (∼ 15 degrees), the probability of an error in a
similarity test is bounded by 1.46 · 10−7.

4.2. Sliding window operation — multidimensional outlier detection
(SWO-MuO) operational mode

Upon switching to a slidingwindowoperation, themajor differ-
ence in our outlier detection computational model comes from the
fact thatU i matrices donot expire altogether aswith the paradigms
presented so far. In the new setting, as soon as a new sample
for each monitored attribute is obtained, it is appended to the U i

matrix as a new column, while the first column (containing the
most aged samples, Section 2.1) expires. An instance of this process
is depicted in Table 5.

Assume that we do not impose any compression on the sam-
pled values in U i. At the beginning of the outlier detection query
operation, every mote fills in U i with acquired samples since it is
initially empty, and transmits this information to its clusterhead.
For the subsequent slides of the window, however, each mote Si
needs to only transmit the lastly introduced column which after
the window slide is cω . The clusterheads are then capable of recog-
nizing that the first column of the old window has expired so as to
drop it, slide the columns as in Table 5 and append the new cω to
it.

Considering our need to reduce bandwidth consumption, the
major issue that arises is that now motes cannot compress the
matrices at once as they did in Section 4.1 and estimate Rθ

IN using
Dh(X i, X j). This is due to the fact that at any given time, the new
part that needs to be processed involves an individual column.
If motes are to compress something to ensure communication
savings, this can only be the new cω . On the other hand, if they
do so, a natural question that arises regards whether we will
still be able to preserve the RIN similarities of the whole Ui using
compression of single columns. It is easy to verify that the X i

bitmap that motes locally produced by applying RHP on the whole
U i cannot be derived at the clusterhead level if clusterheads receive
bitmaps yielded from RHP application on the new cω . This is true
even when trying to concatenate those bitmaps or apply a binary
operator (e.g. bitwise OR/AND) on them, because the final signs of
the inner products of Theorem 1 cannot be safely determined to be
identical to those computed having the whole U i available.

To confront this situation, achieve bandwidth consumption re-
duction (through data compression) and similarity preservation
taking advantage of the RHP scheme, we need to reconsider our
strategies. We first formulate the operation of the outlier de-
tection algorithm for the multidimensional outlier detection —
sliding window operational mode and subsequently we elaborate
on the quality guarantees that are attributed to our framework
utilizing the aforementioned algorithm. In Eq. (7) we showed that
RIN (U i,U j) = cos(Vec(U i), Vec(U j)), so our algorithms focus on pre-
serving the cosine similarity of the Vec forms of the corresponding
matrices.

4.2.1. SWO-MuO processing at the sensor level
After obtaining new samples for the ξ monitored attributes,

mote Si shifts the window (Table 5) and appends the new c iω
column to it (the superscript i again stands for the Si mote). Since
the rest of the columns have already been processed and commu-
nicated to the clusterheads (using the same procedure which we
are going to present hereafter), we concentrate on the local data
processing the new c iω column (after each and every shift of the
slidingwindow) should undertake. At the first step of the algorithm
Si applies the RHP LSH scheme on the c iω ∈ Rξ vector and derives
a bitmap X i

cω of d length. Moreover, it computes ∥c iω∥ i.e. the L2
norm of the values in the c iω vector and transmits this information
together with X i

cω to the clusterhead. Let B(∥c iω∥) the size of the
binary representation of the L2 norm (usually 32 bits). Then, to
achieve compression,we should ensure that (d+B(∥c iω∥)) is (much)
smaller than the size of the initial ξ monitored attributes. This
can be tuned, as discussed in our subsequent analysis, for motes
monitoring ξ > 2 attributes and consequently our techniques are
capable of ensuring compression in any practical scenario.

4.2.2. SWO-MuO intracluster processing
As soon as clusterheads receive ⟨X i

cω , ∥c iω∥⟩ from motes in
their cluster, they need to perform the required similarity checks.
For any pair of matrices U i,U j under comparison, a clusterhead
Ci needs to estimate the value of RIN (U i,U j) = cos(Vec(U i),
Vec(U j)) = Vec(U i)·Vec(U j)

∥Vec(U i)∥·∥Vec(U j)∥
(Eq. (7)). Initially, notice that by having

motes send ∥c iω∥, ∥c
j
ω∥, clusterheads derive the exact value for

∥Vec(U i)∥ =
√
∥c i1∥2 + · · · + ∥c iω∥

2 since as previously mentioned
∥c i1∥, . . . , ∥c

i
ω−1∥ have been received at the previous shifts of the

window. The same holds for ∥Vec(U j)∥.
Secondly, due to the fact that the inner product between vectors

is a distributive operator and recalling that the application of the
Vec operator creates an ordered stack of columns (Section 4.1):

Vec(U i) · Vec(U j) = c i1 · c
j
1 + · · · + c iω · c

j
ω (9)

and clusterhead Ci is able to derive an estimation of

c iω · c
j
ω = cos(θ (c iω, c jω)) · ∥c

i
ω∥ · ∥c

j
ω∥ (10)

utilizing the received bitmaps.More precisely, if ĉ iω · c
j
ω denotes the

estimation of c iω ·c
j
ω , it can be computed using the received X i

cω , X j
cω

bitmaps as:

ĉ iω · c
j
ω

Eqs. (6) & (10)
= cos(

Dh(X i
cω , X j

cω )
d

π ) · ∥c iω∥ · ∥c
j
ω∥ (11)

Then, considering that also ĉ ik · c
j
k for 1 ≤ k < ω have been

computed at the previous window slides, the overall estimation
ˆVec(U i) · Vec(U j) can be derived using the extracted partial estima-

tions and Eq. (9) as ˆVec(U i) · Vec(U j) = ĉ i1 · c
j
1 + · · · + ĉ iω · c

j
ω . The

final estimation of RIN (U i,U j) = cos(Vec(U i), Vec(U j)) is:

ˆcos(θ (Vec(U i), Vec(U j))) =
ˆVec(U i) · Vec(U j)

∥Vec(U i)∥ · ∥Vec(U j)∥
(12)
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The common part regarding ˆcos(Vec(U i), Vec(U j)) ≥ Φ similarity
tests is then performed at the intracluster processing phase and
motes that do not reach the required minSup are added to the
PotOutCi list. Nevertheless, as we will present in the next para-
graph, this time the contents of PotOutCi depend on how often a
mote takes place in the intercluster communication phase.

4.2.3. SWO-MuO intercluster processing
During the intercluster communication phase, motes included

in the PotOutCi list are communicated between clusterheads fol-
lowing computed TSP paths as in Section 3. However, in Section 3
the utilized operational mode was functioning under tumbled
window adoption, while the same holds for multidimensional
outlier detection in Section 4.1. The current operational mode
entails support for sliding windows and multidimensional out-
lier definitions and thus the information that needs to be com-
municated when a mote participates in the intercluster process-
ing phase depends on the frequency with which it is included
in PotOutCi . In particular, assume that at the current instance a
mote Si is included in PotOutCi for the first time. The ω bitmaps
X i
c1 , . . . , X

i
cω for each column that have been communicated to Ci

from Si need to be included in PotOutCi togetherwith the respective
norms i.e. a triplet < Si, {⟨X i

1, ∥c
i
1∥⟩, . . . , ⟨X

i
cω , ∥c iω∥⟩}, Sup

i >.
This triplet will be forwarded to the next clusterhead in the TSP
path. Notice that should we had uncompressed data the triplet
would be < Si, {c i1, . . . , c

i
ω}, Sup

i > and hence, in the multi-
dimensional case, bandwidth preservation through X i

c1 , . . . , X
i
cω

utilization is achieved in this processing phase as well. Nonethe-
less, if Si is again placed in PotOutCi after 1 ≤ τ < ω
shifts of the window, Ci needs to shorten the latter triplet to <
Si, {⟨X i

cω−τ
, ∥c iω−τ∥⟩, . . . , ⟨X

i
cω , ∥c iω∥⟩}, Sup

i > since the rest of the
bitmaps were communicated among clusterheads at the initial Si
inclusion in PotOutCi .

Notice that the same approach is applied not only to the clus-
terhead that is the origin of the TSP path, but also for every
intermediate cluster where the value of τ may differ for each
clusterhead pair on a respective TSP edge. This is because if Si
reaches a clusterhead where it finds adequate support and thus
Supi surpasses minSup, it will not be forwarded to the next hop
in the path. Since each cluster knows the number of window
slides since the last intercluster communicationwith its TSP neigh-
bor, it can compute τ in any such case and properly form the
< Si, {⟨X i

cω−τ
, ∥c iω−τ∥⟩, . . . , ⟨X

i
cω , ∥c iω∥⟩}, Sup

i > triplet. That aside,
the intercluster communicationphase proceeds as usual andmotes
that manage to accumulate ≥ minSup support are excluded from
the list that will be routed to the next clusterhead. Eventually, the
final outliers (those with Supi < minSup) are reported to the base
station which is the final destination of the followed path.

4.2.4. SWO-MuO analysis
We will first direct our analysis towards identifying the accu-

racy that ˆcos(Vec(U i), Vec(U j)) in Eq. (12) can provide with respect
to the true value of cos(Vec(U i), Vec(U j)).

Theorem 4. For bitmaps of O(ℓog(2/δ)/(2ϵ2)) length (Theorem 2)
the estimation of Eq. (12) lies in:

ˆcos(Vec(U i), Vec(U j)) ∈ cos(Vec(U i), Vec(U j))± 2sin(
π

2
ϵ)

with probability at least ∆ = (1− δ)ω .

Proof. Having compressed bitmaps according to Theorem 2 we

know that Dh(X i
cω ,X j

cω )
d π =

ˆ
θ (c iω, c jω) ∈ θ (c iω, c jω)±πϵ with probabil-

ity 1− δ. Moreover, the RHP application yields an angle similarity
that lies in 0 ≤ θ (c iω, c jω) ≤ π . This means that cos( ˆ

θ (c iω, c jω)) ∈
cos(θ (c iω, c jω)± πϵ).

We then focus on the error that may occur when estimating
the inner product of the kth pair of columns c ik · c

j
k using Eq. (11).

According to our previous analysis:

|c ik · c
j
k − ĉ ik · c

j
k| = |cos(θ (c

i
k, c

j
k))− cos(θ (ĉ ik, c

j
k))|∥c

i
k∥ · ∥c

j
k∥

∈ |cos(θ (c ik, c
j
k))− cos(θ (c ik, c

j
k)± πϵ)|∥c ik∥ · ∥c

j
k∥

∈ |−2sin(θ (c ik, c
j
k)±

πϵ

2
)| · |sin(±

π

2
ϵ)| · ∥c ik∥ · ∥c

j
k∥

(trigonom. identity)
∈ 2|sin(

π

2
ϵ)| · ∥c ik∥ · ∥c

j
k∥

(|sin(θ (c ik, c
j
k)±

πϵ

2
)| ≤ 1, sin(−θ ) = −sin(θ ))

ĉ ik · c
j
k ∈ c ik · c

j
k ± 2sin(

π

2
ϵ) · ∥c ik∥ · ∥c

j
k∥

As stated in Theorem 2, the above happens with probability
1− δ. Now, we proceed aiming at bounding the accuracy provided
by the ˆcos(θ (Vec(U i), Vec(U j))) in Eq. (12). To do so, we assume
that the estimation error (i.e., not the column values which can
still bear dependences in every slide of the window) between
ĉ ik · c

j
k estimations of different pairs of columns is independent. In

practice, this can be achieved by using the common seed that was
transmitted on par with the outlier detection query (Section 3) to
recursively produce common seeds in all motes upon compressing
individual columns. Hence, the following bounds the accuracy of
the estimation with probability ∆ = (1 − δ)ω . By Eq. (9) and the
analysis of the previous paragraph:

cos( ˆVec(U i), Vec(U j)) ∈

ω∑
k=1

c ik · c
j
k ± 2sin( π

2 ϵ) ·
ω∑

k=1
∥c ik∥ · ∥c

j
k∥

∥Vec(U i)∥ · ∥Vec(U j)∥
=

ω∑
k=1

c ik · c
j
k

∥Vec(U i)∥ · ∥Vec(U j)∥
± 2sin(

π

2
ϵ)

ω∑
k=1
∥c ik∥ · ∥c

j
k∥

∥Vec(U i)∥ · ∥Vec(U j)∥
=

cos(Vec(U i), Vec(U j))± 2sin(
π

2
ϵ)

ω∑
k=1
∥c ik∥ · ∥c

j
k∥

∥Vec(U i)∥ · ∥Vec(U j)∥

By the Cauchy–Schwarz Inequality:
ω∑

k=1
∥c ik∥ · ∥c

j
k∥

∥Vec(U i)∥ · ∥Vec(U j)∥
=

ω∑
k=1
∥c ik∥ · ∥c

j
k∥√

ω∑
k=1
∥c ik∥2 ·

ω∑
k=1
∥c jk∥2

≤ 1

and finally

cos( ˆVec(U i), Vec(U j)) ∈ cos(Vec(U i), Vec(U j))± 2sin(
π

2
ϵ)

which concludes our proof. □

Notice that the smaller the error ϵ present in individual
bitmaps, the closer to zero ±2sin( π

2 ϵ) will be. Hence, the accu-
racy of the ˆcos(Vec(U i), Vec(U j)) estimation increases. The above
theorem refers to the accuracy of RIN , via the cosine of the Vec
forms, similarity estimation. Nevertheless, in our setting we are
particularly interested in the accuracy of the performed similarity
tests given a similarity threshold. The following theorem, exploits
Theorem 4 focusing on the accuracy of such tests.

Theorem 5. For bitmaps of O(ℓog(2/δ)/(2ϵ2)) length (Theorem 2),
clusterheads perform a correct similarity test upon utilizing
cos( ˆVec(U i), Vec(U j)) (Eq. (12)) with probability at least 1 −
mint>0e−t·|Φ−cos(Vec(U

i),Vec(U j))|((1− δ) · et·2|sin(
πϵ
2 )|
+ δ · e2·t )ω .
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Proof. Without loss of generality we assume that cos(Vec(U i),
Vec(U j)) ≤ Φ . An error in the similarity test occurs when
cos( ˆVec(U i), Vec(U j)) > Φ and as a result we want to bound the
probability with which the above event may take place i.e.

Pr[cos( ˆVec(U i), Vec(U j)) > Φ] ≤ Pr[cos( ˆVec(U i), Vec(U j)) ≥ Φ] =

Pr[cos( ˆVec(U i), Vec(U j))− cos(Vec(U i), Vec(U j))

≥ Φ − cos(Vec(U i), Vec(U j))]

Moreover, since Φ ≥ cos(Vec(U i), Vec(U j)) the examined event
may happen only when cos( ˆVec(U i), Vec(U j)) > cos(Vec(U i),
Vec(U j)). As a consequence, we may equivalently consider the
absolute values of the left and right side. Given this and expressing
cos( ˆVec(U i), Vec(U j)) using its equivalent sum:

Pr[|cos( ˆVec(U i), Vec(U j))− cos(Vec(U i), Vec(U j))| ≥

|Φ − cos(Vec(U i), Vec(U j))|] =

Pr[|
ω∑

k=1

(ĉ ik · c
j
k − c ik · c

j
k)

∥Vec(U i)∥ · ∥Vec(U j)∥
| ≥ |Φ − cos(Vec(U i), Vec(U j))|] ≤

Pr[
ω∑

k=1

|ĉ ik · c
j
k − c ik · c

j
k|

∥Vec(U i)∥ · ∥Vec(U j)∥
≥ |Φ − cos(Vec(U i), Vec(U j))|]

The left side of the above inequality constitutes the sum ofω in-
dependent variables by recursively producing seeds for RHP vector
generation as in the proof of Theorem 4. In the proof of Theorem 4,

we showed that |c
i
k·c

j
k−

ˆ
cik·c

j
k|

∥cik∥·∥c
j
k∥
∈ 2|sin( πϵ

2 )| with probability 1 − δ

and due to the fact that ∥c ik∥ · ∥c
j
k∥ ≤ ∥Vec(U

i)∥ · ∥Vec(U j)∥ each

such variable also lies in 0 ≤ |
ˆ
cik·c

j
k−c

i
k·c

j
k|

∥Vec(U i)∥·∥Vec(U j)∥
≤ 2|sin( πϵ

2 )| with at
least 1− δ probability. Furthermore, due to the fact that the cosine
receives values in [−1, 1], in the worst case, with probability (at

most) δ: 2|sin( πϵ
2 )| < |

ˆ
cik·c

j
k−c

i
k·c

j
k|

∥Vec(U i)∥·∥Vec(U j)∥
≤ 2.

Let |Xk| denote the random variable that bounds the estimation

error |
ˆ
cik·c

j
k−c

i
k·c

j
k|

∥Vec(U i)∥·∥Vec(U j)∥
for column k. |Xk| has an exact (instead of

at least) 1 − δ probability of being (not smaller or equal, but)
simply equal to 2|sin( π

2 ϵ)| and2with probability δ. The expectation
E(et·Xk ) = (1−δ)·et·2|sin(

πϵ
2 )|
+δ ·e2·t , for any t > 0. According to the

generic form of the Chernoff bound [22] and our above discussion,
due to the independence of Xks (again, we emphasize that we
assume independence of estimation errors based on the described
manner of producing seeds during RHP application. Columns and
their values are not assumed independent):

Pr[|cos( ˆVec(U i), Vec(U j))− cos(Vec(U i), Vec(U j))|

≥ |Φ − cos(Vec(U i), Vec(U j))|]

≤ min
t>0

e−t·|Φ−cos(Vec(U
i),Vec(U j))|

ω∏
k=1

E(et·Xk )

= min
t>0

e−t·|Φ−cos(Vec(U
i),Vec(U j))|

ω∏
k=1

((1− δ) · et·2|sin(
πϵ
2 )|
+ δ · e2·t )

= min
t>0

e−t·|Φ−cos(Vec(U
i),Vec(U j))|((1− δ) · et·2|sin(

πϵ
2 )|
+ δ · e2·t )ω

which completes the proof. □

Bandwidth vs Accuracy Trade off. Based on Theorem4, the tighter
the quality guarantees of the framework become, i.e., both (ϵ, δ)
decrease and thus (|sin( π

2 ϵ)|, 1 − ∆) also decrease; the size of the
bitmaps, proportional to ℓog(2/δ)/(2ϵ2), increases. This expresses

how SWO-MuO trades bandwidth for similarity estimation accu-
racy. Regarding the similarity tests, Theorem 5 shows that, again,
the probability of an incorrect similarity test decreases exponen-
tially with |Φ − cos(Vec(U i), Vec(U j))|.

SWO-MuO Trade off Practical Example. In case of picking a neg-
ligible δ, for instance δ = 0.001, each |Xk|will lie within 2|sin( π

2 ϵ)|
almost surely and therefore the provided bound will approach
mint>0e−t·|Φ−cos(Vec(U

i),Vec(U j))|et·2|sin(
πϵ
2 )|·ω . Now, for example, for δ

as set above and ϵ = 0.05 the proper bitmap size is only a fraction
(e.g. 1/2, 1/4, 1/8, 1/16 etc.) of maximum 83 bytes, which involves
the consumed bandwidth for Si per window slide. For instance,
for |Φ − cos(Vec(U i), Vec(U j))| = 0.35 and for a pair of recent
column observations, the probability of an error in a similarity test
is bounded by1 9.67 · 10−31 for t → 1911.07.

4.3. Sliding window operation — unidimensional outlier detection
(SWO-UnO) operational mode

We now elaborate on the fourth operational mode, SWO-UnO,
whichuses our unidimensional outlier definition andoperates over
sliding windows. Compared to SWO-MuO of the previous section,
the difference now, because we focus on unidimensional outlier
detection, is that clusterheads have to deduce correlations of indi-
vidual rowswithmeasurements in the currentwindow. Recall that
rows indeed correspond to samples of individual attributes (sym-
bols summarized in Table 1) on which we focus upon identifying
outliers for single dimensions. If we assume simple slides of the
windowof size equivalent to a single column cω each time then, per
attribute, we can only compress a single measurement ui

rk for each
window slide which does not leave much space for data reduction.

Therefore, instead of simply doing that, we here examine more
general sliding window cases where each slide in the window is
performed in batches of columns [23]. That is, for every slide of the
window, λ (1 ≤ λ ≤ ω) columns expire and λ new columns are
added as shown in Table 6. Note that for λ = ω this is equivalent
to the TWO-UnO operational mode.

4.3.1. SWO-UnO processing at the sensor level
We assume all attribute values of the rth attribute (row in

Table 1) at mote Si belonging to previous batch slides of the win-
dow have been compressed and transmitted to the clusterheads,
so we concentrate on the local data processing the new batch
ui
rbω
= [ui

r(ω−λ), . . . , u
i
rω] containing values of the rth attribute

(1 ≤ r ≤ ξ ) should undertake. That is ui
r(ω−λ) denotes the λth

more recent measurement of the rth attribute at mote Si, placed
inside the most recent batch that reaches the last value ω of the
window ui

rbω
(Table 4). Si applies the RHP LSH scheme on the

vector ui
rbω

and derives a bitmap X i
urbω

of d length which is sent
to the clusterhead along with ∥ui

rbω
∥. Let B(∥ui

rbω
∥) the size of the

binary representation of the L2 norm for the batch. Then, to achieve
compression, we should ensure that (d + B(∥ui

rbω
∥)) is (much)

smaller than the size of the initial batch size λ. This can be tuned,
as discussed in our subsequent analysis.

4.3.2. SWO-UnO intracluster processing
To explain our choices in the intracluster processing phase,

we here show how the similarity estimation problem based on
the compressed information in SWO-UnO can be transformed to
an equivalent to the SWO-MuO operational mode. Note that the
transformationwe describe hereafter is just to show the aforemen-
tioned equivalence and does not need to be actually implemented

1 Our formulas and calculationswere validated using theMathematica Software:
Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014). In this
particular case, the FindMinimum facility.
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Table 6
Exemplary exposition of the changes Si ’s data undertake when operating in a sliding window paradigm of batches (in this example λ = 3).

Table 7
Transforming the rth attribute vector composed of batches (λ = 3) to a matrix where each column corresponds to a batch.

by a clusterhead. Having said that, imagine we isolate the rth
attribute from the U i matrix in Table 1, which is instantiated and
exemplified in Table 6. The corresponding isolated row ui

r ∈ Rω is
a vector conceptually divided in a number of batches that are valid
for the current window.

If we apply a transformation of the latter vector to a matrix U i
r

such that (also see Table 7): (a) each column corresponds to a batch
of λ size and thus there are λ rows in the newly formed matrix, (b)
the overall number of columns2 in thismatrix is ω

λ
, thenwe can see

the resemblance of SWO-UnO in a per attribute fashion to how
SWO-MuO operates on thewholeU i matrix during the intercluster
processing phase. In particular:

• In both SWO-UnO and SWO-MuO in each slide of the win-
dow, the most aged column of U i

r and U i, respectively,
expires and a new column is appended at the end of the
window.
• At the sensor processing level, each mote compresses and

transmits the most recent table column in both operational
modes.
• In the intra- and inter-cluster processing phases, cluster-

heads receive compressed representations of individual
columns ⟨X i

urbω
, ∥ui

rbω
∥⟩ for SWO-UnO and ⟨X i

cω , ∥c iω∥⟩ for
SWO-MuO, but need to extract similarity estimations for the
entire matrices U i

r and U i.

• The estimation of the partial inner product ĉ iω · c
j
ω extracted

by a clusterhead in SWO-MuO (Eq. (11)) corresponds to
ˆui

rbω
· uj

rbω
in the current SWO-UnO operational mode.

Given the above discussion, the receipt of ⟨X i
urbω

, ∥ui
rbω
∥⟩ of a mote

Si triggers clusterhead’s Ci, where mote Si is assigned to, effort in
estimating ˆui

rbω
· uj

rbω
. This is essential because the inner product of

the overall cosine similarity of a pair of attributes is computed as
(recall that according to our symbology, uj

rbλ
refers to the batch that

reaches the λth measurement of the window, which is equivalent
to the most aged batch):

ui
r · u

j
r = ui

rbλ
· uj

rbλ
+ · · · + ui

rbω
· uj

rbω
(13)

and clusterhead Ci is able, for the most recent as well as for each
previous slide, to derive an estimation of

ˆui
rbω
· uj

rbω

Eq.(6)
= cos(

Dh(X i
urbω

, X j
urbω )

d
π ) · ∥ui

rbω
∥ · ∥uj

rbω
∥ (14)

2 We assume ω mod λ = 0 to simply showcase the transformation.

utilizing the received bitmaps. This is because ui
rbω
· uj

rbω
=

cos(ui
rbω

, uj
rbω

) · ∥ui
rbω
∥ · ∥ui

rbω
∥ and ∥ui

rbω
∥, ∥uj

rbω
∥ are trans-

mitted by motes, while cos(ui
rbω

, uj
rbω

) is approximated by

cos(
Dh(X i

urbω
,X j

urbω
)

d π ). Having acquired such estimations for the parts

of the inner product andbecause∥ui
r∥ =

√
∥ui

rbλ
∥2 + · · · + ∥ui

rbω
∥
2,

the overall similarity estimation will be:

ˆcos(ui
r , u

j
r ) =

ûi
r · u

j
r

∥ui
r∥ · ∥u

j
r∥

(15)

Based on the estimation of Eq. (15), similarity tests ˆcos(ui
r , u

j
r ) ≥

φr are performed and themotes that are found similar gain support
for their rth attribute, i.e., Supir ← Supir + 1 and Supjr ← Supjr + 1.
Finally, motes that do not reach the requiredminSupr are added to
the PotOutCi list.

4.3.3. SWO-UnO intercluster processing
The intercluster processing phase takes place only for those

motes that did not manage to accumulate ≥ minSupr support
for their rth attribute. The information that PotOutCi transmits,
includes information per attribute, for each attribute of mote Si
for which Supir < minSupr . If Si is placed in PotOutCi , for its rth
attribute, after 1 ≤ τr < ω

λ
shifts of the window, Ci needs to form a

triplet of < Si, {⟨X i
urb(τr ·λ)

, ∥ui
rb(τr ·λ)
∥⟩, . . . , ⟨X i

urbω
, ∥ui

rbω
∥⟩}, Supir >

to transmit to its TSP neighbor. For clarity, we again stress that
according to our notation ⟨X i

urb(τr ·λ)
, ∥ui

rb(τr ·λ)
∥⟩ will include the re-

spective bitmap and norm value for the ui
rb(τr ·λ)

batch, which in turn
involves [ui

r(τr ·λ−λ), . . . , u
i
r(τr ·λ)] attribute values.

As in the SWO-MuO case, the value of τr may differ for each
clusterhead pair on a respective TSP edge. This is because if data
about a mote Si reaches a clusterhead where its rth attribute
finds adequate support, the intercluster communication ends for
that (mote, attribute) pair. Since each cluster knows the number
of window slides since the last intercluster communication with
its TSP neighbor, it can compute τr for each attribute case and
communicate only the part of {⟨X i

urbλ
, ∥ui

rbλ
∥⟩, . . . , ⟨X i

urbω
, ∥ui

rbω
∥⟩}

that is missing from its TSP neighbor for the current window.

4.3.4. SWO-UnO analysis
The following lemmas regarding the estimation accuracy of

SWO-UnO (Lemma 3) and its accuracy with respect to the similar-
ity tests (Lemma 4), evolve from Theorem 4 and Theorem 5 based
on our discussion in this section.
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Lemma 3. For bitmaps of O(ℓog(2/δ)/(2ϵ2)) length (Theorem 2) the
estimation of Eq. (15) lies in:

ˆcos(ui
r , u

j
r ) ∈ cos(ui

r , u
j
r )± 2sin(

π

2
ϵ)

with probability at least ∆ = (1− δ)
ω
λ .

Lemma 4. For bitmaps of O(ℓog(2/δ)/(2ϵ2)) length (Theorem 2),
clusterheads perform a correct similarity test upon utilizing

ˆcos(ui
r , u

j
r ) (Eq. (15)) with probability at least 1 − mint>0

e−t·|φr−cos(uir ,u
j
r )|((1− δ) · et·2|sin(

πϵ
2 )|
+ δ · e2·t )

ω
λ .

With respect to the Bandwidth vs Accuracy Trade off, similar
observations as in the SWO-MuO case can be extracted for the
SWO-UnO case, as well.

5. Related work

The focal point of our work, i.e., outlier detection in sensor
networks has received considerable attention over the past few
years [7,24,25]. The same holds for Locality Sensitive Hashing [26]
which is enhanced in thiswork, so that it becomes applicable to the
examined operational modes during outlier detection. The works
in [7] and [26] present comprehensive surveys on outlier detection
in sensor networks and LSH, respectively. Here, we comment on
works that we consider more relevant to our proposed approaches
and representative of wider categories due to the rationale they
employ.

The TACO framework that was the first outlier detection tech-
nique that could provide tunable accuracy guarantees based on
bandwidth constraints, was initially introduced in [4]. More-
over, [5] includes enhancements in the aspects of the adoption
of various similarity measures within the framework and the
probabilistic guarantees provided by TACO’s techniques. This work
significantly extends TACO’s paradigm with respect to the aspects
extensively discussed upon citing our contributions in the intro-
ductory section. The Locality Sensitive Hashing (LSH) scheme used
in TACO is discussed in [10], while [27] provides interesting data
sensitive extensions to the basic LSH technique. The techniques
we present in this work employ the same LSH scheme, but in
order to enable its usage in a sliding window paradigm and dur-
ing multidimensional outlier detection procedures, we develop a
thorough study on required data transformations. Furthermore,we
present an extensive analysis on the probabilistic guarantees of
our framework’s accuracy entailed in themore generic operational
modes that we introduce.

Thework of [3] uses an equivalent to ours outlier definition and
pinpoints outlier motes utilizing a geometric approach in order to
allow sensor nodes avoid any communication unless their simi-
larity is possible to have crossed a given threshold. Nonetheless,
the main focus of the method is on pair-wise mote comparisons
and its quality guarantees may not hold when it comes to handle
minimum support based outlier definitions in hierarchical sensor
networks. The PAO framework [6] operates on top of clustered
network organizations, as our work does, and restrains commu-
nication during outlier detection by employing linear-regression
based compression. Nonetheless, the amount of compression and
thus the communication savings strongly depend on the ability of
the monitored quantities to exhibit low fluctuations in order to
enable linear regression’s application. The authors of [28] intro-
duce a declarative data cleaningmechanismover data streamspro-
duced by the sensors. Similarly, the work of [29] introduces a data
cleaning module designed to capture noise in sensor streaming
data based on the prior data distribution and a given error model
N(0, σ 2). A different approach is presented in [30], where Pairwise
Markov Networks are used as a tool to derive a subset of motes

sufficient to infer the values obtained by the whole network. How-
ever, this technique requires an energy draining learning phase.
In [31] a probabilistic technique for cleaning RFID data streams is
presented. The framework of [2] is used to identify and removeout-
liers during the computation of aggregate and group-by queries.
In [8] the authors introduce a novel definition of an outlier, as an
observation that is sufficiently far frommost other observations in
the dataset. However, in cases where the motes observe physical
quantities (such as noise levels, temperature) the absolute values
of the acquired readings depend, for example, on the distance of
the mote from the cause of the monitored event (i.e., a passing car
or a fire respectively). Thus, correlations among readings in space
and time are more important than the absolute values, used in [8].

The work in [32,33] addresses the problem of identifying faulty
sensors using a localized voting protocol. However, localized vot-
ing schemes are prone to errors whenmotes that observe interest-
ing events generating outlier readings are not in direct communi-
cation [2]. In other related work, [34] proposes a fuzzy approach
to infer the correlation among readings from different sensors,
assigns a confidence value to each of them, and then performs a
fused weighted average scheme.

As already noted the current work differentiates itself by pro-
viding a straightforward manner to trade bandwidth consumption
for accuracy during the outlier detection procedure and, remark-
ably, it does so in four operational modes.

6. Experimental evaluation

6.1. Experimental set up

We employ the same enhanced, real-world datasets as
in [4,5,35]. More precisely the characteristics of these datasets are
as follows:

• Intel Lab Data: Measurements for 4 monitored attributes
including temperature, relative humidity, light and voltage
obtained by 48 sensors in the Intel Research, Berkeley lab.3
• Weather Data: Measurements for 6 monitored attributes

of 100 sensor nodes including air temperature, dew-point
temperature, wind speed, wind peak, solar radiance and
relative humidity for the station in the university of Wash-
ington, and for year 2002.4

For TWO-MuOand SWO-MuO,which involvemultidimensional
outlier detection, we normalize the dataset in a per attribute fash-
ion, subtracting the mean value from each measurement. This is
to avoid an extreme number of detectedmultidimensional outliers
being affected by the heterogeneity of the absolute attribute values
in the datasets. However, for SWO-UnO where unidimensional
outlier detection is performed, this issue does not arise and thus
we consider the original measurements. Each mote measurement
corresponds to a real valued attribute of 4 bytes=32 bits size.

We measure the accuracy (approximation quality) of our tech-
niques in detecting outliers using the F − measure = 2

1
Precision+

1
Recall

metric. In a nutshell, precision specifies the percentage of reported
outliers that are true outliers, while recall specifies the percentage
of outliers that are reported. The set of true outliers was computed
offline (i.e. assuming all data was locally available) in each exper-
iment. Our omnibus solutions pinpoint outliers in an approximate
way, trading bandwidth for accuracy in a straightforward man-
ner. We reduce the size of the transmitted data leveraging data
reduction capabilities of thewindowed LSH techniqueswepropose
separately for TWO-MuO, SWO-MuO and SWO-UnO operational

3 http://db.csail.mit.edu/labdata/labdata.html.
4 http://www-k12.atmos.washington.edu/k12/grayskies.

http://db.csail.mit.edu/labdata/labdata.html
http://www-k12.atmos.washington.edu/k12/grayskies
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modes. Themorewe reduce the bitmap size, the looser the guaran-
tees on the accuracy of the similarity testswe conduct, as discussed
in our analysis in the previous sections.

According to the specifications in Section 4.1, in TWO-MuO
sensor nodes collect ω samples for the ξ monitored attributes,
where ξ = 4 for Intel and ξ = 6 for the Weather data (also
see Table 1). Based on these, sensors perform the intra- and in-
tercluster communication phase and, due to the tumbled window
adoption, these ξ×ω measurements expire altogether for the next
tumble to be filled and processed. Therefore, because each real-
valued measurement is of 32 bits size, the size of the original data
is ξ ·ω·32 bits. These are the data sent by theNoReduction approach
mentioned in our experiments upon operating in TWO-MuOmode.
Upon we impose data reduction as described in Section 4.1 em-
ploying 1/x Reduction ratio, ξ ·ω·32

x bits are communicated during
intra- and intercluster (for sensors that do not obtain adequate
support) phases. This is denoted by 1/x Reduction ratio in our
evaluation.

For SWO-MuO where a sliding window is used, in every slide
of the window the most aged measurements expire while sen-
sor nodes collect new ξ measurements composing the latest in-
formation, cω column in Table 1, that need to be transmitted
during the intra- and intercluster communication phases. Further
details were discussed in Section 4.2. Therefore, in this case the
NoReduction approach sends the original ξ · 32 bits sized data in
every slide of the window. Upon we impose 1/x Reduction ratio as
described in Section 4.2, ξ ·32

x + 32 bits are communicated during
the intra- and intercluster (in accordance with our discussion in
Section 4.2) phases. The addition of 32 bits in the previous calcu-
lation is due to the fact that SWO-MuO also communicates the L2
norm of the cω column.

Finally, for SWO-UnO (Section 4.3) a slide in thewindow causes,
for each monitored attribute, the expiration of λ measurements
in the most aged batch and the addition of a new batch, also
composed of λ measurements. Therefore, in every slide of the
window and for each monitored attribute the information that is
communicated by NoReduction is of size: λ ·32 bits while λ·32

x +32
bits are transmitted for 1/x Reduction.

It is important to emphasize that in each operational mode,
the NoReduction approach means that we transmit the original
sensor data. Therefore, the accuracy of the outlier detectionprocess
is perfect for the NoReduction approach. Hence, in our accuracy
related plots we do not include a separate line for NoReduction
since it would simply be a line parallel to the horizontal axis at
F − measure = 1 (vertical axis). We do include NoReduction in
communication and energy performance (details follow) graphs.

In our tests we vary every possible parameter that can alter
accuracy, communication and energy consumption in our exper-
iments over both datasets. Each experiment is repeated 10 times
under identical parameterizations altering only the random vec-
tors used in the windowed LSH application per operational mode.
We then report the average over these 10 repetitions. Parame-
terization, on the other hand, involves the following: (a) the re-
duction ratio imposed by the application, as discussed above, (b)
the window size ω, (c) the minSup parameter, (d) the similarity
threshold Φθ (for TWO-MuO) or Φ (for SWO-MuO, SWO-UnO),
(e) the number of attributes by using Intel data with ξ = 4 and
Weather data with ξ = 6, (f) the batch size λ for SWO-UnO. We
emphasize that we choose to directly tune the reduction ratio in
parameter (a) instead of parameters ϵ, δ separately because, by
doing so, we actually account for different combinations of ϵ, δ in
the construction of the bitmaps as well as it is muchmore intuitive
from an application viewpoint. For instance, reducing by 1/4 a
bitmap of 1024 bits, corresponds to choosing any (δ, ϵ) pair as
follows: 2 · 10−512 < δ < 1, ϵ = 0.029 ·

√
ℓog(2/δ).

We virtually place the sensors of each dataset in a square
100 × 100 meters area by having each mote choose a random

location for each set of tested parameters. We organize the net-
work in four clusters (and thus clusterheads) of Cluster Size = 12
and Cluster Size = 25 for the Intel and Weather dataset, respec-
tively. The maximum packet size of communication, equivalent
to TOSH_DATA_LENGTH in [36], is set to 32 bytes=256 bits. The
energy consumptionwhile transmitting and receiving data ismod-
eled according to [37]. In particular, transmitting b bits of data to a
node that lies at a distance dist from the current node results in an
energy drain of (ETX+ERF×dist2)×b, where ETX denotes the per bit
power dissipation of the transmitter electronics and ERF denotes
the per bit and squared distance power delivered by the power
amplifier. Similarly, receiving b bits of data results in an energy
drain of: ERX × b. The values of these parameters are set similarly
to [37] as: ETX = ERX = 50nJ/bit and ERF = 100pJ/bit/m2.

We also model potential communication channel losses. In
our experiments, the transmitted messages have a probability of
requiring a retransmission due to message loss or collision. We
use a (low, for instance in [16] losses can reach < 50% of the
total messages) Ploss = 0.01 probability of a message loss, while
the probability of a message collision is modeled as in [38] with

Pcollision = 1 − e−2·
m·Tp
T−Tp . In our simulation we assume that sensor

nodes should report their latest measurements according to the
tested operational mode within T = 1 sec at the end of each new
window. Furthermore, m denotes the number of the sensor nodes
each of which picks uniformly at random a slot from the T sized
time frame to transmit its data. For intracluster processing m is
equal to the cluster size for each dataset, while m = 4 during
the intercluster communication phase i.e., equal to the number of
clusterheads. Finally, Tp = transmitted data size

bandwidth where for bandwidthwe
use the 38.4 Kbps of Mica2 mote.5 Based on the above, apart from
accounting for accuracy for each operational mode and utilized
dataset, our experiments also present results on the amount of
communicated data and consumed energy throughout the outlier
detection process.

6.2. Summary of main findings

Before proceeding into the detailed analysis of our results, we
here highlight the main findings extracted throughout the evalua-
tion process:

• In accordance with the theoretic results of our work, the
more we compress the data choosing a high x in the
1/x Reduction ratio, the lower the accuracy (F-Measure) can
become. However, we found out that doubling or even qua-
drupling x, i.e., from 1/4 to 1/8 and 1/16 causes only slight
deterioration of accuracy in the vast majority of the cases.
This means that we can maximize communication savings
by reducing the data size without introducing significant
(additional) inaccuracies.
• In the presence of message collisions and retransmissions

our techniques exceed their expected theoretic benefits in
terms of bandwidth preservation and energy consumption.
For instance, imposing 1/16 Reduction ratio in TWO-MuO
can protract the expected network lifetime by 21, instead
of expectedly 16, times.
• According to Theorem 4 (SWO-MuO) and Lemma 3 (SWO-

UnO) the larger the ω we choose the smaller (closer to
1) the ∆ probability on the approximation error becomes.
Therefore, onewould expect that upon increasingω in SWO-
MuO or SWO-UnO the accuracy of our techniques would
deteriorate. However, in practice this rarely happens, due to
the fact that the more observations we include in the win-
dow, the more distinguishable sensors producing outlying
measurements become.

5 http://www.willow.co.uk/MoteWorks_OEM_Edition.pdf.

http://www.willow.co.uk/MoteWorks_OEM_Edition.pdf
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• Our framework is expectedlymore accuratewith stricterΦθ

(for TWO-MuO) orΦ (for SWO-MuO, SWO-UnO) thresholds.
This was explicitly mentioned in Section 4.1 for TWO-MuO,
but similar observations can be extracted for the exponen-
tial bounds in Theorem 5 (SWO-MuO) and Lemma 4 (SWO-
UnO). Nonetheless, in practice we found out that, contrary
to TWO-MuO which operates on tumbles, SWO-MuO and
SWO-UnO are more affected by lower Φ values and can
overall exhibit a lower F − measure score. The reason for
this is that: each random vector used in the windowed RHP-
LSH application (irrespectively of the operational mode)
draws a hyperplane that partitions the data space in two
sides corresponding to bit 0 or 1 for each position of the
bitmaps. Theremight be a case where the produced random
vectors do not ideally partition the space so that outlying
data points can be distinguishedusing the bitmaps. Tumbled
window operation restricts by definition the effect of these
‘‘bad’’ random vectors in a single window since afterwards
all results expire and a new window is formed. In sliding
window operation, however, compressed representations
are reused in the similarity tests, ω and ω/λ times until the
corresponding column for SWO-MuOor batch for SWO-UnO
expires. Thus, ‘‘bad’’ random vectors affect multiple times
the accuracy of the results. This issue can be overcome by
using derived dimensions for choosing random vectors as
in [27] or more specialized LSH alterations [26]. However,
applying these approaches on our omnibus solutions is out
of the scope of the current work since it essentially involves
comparing orthogonal LSH versions.
• In TWO-MuO we gain more in terms of bandwidth and

energy consumption in all the cited cases. This is because
in TWO-MuO (a) we compress higher amounts of data (as
already mentioned of ξ · ω · 32 bits) compared to SWO-
MuO (ξ · 32 bits) and SWO-UnO (λ · 32), so in absolute
numbers 1/x Reduction has a stronger effect on the bitmaps,
(b) we do not need to add 32 bits in every transmission since
TWO-MuO does not require any additional L2 norm to be
encapsulated in a message.

6.3. TWO-MuO experimental analysis

Figs. 3(a) and 4(a) present the accuracy of TWO-MuO, for the In-
tel andWeather data, for different angle (and thus cosine) similar-
ity thresholds between5 and45degrees and for different reduction
ratios. We extract these results using a window size of ω = 8 and
minSup = 7%, but shortly we are going to show how we vary the
latter parameters as well. In Figs. 3(a) and 4(a) we observe that in
both datasets we can impose a high degree of compression from
1/4 to 1/16 Reduction while keeping the accuracy of TWO-MuO
above 90% in all the cited cases. In fact, in both datasets doubling
or even quadrupling the reduction ratio has only a slight effect (no
more than 5%) on F-Measure. On the other hand, the value of F-
Measure slightly decreases, especially in Fig. 4(a), as we increase
the angle similarity threshold on the horizontal axes, which is the
expected behavior according to our discussion in Section 4.1 and
Fig. 2.

In Figs. 3(b) and 4(b) we keep a steady reduction ratio of 1/4
(as shown above the reduction ratio does not tremendously affect
accuracy) and minSup = 7% varying the window size from ω =
4 to ω = 16 sampled ξ−dimensional (attribute) values under
different similarity thresholds. Again, the accuracy of TWO-MuO
shows no remarkable fluctuation among the window choices. This
is also true in Figs. 3(c) and 4(c) where for 1/4 reduced bitmaps
and ω = 8, the accuracy of TWO-MuO remains resilient to varying
minSup in the range between 5% and 10% of the total sensor nodes
in a dataset.

For measuring the performance of TWO-MuO in terms of band-
width usage and energy consumption we pick a high similarity
threshold of 45 degrees angle, the smallest of the tested window
sizes ω = 4 and a minSup = 5%. The reason for these choices
is to show the gains of TWO-MuO compared to NoReduction in a
scenario that significantly favorsNoReduction. The aforementioned
scenario favors NoReduction because NoReduction transmits larger
or even multiple messages when (uncompressed) data do not fit
in a single packet, i.e., for higher ω choices, and therefore, it is
more prone to message losses, collisions and retransmissions. In
conjunction with the previous fact, upon loosening the outlier
definition using high threshold and lowminSup, the amount of data
thatNoReduction communicates is less since outliers become rarer.

Given these, in Figs. 3(d) and 4(d)we can see the Total bits trans-
mitted by TWO-MuO versus the NoReduction approach. Going one
step further, we also provide the categorization of communication
during to the Intra-cluster communication phase, the Inter-cluster
phase, Retra-nsmissions and ToBS for final outliers reported to the
BaseStation in the Intel andWeather data. To keep the results com-
parable among different datasets and operational modes (in the
upcoming experiments), instead of reporting the absolute number
of transmitted bits, we report the amount of communication of
each category and 1/x Reduction ratio as a percentage of the bits
required in Total by the NoReduction approach. Thus, the Total of
NoReduction, black filled bar on the left of the figures, corresponds
to 100% and the rest of the percentages express the ratio over this
value.

In both Figs. 3(d) and 4(d), from the corresponding bars in
the Total category, we can observe that using TWO-MuO we gain
more than the chosen reduction ratio yields. For instance, using
1/8 Reduction in Intel data results in reducing the transmitted bits
by a factor of 9.5 instead of 8, while this factor reaches a value
of 11 in Weather data. These gains are attributed to two reasons:
(1) the amount of retransmissions in the ReTra category which
are almost absent from our TWO-MuO, 1/x Reduction ratios, but
reach 12% in Intel and 23% in Weather data for the NoReduction
approach. Note that this difference is because for the same ω = 4,
Weather data are composed of more attributes and thus trans-
mitted messages are larger, (b) the amount of messages in the
Inter-cluster category, where we have multiple (up to 4) hops of
communication and thus, especially in the Intel data, compressed
versus uncompressed communication contributes multiple times.
It is worthwhile noticing that the percentage of Inter is in all cases
less than the corresponding percentage of Intra in both datasets.
This shows that the intercluster communication phase actually
helps in reducing the overall communication in the network. This is
because the naive approach of centralizing all the data (often called
SelectStar approach [4,5]), after the intracluster communication
phase, would have a cost equivalent to 2 · Intra of the NoReduction
approach. Now, in both figures Intra+Inter < 2·Intra and therefore
our valid claim.

In Figs. 3(e) and 4(e) we depict the network lifetime for TWO-
MuO under 1/x Reduction compared to the NoReduction approach
for sensor nodes that are initialized with 5000 mJ residual energy.
Throughout our evaluation, the network lifetime is defined as
the epoch (corresponding to the periodic timepoints at which ξ

monitored attributes are sensed by themotes) when the first mote
in the network completely depletes its energy. For instance, upon
using a 1/8 Reduction ratio, Fig. 3(e) shows that we can protract
the network lifetime by 10.4 times. Note that this is more than the
9.5 factor in terms of transmitted bits that was reported in 3(d).
Similarly, for a 1/8 Reduction ratio, Fig. 4(e) shows that the network
lifetime is prolonged by 12.5 times, despite that 11 times fewer
transmitted bits were observed in Fig. 4(d). The reason for this
difference among communication and energy consumption reduc-
tion is that measuring transmitted bits charges only the sensors
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(a) TWO-MuO Intel: Reduction ratio. (b) TWO-MuO Intel: Window size. (c) TWO-MuO Intel: minSup.

(d) TWO-MuO Intel: Communication cost. (e) TWO-MuO Intel: Energy consumption.

Fig. 3. TWO-MuO analysis on Intel data.

(a) TWO-MuOWeather: Reduction ratio. (b) TWO-MuOWeather: Window size. (c) TWO-MuOWeather: minSup.

(d) TWO-MuOWeather: Communication cost. (e) TWO-MuOWeather: Energy consumption.

Fig. 4. TWO-MuO analysis on Weather data.

that perform the transmission, while measuring the consumed
energy, apart from charging the transmitting motes, also charges
receiving nodes ERX×b as discussed in Section 6.1. This is especially
important for the bits of the ReTra category, since TWO-MuOunder
any 1/x Reduction ratio almost completely avoids retransmissions.
Notice that in both Figs. 3(e) and 4(e) the Expected network lifetime
based on the imposed reduction ratio is plotted under the gray
bar, and it is always exceeded by the black bar of the Actual
lifetime prolongation. The higher network lifetime prolongation,
provided by TWO-MuO, reaches a factor of 21, in Weather data for
1/16 Reduction.

6.4. SWO-MuO experimental analysis

Figs. 5(a) and 6(a) present the accuracy of SWO-MuO, for the
Intel and Weather data, for different angle (and thus cosine) simi-
larity thresholds and reduction ratios. In both datasets the value

of the F-Measure metric ranges between 70% and 90% mostly
revolving around 80%. Once again it appears that we can impose
a high degree of compression from 1/4 to 1/16 Reduction while
not affecting the accuracy of SWO-MuO. In fact, in both datasets,
doubling or even quadrupling the reduction ratio may affect F-
Measure no more than 4%.

The value of F-Measure more steeply (compared to TWO-MuO)
decreases as we increase the angle (equivalently decrease the
cosine) similarity threshold, which is the expected behavior as we
discussed in Section 6.2 and stems from Theorem 5. Overall, in
all cited cases we can see that the F-Measure metric for SWO-
MuO is lower from 5% (for 5 degrees) to 25% (for 45 degrees)
compared to the F-Measure metric of TWO-MuO. This is because
occasional ‘‘bad’’ random vectors that are incapable of properly
partition (via the drawn half-planes) the monitored data space
affect the results of the conducted similarity testsω times until the
corresponding attribute column (cω in Table 1) expires, contrary to
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(a) SWO-MuO Intel: Reduction ratio. (b) SWO-MuO Intel: Window size. (c) SWO-MuO Intel: minSup.

(d) SWO-MuO Intel: Communication cost. (e) SWO-MuO Intel: Energy consumption.

Fig. 5. SWO-MuO analysis on Intel data.

(a) SWO-MuOWeather: Reduction ratio. (b) SWO-MuOWeather: Window size. (c) SWO-MuOWeather: minSup.

(d) SWO-MuOWeather: Communication cost. (e) SWO-MuOWeather: Energy consumption.

Fig. 6. SWO-MuO analysis on Weather data.

TWO-MuO where such random vectors are not only rare but also
affect one tumble. This important difference was also mentioned
in the highlights of Section 6.2.

According to Theorem 4, the probability ∆ on the approxima-
tion quality of SWO-MuO becomes smaller as ω increases. Never-
theless, Fig. 5(b) illustrates that in practice increasing the window
size from ω = 4 to ω = 16 for Intel data does not have an
important impact on the SWO-MuO’s F-Measure. This is also true
for the Weather data in Fig. 6(b) where the only important (10%–
13% decrease in F-Measure) decrement arises in 30–45 degrees for
ω = 16.

Varying the minSup parameter from 5% to 10% in the Intel data
can deteriorate the F-Measure value up to 10% with SWO-MuO
beingmore accurate for higherminSup as shown in Fig. 5(c). On the
other hand, this is does not appear to be the case for the Weather
data since in Fig. 6(c) alteringminSup causes no significant change
in F-Measure. To further investigate this behavior we conducted
experiments using synthetic datasets (moteswere sampling values

from a standard Gaussian distribution increasing the number of
dimensions from4 to 12).We omit the corresponding plots, but the
result can be summarized to the fact that the higher the dimension-
ality (ξ monitored attributes) of the data, the more important the
effect of minSup, with higher minSup yielding higher F-Measure.

With respect to bandwidth consumption both Figs. 5(d) and
6(d) show, in the corresponding bars in the Total category, that
using SWO-MuO we gain more than the chosen reduction ratio
yields. For instance, using 1/8 Reduction in Intel data results in
reducing the transmitted bits by a factor of 3.6 instead of 2.67
(because SWO-MuO 1/4 Reduction transmits ξ ·32

x + 32 with ξ = 4
for Intel — see Section 6.1), while this factor reaches a value of
5.4 in Weather (ξ = 6) data instead of the expected 3.43. These
gains are again attributed to the amount of retransmissions in the
ReTra category that aggravate especially theNoReduction approach,
as well as the amount of messages in the Inter-cluster category. In
all the cited cases and also for the rest of the reduction ratios, SWO-
MuO exceeds its theoretic benefits. Once again, the fact that Intra+
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Inter < 2 · Intra in all cases illustrates that using the intercluster
communication framework saves communication compared to the
naive approach that centralizes all the data to the base station after
the intracluster communication phase.

It can easily be observed that, under the same reduction ratios,
the bandwidth preservation over the NoReduction approaches is
much higher for TWO-MuO than for SWO-MuO, both on expec-
tation and in practice. This comes as no surprise according to our
discussion in Section 6.1. For instance, for ω = 4 and ξ = 4 under
1/8 Reduction, TWO-MuO yields 4·4·32

8 sized bitmaps compared
to 4 · 4 · 32 of NoReduction. On the other hand, for SWO-MuO
1/8 Reduction yields 4·32

8 +32 sized bitmaps compared to 4 ·32 bits
of NoReduction. As already discussed, 1/x Reduction has a stronger
effect in TWO-MuO which stems from the definition of tumbled
and sliding window operation.

In Figs. 5(e) and 6(e) we depict the network lifetime for SWO-
MuO under 1/x Reduction compared to the NoReduction approach
for sensor nodes that are initialized with 5000 mJ residual energy.
Again, in all cases SWO-MuO exceeds its theoretic (according to
the imposed reduction ratio) benefits. For instance, upon using
a 1/8 Reduction ratio, Fig. 5(e) shows that we can protract the
network lifetime by 3.7 times instead of the expected (gray bar)
2.67 factor. Similarly, for a 1/4 Reduction ratio, Fig. 6(e) shows
that the network lifetime is prolonged by 5.5 times instead of
the expected 3.43 factor. Notice that in both Figs. 5(e) and 6(e)
the Actual network lifetime always exceeds the Expected lifetime
prolongation.

6.5. SWO-UnO experimental analysis

SWO-UnOoperates on individual attributeswhere, in each slide
of thewindow and a per attribute fashion, it compresses batches of
measurements. Among the available attributeswe choose to report
results about the most interesting cases of a slow to change and
narrow range ([0, 4]) attribute, namely the Intel Voltage attribute
and the extreme case of Weather Solar measurements that have a
large range among 0 and 1000 and exhibit abrupt changes depend-
ing on factors such as clouds, shades of objects etc. For the Intel
Voltage measurements we choose a batch size λ = 4, while this
value is set to 8 for the Weather Solar data. For these attributes
we use window sizes that range between ω = 8 (minimum in
Intel Voltage) and ω = 48 (maximum in Weather Solar) measure-
ments so that they contain a sufficient number of batches and ω

λ
(Lemma 4) remains the same for cases examined in both datasets.
Furthermore, we note that we report results for each attribute sep-
arately as if outliers are monitored per attribute in isolation. This
gives us the opportunity to better conceive the pure effect of SWO-
UnO per attribute. In case of examining unidimensional outliers
but simultaneousmonitoring for all attributes, the communication
and energy performance of SWO-UnO would lead to observations
similar to those of TWO-UnO.

Figs. 7(a) and 8(a) present the accuracy of SWO-UnO, for the
Intel and Weather data, for different reduction ratios. In the Intel
Voltage data (Fig. 7(a)) the value of the F-Measure metric steadily
revolves around 80%,while for theWeather Solar data this happens
at F-Measure=90%. Thus, the accuracy of SWO-UnO only slightly
differs upon altering the reduction ratio. As happens with low
number of dimensions in SWO-MuO, SWO-UnO also exhibits fluc-
tuations upon altering the window size between ω = 8 to ω = 24
and the minSup from 5% to 10% upon using lower batch sizes. This
is depicted in Intel data related Figs. 7(b) and 7(c) where a low
λ = 4 value is used. On the other hand, inWeather Solar, Figs. 8(b)
and 8(c), where λ = 8 the effect of the window size and the
minimum support on F-Measure is not equivalently noteworthy.
It is important to note that according to Lemmas 3 and 4 the ratio
ω
λ
that affects the upper (probability) bound is the same in Intel and

Weather SWO-UnO configurations. However, in practice it appears
that low values of λ can have a stronger (negative) effect on the
accuracy of SWO-UnO, since compressing smaller batches can lead
to more evident discontinuities in similarity computations using
the reduced bitmaps that operate in discrete spaces.

As in TWO-MuO and SWO-MuO, Figs. 7(d) and 8(d) show that
SWO-UnO exceeds its theoretically expected benefits aswell.More
precisely, in Intel Voltage SWO-UnO 1/8 Reduction saves in total
communication up to a factor of 3.37 instead of the expected
2.67, while in Weather Solar the total communication reduction
reaches a factor of 5.43 instead of expectedly 4. At the same time
and for the same reduction ratio, according to Fig. 7(e), in Intel
Voltage the network lifetime is prolonged by a factor of 3.8 instead
of 2.67 (or the 3.37 reduction in transmitted bits). Furthermore,
Fig. 8(e) reports a 5.65 increment in network lifetime instead of
expectedly 4 or 5.43 times i.e., the reduction in transmitted bits
observed in Fig. 8(d). An important observation is that in Weather
Solar, due to the higher percentage of final outliers (categorized
as ToBS), the Inter−cluster communication cost is higher than
the Intra−cluster phase. Therefore, in this particular occasion, it
appears preferable to choose SelectStar , instead of NoReduction, as
the less naive approach which centralizes all the data immediately
after the intracluster processing phase.

7. Applicability to broader IoT settings and security aspects

So far we focused purely on data management and (accuracy,
communication) performance issues throughout the outlier de-
tection process using our TWO-MuO, SWO-MuO, SWO-UnO op-
erational modes. This section aims at discussing the applicability
of our techniques in broad categories of IoT scenarios and their
orthogonality with security and privacy challenges arising in IoT
settings [39–41]. In our discussion we use the recent work of [41]
as a guideline. More precisely, the discussion in [41] identifies key
IoT application fields and shows how the clustering algorithm for
anomaly detection proposed in [42] can be adapted to a number of
different scenarios and act when security, privacy issues become
of the essence.Major application domains of (cloud-integrated) IoT
include, but are not limited to, Industry 4.0 settings [42–44], Power
Grids [45] and Smart City [46] applications, Healthcare [47–49]
and Environmental Monitoring [16]. Our experimental evaluation
in the previous section already accounted for environmental and
meteorological data and the detection of outliers on them using
all our proposed operational modes. Therefore, in what follows
we concentrate on the rest of the domains outlined above. We
choose to discuss security and privacy aspects separately for ease
of exposition and to better exhibit the ability of our techniques to
adapt to such application needs.

Industry 4.0 settings: The term Industry 4.0 or Industrial Internet
involves integration of complex physical machinery and devices
with networked sensors. These sensors collect and convey data
exploited to gain insights so as to better control business and pro-
duction outcomes. Industrial Internet has a broader focus onmany
industries and application areas while Industry 4.0 mainly focuses
on manufacturing and logistics. ‘‘Smart Industry’’, or ‘‘Smart Man-
ufacturing’’ are also used to describe similar application contexts.

The framework proposed in [42] tackles anomaly detection
over industrial wireless sensor networks. The architecture of the
assumed distributed industrial infrastructure, at its lower tier, is
equivalent to our clustered sensor network setting. In particular
it is composed of a sensor network consisting of plain motes,
cluster headers, wireless links and a gateway node. To complete
the picture, the gateway node is supposed to be connected to
the industrial process control system, a HMI (Human Machine
Interface) Server presents the updated information collected over
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(a) SWO-UnO Intel: Reduction ratio. (b) SWO-UnO Intel: Window size. (c) SWO-UnO Intel: minSup.

(d) SWO-UnO Intel: Communication cost. (e) SWO-UnO Intel: Energy consumption.

Fig. 7. SWO-UnO analysis on Intel data.

(a) SWO-UnOWeather: Reduction ratio. (b) SWO-UnOWeather: Window size. (c) SWO-UnOWeather: minSup.

(d) SWO-UnOWeather: Communication cost. (e) SWO-UnOWeather: Energy consumption.

Fig. 8. SWO-UnO analysis on Weather Data.

the WSN, while a Historical Database [50] keeps a record of all
aggregated observations.

The core of the technique proposed in [42] is a distributed,
fuzzy data clustering algorithm aiming at accurately modeling the
normal and abnormal behavior of the sensed data space. First, local
(at the mote level) data partitioning is performed using fuzzy c-
means (fcm) clustering, and statistical thresholds are adaptively in-
troduced to classify the data points into clusters and identify local
outliers using local correlations at each mote. Later, the resulting
cluster centroids and outliers are transmitted higher to the WSN
hierarchy. In that, communication savings are obtained by having
cluster centroids and ranges represent normal data points and
only transmitting outlying measurements. At the next level of the
hierarchy, data points are again evaluated for clustermemberships
consideringmore global correlations on theunion set of data points
at each level. This is performed recursively until the gateway node
enables global anomalies to be detected using the thresholds on
membership values computed at this (global) level.

Our claims in Section 5 about the key points that differentiate
the current work compared to related works still hold for [42].
Hence, herewe go beyond guarantees and trade-offs on bandwidth
vs accuracy and the support for various window models, i.e., the
basic advantages of our algorithmic arsenal, in order to study
the ability of our techniques to adapt to the rest of the issues
covered in [42] and in [43,44] which employ a similar to [42]
rationale. In particular [43] discusses a distributed data cluster-
ing approach that directly considers information characteristics
using an appropriate entropy measure and avoids predefining the
number of expected clusters. [44] on the other hand, utilizes [42]
towards identifying and by-passing areas of the network prone to
producing peculiar measurements.

The technique of [42] identifies both local anomalies using sim-
ilarities among data within a single node, whereas global anoma-
lies are identified considering correlations on the higher levels of
the network hierarchy. Our techniques can be adapted to detect
outliers at different levels of granularity and globally. This can be
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achieved by forwarding towards the control process system and
HMI server information about both the intra- (clusterhead) and
inter-cluster (towards global) communication phase.

In Section 1 we argued about the necessity of judging out-
liers not by considering motes’ local readings, but correlations of
measurements of various sensors in space and time. However, if
both global and local anomaly detection is desired, our approach
can adapt to this case as well. TWO-UnO, TWO-MuO, SWO-MuO,
SWO-UnO do not support the soft data partitioning of [42] or
entropy-based cohesive region extraction in [43]. Excluding this,
they can contribute in identifying local outliers by performing sim-
ilarity checks taking into consideration windows of observations
obtained locally by a mote and judging their similarities. The RHP-
based compression of local measurements in these windows also
aids in this scenario for saving memory resources. Local anomalies
can be judged by our approaches employing a range of supported
uni- or multi-dimensional similarity measures (Tables 2 and 3)
and under different window types. Remarkably, sliding windows
over RHP bitmaps would not be possible to support before the
contributions of SWO-MuO and SWO-UnO made in the current
work.

The work in [44] describes a routing scheme that by-passes
motes producing outliers, using a twin rolling balls technique.
Using the proposed technique, [44] diverts the packets routed
inside the identified area of the network covered by these motes.
The identification of infected nodes is done by adapting the data
clustering approach of [42] to classify motes based on the fraction
of anomalous data that is detected in individual data streams.
This information is then used in the proposed by-passed routing
(BPR) scheme. The techniques proposed in our work do not adopt
the same definition of infected mote and infected area as in [44].
Despite this difference, the outlier information provided by our
techniques that reaches the HMI server and the process control
system involves themotes producing such peculiarmeasurements.
Therefore, accompanying outlier reports by outlier mote locations
helps in isolating these infected motes. One step further, by exam-
ining spatial proximity of infected motes, infected areas covered
by them can be identified as well. However, because our emphasis
in this work is on data management and query answering rather
than networking/routing issues, the information about extracted
outliers is to provide alarms accompanied by the areas covered
by outlying motes (e.g. an imminent breakdown of a production
machine or problematic production line) or exclude theirmeasure-
ments from (aggregate or ad-hoc) query answers.

Healthcare Monitoring: Remote patient health monitoring using
smart wearable sensors opens up new opportunities for vigilance,
timely diagnosis and reaction in case of adverse events. For in-
stance, let us consider a scenario similar to the one introduced
in [47] where the monitoring procedure involves a stay-at-home
patient to be monitored by body sensors. The measurements of
the sensors are delivered to the patient’s mobile phone device via
Bluetooth and are subsequently communicated to hospital servers
via Internet. Following [47], hospital servers then apply a clustering
algorithm (a centralized version of [42]), define respective (normal
and abnormal) clusters and their ranges, which are communicated
back to the patient’s mobile device. Based on this information,
patient’smobile device keeps receiving updates frombody sensors,
compares these measurements with the identified clusters to de-
tect and classify potential anomalies (please refer to [47,48] for
further details).

Body sensor measurements in such a scenario may involve
Electrocardiography (ECG) signals which need to be compressed
since they are enormously large in size. Thus, compression aims at
both avoiding depleting the availablememory of themobile device
and to reduce communication costs during transmissions to the
central server [47,48]. The patient record analysis is not necessarily

restricted to ECG, but as [49] argues may involve other monitored
vital signs such as Systolic/Diastolic Blood Pressure (SBP/DBP),
Respiratory Rate (RR), Blood O2 saturation, among which discov-
ering correlations is important for clinical decision-making. De-
compressing these signals in any stage of this process is too time
consuming and may affect the real-timeliness of the application.
The latter is obviously of utmost importance. Therefore, if one
has to detect anomalies on such signals, working on compressed
representations is the only way to go.

Let us now examine how the above scenario, despite being de-
prived from in-network processing and pair-wise similarity checks
among sensors, can be supported by our approaches. First, our
algorithms are capable of detecting anomalies in both uni- and
multi-dimensional setups. Therefore, they are applicable in case
a single or multiple vital signs should be included in the analy-
sis. Second, the support of different window models allows the
application to tune the frequency by which both new clusterings
will be produced as well as groups of signals will be classified as
normal or abnormal. For instance, itmaybedesired to producenew
clusterings after accumulating a number of recent measurements
(tumble) per patient or continuously check for concept drifts in the
produced clusterings in a sliding window fashion.

In all such cases, LSH acts as the compression enabler. Inter-
estingly, the produced RHP representations do not need to be
decompressed since our proposed techniques can be used to solve
what can be thought of as the dual to the outlier detection problem,
that of clustering. In such cases, compressed representations along
with the desired supported measure (Tables 2 and 3) can be used
to compute approximate clusterings on the produced bitmaps. In
fact, clustering based on LSH representations has been repeatedly
applied in the literature [51]. Nonetheless, special care should be
taken with respect to the accuracy of the produced clusterings
and during the classification process. This is because, although
the accuracy guarantees and the approximation quality of our
techniques are tunable based on the chosen communication and
memory utilization reduction ratio, in this particular application
field False Negatives (FN) (i.e., classifying an anomaly as normal
signal) may have severe consequences for the patient. On the
contrary, a False Positive (FP) (i.e., classifying a normal signal as
potentially abnormal) is much more tolerable from an application
viewpoint. In order to better control the amount of FNs, an am-
plification process [52] can be applied at the sensor level (before
the intra- and inter-cluster phases). This involves the construc-
tion of multiple bitmaps and the proper combination of logical
conjunctions (AND) and disjunctions (OR) among them. In that,
the bitmap that is transmitted by each mote to its clusterhead
or among clusterheads results after the application of a series of
AND and OR operations on multiple RHP applications (on the same
vector) and their corresponding bitmaps. Hence, by choosing the
right number and sequence of such operations one can successfully
tune the resulted bitmaps and thus our operationalmodes towards
a more FN-free version. Please refer to Chapter 3 of [52] for further
details on amplification.

Power Grids: Smart grids are energy networks that can automat-
ically monitor energy flows and adjust to changes in energy sup-
ply and demand accordingly. When coupled with smart metering
systems, smart grids reach consumers and suppliers by providing
information on real-time consumption. With smart meters, con-
sumers can adapt – in time and volume – their energy usage to
different energy prices throughout the day, saving money on their
energy bills by consumingmore energy in lower price periods [53].

The key to a continuous improvement of power supply and its
use is up-to-date information about local system circumstances.
This involves power monitoring, power quality recording, dis-
turbance recorders and phasor measurement. Power Quality and
Measurement supports providers and energy users with solutions
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for precise measurement, acquiring and reporting of necessary
information so that the power system health can be determined,
adapted and improved in a continuous process.

Wide Area Monitoring Systems (WAMS) are composed of Pha-
sor Measurement Units (PMUs) installed in the substations of the
power network, a Phasor Data Concentrator (PDC) server in the
regional control center and a communication network to establish
an online connection between substations and control center [54].
Modern compact and less expensive PMUs communicate the mea-
sured data back to the control room in real-time, eliminating the
need for local storage and advanced user interface. All that is
needed is a communication interface such as a wireless modem.
This structure already resembles the two-tiered architecture we
employed in our analysis, although PDC (clusterhead) determina-
tion and PMU (sensor) assignment to PDCs is performed under
different criteria.

The data recorded is multi-dimensional, as each PMU records
multiple time-series for eachmeasurement type such as frequency,
speed of frequency change and voltage. The availability of a very
accurate clock through the Global Positioning System has made
it possible to synchronize phasor measurement units over a large
area which perfectly supports the data model described in Sec-
tion 2.1wheremotes obtainmeasurements in a synchronizedway.
What is more, a single PMU cannot detect anomalies in the grid.
However, comparing simultaneous measurements of phasors at
strategically-selected positions in the grid can reveal many prob-
lems and anomalies. This strengthens our arguments (Section 1)
that outliers, and therefore potential anomalies in the grid, cannot
be judged based on motes (PMUs in this scenario) local readings
and correlations in space and time need to be accounted for.
Eventually, the utility of the similarity measures employed by our
techniques such as correlation coefficient in Table 2 and their
multidimensional versions in Table 3 do make sense in PMU data
analysis [45]. Evidently, RHP application in this scenario aims at
reducing memory requirements and communication costs tuning
the accuracy of the anomaly detection process at the same time.

Therefore, our above discussion absolutely demonstrates the
applicability of our techniques for Smart Gridmonitoring including
the whole suite of proposed TWO-UnO, TWO-MuO, SWO-MuO,
SWO-UnO operational modes.

Smart CityApplications: A smart city is a conceptwhich integrates
multiple information and communication technology solutions to
efficiently and effectively manage a city’s assets. City assets in-
clude, but are not limited to, transportation systems, waste man-
agement, water management, safety systems, local departments
information systems and other community services. Among these
we are going to concentrate on anomaly detection in transporta-
tion systems since our previous discussion about other application
domains is more easily adapted to the rest of the city assets cited
above. A smart transportation system aims at providing intelligent
services of transport and traffic management. In the latter context,
semantic trajectory extraction becomes of the essence [55]. The
focus of semantic trajectory construction is on the extraction of
meaningful trajectories from the raw positioning data like GPS
feeds and other attributes stemming, for instance, from sensory
elements placed on vehicles. Such attributes may include vehicle
heading, steering wheel activity, position in lane, distance to head-
away vehicle etc. Semantic trajectoriesmanage to encompass both
objects’ spatiotemporalmovement characteristics as well as useful
information regarding objects’ movement patterns (e.g dwelling,
speeding, tailgating). In other words, semantic trajectories con-
stitute spatiotemporal trajectories broken down to semantically
enriched parts with each part being tagged by a semantic label.

Outlier detection over semantic trajectories can be useful in
many trafficmonitoring scenarioswhere authorities are interested
in identifying apart from recent objects’ trajectory representation,

the behavior of the drivers. In that, authorities are able to con-
tinuously diagnose drivers tending to have aggressive (speeding,
tailgating, driving at the edges of the lanes etc.) behavior, thus
creating alerts for patrol cars and enabling suitable placement and
periodic rearrangement of traffic wardens.

The work of SeTraStream [55] was the first in the literature that
described a framework for online semantic trajectory construc-
tion over streaming movement data. In a nutshell, SeTraStream
centralizes vehicle information involving both GPS and non-GPS
attributes from sensory devices attached on vehicles. It then at-
tempts to extract in a per vehicle fashion, portions of the trajectory
where the driving behavior is homogeneous or, differently put,
points in time where the driving behavior changes significantly
(called episodes). Thus, the latest part of a trajectory can be dis-
tinguished as semantically different from previous parts of the
vehicle’s movement, thus obtaining its own tag/label. The frame-
work by itself does not work over a distributed setting. However,
it argues about the suitability of a measure that is common in
our analysis, namely the RV-Coefficient (Table 3), to be used for
semantic trajectory construction upon judging points of semantic
change.

Adapting our framework in an outlying semantic trajectory
detection context is fairly intuitive. First, in our context we are
not interested in working on a per vehicle basis, since detection
of anomalies in an unsupervised manner (i.e. without having to
define threshold values per road segment and time of the day)
requires comparing the driving behavior of a vehicle to nearby
ones to judge peculiar trajectory portions. Second, instead of being
concerned with detecting episodes, we want to distinguish which
trajectories are semantic outliers based on recent observations.
Hence, sensor elements attached on vehicles periodically, using a
tumbling window model, compress and transmit (GPS and non-
GPS) attribute values to the nearest, stationary data aggregation
point during the intracluster communication phase. Afterwards,
aggregation points within a spatial vicinity in the city commu-
nicate during the intercluster communication phase to pinpoint
outlying semantic trajectories based on RV-Coefficient similarity
checks. In other words, the only difference with respect to our
TWO-MuO operational mode is that clusterheads are substituted
by fixed, stationary aggregation points and at each intra- or inter-
cluster communication phase, the aggregation point for each ve-
hicle may change while it commutes. Nonetheless, for the same
reason, our SWO-MuO approach is more difficult to apply since,
due to mobility, different portions of the vectors of a sliding win-
dow for the same vehicle will be aggregated in different points.We
reckon however, that for this specific scenario working with TWO-
MuO’s window model is very well acceptable from an application
viewpoint.

Security and Privacy Considerations: Our reference point during
the formulation of our above discussion, the work of [41], ex-
amines the ability of the clustering algorithm of [42] to adapt to
scenarios where security aspects become of the essence. In partic-
ular, [41] discusses the security challenges that arise throughout
the whole pipeline from data acquisition at the sensor level, data
communication within the WSN and data processing at the end
of the pipeline where a cloud infrastructure exists to perform
computationally demanding, batch analytics. With respect to this
pipeline, we here concentrate on the part involving privacy and se-
curity challenges at theWSN level, i.e., before having data available
in the cloudplatforms. This involves security at the sensor level and
for data in transit (intra-, inter-cluster communication). The stage
of the pipeline involving cloud integration is discussed in [41] and
also covered in [40,39]. Moreover, the work of [46] touches upon
privacy issues in Smart City applications described earlier in this
section. Secure and Privacy-preserving data mining approaches
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can be roughly classified in main categories including: randomiza-
tion and cryptographic techniques. We here outline why and how
our algorithmic suite can remain applicable even when security
and privacy application requirements exist. Our goal, of course,
is not to develop full fledged security and privacy protocols, but
instead show how our algorithmic suite provides the primitives of
operating orthogonally to such protocols.

Randomization is a data perturbation technique where the data
distortion is masked by random data. The basic component for
computing similarities among mote measurements in all oper-
ational modes (TWO-UnO, TWO-MuO, SWO-MuO, SWO-UnO) of
our algorithmic suite is the computation of pairwise angle or,
equivalently, cosine similarities using RHP application to reduce
communication and tune accuracy. The work of [56] analyzes
cosine similarity and combines it with obfuscation mechanisms
in order to achieve a privacy preserving similarity computation
solution. According to [56] there are two randomization means
that should be used to enhance cosine similarity computation
with privacy aspects. First, it shows that the multiplication of a
(mote in our study) vector with a rotation matrix preserves cosine
similarity. In other words, for a properly dimensioned rotation
matrix M , cos(a, b) = cos(M · a,M · b). Moreover, the random
scaling of two vectors with different random scaling factors m1
and m2 preserves its cosine similarity, i.e. cos(a, b) = cos(m1 ·

a,m2 · b). Such randomization aspects are orthogonal to all the
operational modes included in our algorithmic suite. The idea is
to apply these transformations to original mote data vectors or
data matrices so that simultaneously angle/cosine of mote pairs is
preserved and privacy is assured. In particular, at the sensor level,
while sensors obtainmeasurements from the sensed environment,
they can instantly apply vector scaling using arbitrarily chosen,
different random vectors (mi for mote Si). Having done that on a
per measurement basis, then, forming a tumble in TWO-UnO and
TWO-MuO, a column of attribute values in SWO-MuO or a batch
in SWO-UnO, motes can apply a vector rotation operation utilizing
a common matrix M . Subsequently, RHP application involves an
additional randomization step in which LSH bitmaps are produced
before being transmitted in all the proposed operational modes.
Besides the protocol of [56], the works in [57,58] present more
recent advancements in privacy-aware cosine similarity computa-
tion.

For TWO-UnO and TWO-MuO operational modes, the privacy
aware RHP bitmaps produced using the procedure described above
is the only data (besides mote ids, support, location and other
potential meta-data) that needs to be communicated from motes
to clusterheads (intracluster phase) and among clusterheads (in-
tercluster phase). Nevertheless, recall that computing similarities
in SWO-MuO and SWO-UnO entails the transmission of additional
data regarding vector norms. Therefore, besides the above steps
towards private similarity estimation, we complement our discus-
sion with encryption aspects. As shown in Section 4.2 and Eqs.
(9)–(12) in particular, the operations applied at the intra- and
inter-cluster level to extract pairwise similarities involve simple
additions and multiplications. This is also true for SWO-UnO in
Section 4.3 which inherits SWO-MuO properties in Eqs. (13)–(15).
Homomorphic encryption (HE) possesses the ability to serve high
security standards by encrypting the data (mote vector norms,
support values etc. in our scenarios), but preserve the ability to
perform operations (addition, subtraction, multiplication) directly
on encrypted data as if it is performed on original data. In our
resource constrained environment we are especially interested
in lightweight HE schemes that will not deplete motes’ residual
energy. Moreover, because of the aforementioned equations in
our SWO-MuO, SWO-UnO modes we should choose lightweight
schemes that support both addition and multiplication on en-
crypted data. According to [41,40] Domingo-Ferrer’s scheme sat-
isfies this pair of properties, while [40] builds a cloud-based data

processing model using it.6 Hence, in SWO-MuO and SWO-UnO,
at the sensor level norm values can be computed on the fly, before
column vectors or batches undergo randomization, get encrypted
and be transmitted to the clusterhead. Then, clusterheads use the
encrypted norm values, encrypt the (extracted using the privacy
enhanced RHP bitmaps according to our discussion in the previous
paragraph) similarity values for each pair of testedmotes and apply
the result to Eqs. (9)–(12) or Eqs. (13)–(15) for SWO-MuO and
SWO-UnO, respectively. Such lightweight HE schemes can also be
used in all operational modes so as to encrypt query parameters,
minimum support values per mote or other meta-data.

In conclusion, as our above extensive discussion demonstrates,
the algorithmic suite we propose in this work finds applications in
all major categories of IoT scenarios leveraging spatiotemporally
referenced mote measurements. Furthermore, our techniques can
be exploited under privacy and security constraints, at least to the
extend we exposed above, to prevent adversaries accessing sensi-
tive mote information both at the level of themote and for data in-
transit. Thus, the discussion in this section indeed strengthens our
claim of providing an omnibus outlier detection solution in WSN
settings.

8. Conclusions

The TACO framework (TWO-UnO operational mode in our
work) initially introduced in [4,5] was the first in the literature
of outlier detection techniques in wireless sensor networks to
provide a direct way of trading bandwidth for accuracy during
the outlier detection procedure in a straightforward manner. In
the current work we successfully confronted two important lim-
itations of the initial framework regarding sliding window as
well as multidimensional outlier detection support. We ended up
with a novel framework capable of supporting four operational
modes during outlier detection, which ensure its applicability to a
wide spectrum of application needs. Thus, we indeed introduced
a suite of methods composing an omnibus outlier detection so-
lution. Apart from doing so, we reasoned about the ability of our
framework to support a variety of similarity measures and we
extensively elaborated on the outlier quality, for all the presented
operational modes, versus the consumed bandwidth resources.
We presented an extensive experimental analysis which proved
the ability of the introduced TWO-MuO, SWO-MuO and SWO-UnO
operational modes to significantly reduce communication and en-
ergy consumptionwhile achieving high accuracy during the outlier
detection process. Eventually, we elaborated on the applicability of
our techniques in broader IoT (Industry 4.0, healthcare, smart grid,
smart city, environmental monitoring) scenarios and their ability
to satisfy privacy/security requirements.

Generic Conclusions: the accuracy of our techniques mostly re-
mains resilient to high compression ratios (1/8, 1/16 etc.) max-
imizing the potential for bandwidth preservation and network
lifetime maximization. These savings come both during the intra-
and inter-cluster communication phase of our algorithms in all
operational modes. The latter exhibits the effectiveness of the in-
network outlier detection procedure we foster. Remarkably, in
realistic scenarios, under message collisions and retransmissions,
the bandwidth and energy savings provided by our techniques
exceed their theoretically expected values, irrespectively of the
utilized operational mode. This is both because compressed data
consume less bandwidth during retransmissions and also because

6 Lightweight Attribute-Based Encryption (ABE) scheme proposals tailored for
IoT exist in the literature [59], but their focus is role-based access control on the
data. Therefore, they do not fit our focus in this section.
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they occupy communication channels for shorter time slots, thus
reducing collisions during transmissions by multiple motes.

Operational Mode-Specific Conclusions: in theory, our proposed
operational modes are expectedly more accurate with more strict
outlier definitions expressed by tighter similarity thresholds. In
practice, this behavior is more evident in SWO-MuO and SWO-
UnO due to the fact that potentially ‘‘bad’’ RHP vectors are reused
in window slides. On the contrary, TWO-MuO exhibits steady
accuracy evenwith looser outlier definitions. The accuracy of SWO-
MuO or SWO-UnO in theory is to deteriorate with larger window
sizes. However, in practice this rarely happens, due to the fact that
the more observations we include in the window, the more dis-
tinguishable sensors producing outlying measurements become.
SWO-MuO, SWO-UnO provide lower, compared to TWO-MuO, but
still significant communication savings. These savings are for SWO-
MuOmore dependent on the cardinality of themonitored attribute
set, while for SWO-UnO this dependence involves the fostered
batch size. In other words, SWO-MuO’s and SWO-UnO’s communi-
cation and energy savings are maximized the higher the attribute
set cardinality or the batch size becomes, respectively.

Rules of Thumb: if the application field requiresmultidimensional
outlier detection and can tolerate a more ‘‘lazy’’ (tumble adop-
tion) outlier detection scheme, the TWO-MuO operational mode
with a maximum (1/8, 1/16 or greater) compression ratio is the
right way to go. TWO-MuO is the most easily parameterizable
operational mode since its accuracy is not significantly affected by
the rest of the chosen parameters (similarity threshold, minimum
support, tumble size). When multidimensional outliers need to
be delivered in a continuous fashion with high frequency, SWO-
MuO is the suitable alternative. In looser outlier definitions posed
by the application field, to improve the accuracy of SWO-MuO, it
should preferably be used along with a more fine-tuned selection
of RHPvectors [27] and a greater (e.g. 8% or 10%)minimumsupport,
irrespectively of the chosen sliding window size. Similar rules
can be extracted for the unidimensional case, i.e., among TWO-
UnO introduced in prior work [4,5] and SWO-UnO discussed here.
Nevertheless, in general, SWO-UnO is accurate (compared to SWO-
MuO due to higher attribute homogeneity in the unidimensional
case) even for looser similarity thresholds. It thus avoids the need
for fine-tuned selection of RHP vectors. Both in SWO-MuO, SWO-
UnO 1/8, 1/16 or greater compression ratio should be used to
maximize network lifetime with only slight effect on accuracy.
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