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Zusammenfassung

Moderne Anwendungen und Datenkollektionen im Web werden heute oft durch

die neuartige Kombination existierender Anwendungen und Datenkollektionen er-

stellt. Häufig benutzen die dabei verwendeten Quellen unterschiedliche Bezeich-

ner, um dasselbe Objekt der realen Welt, wie z.B. einen Künstler, eine Konferenz

oder eine Organisation, zu identifizieren. Obwohl eine Vielzahl von Ansätzen

zur Duplikaterkennung (Entity Linkage) existieren, sind diese nicht zur effektiven

Bearbeitung der Daten im “Web of Data” mit dessen neuen Charakteristiken geeignet.

Zu diesen Charakteristiken zählen der hohe Grad der Heterogenität, der sich aus der

autonomen Erzeugung und den verwendeten Datenmodellen ergibt, die Unsicher-

heit in den Daten, welche durch die verwendeten Erzeugungs- und Extraktion-

sprozesse und den unterschiedlichen Grad der Zuverlässigkeit von Quellen bedingt

ist, sowie die unbeständige Natur der Daten, welche in der häufigen Interaktion

von Nutzern und externen Anwendungen mit den Daten begründet ist.

Diese Dissertation stellt eine neue, alternative Methode zur Duplikaterkennung

für Daten mit Heterogenität, Unsicherheiten und hoher Volatilität vor. Die Methode

beruht auf dem Konzept probabilistischer Verlinkungsdatenbanken, welche sowohl

die Entitäten der ursprünglichen Kollektionen als auch die möglichen Verlinkun-

gen zwischen den Entitäten, wie sie sich durch Techniken zur Duplikaterkennung

ergeben, abbilden.

Es wurden Lösungen für zwei zentrale Bereiche probabilistischer Verlinkungs-

datenbanken entwickelt. Der erste Bereich dient der Bearbeitung von Anfragen

zum effizienten Auffinden von Anfrageergebnissen. Der vorgestellte Ansatz zur

Anfragenbearbeitung berücksichtigt nicht nur die Entitäten und die probabilistis-

chen Verlinkungen, sondern auch die Unsicherheiten, welche in den Entitäten und

in der Erkennung von Duplikaten existieren.

Der zweite zentrale Bestandteil probabilistischer Verlinkungsdatenbanken, der

in dieser Arbeit betractet wird, dient der Verarbeitung der Entitäten zur Duplikaterken-
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nung, d.h. zur Erkennung probabilistischer Verlinkungen zwischen Entitäten. Zum

Umgang mit der Heterogenität und Volatilität der Daten führt dieser Teil auf inkre-

mentelle und adaptive Techniken ein, welche nicht nur die direkt verfügbare textuelle

Information, sondern auch die daraus ableitbare semantische Information berücksi-

chtigen. Sowohl die Effektivität als auch die Effizienz der entwickelten Algo-

rithmen wird durch experimentelle Evaluation für Daten mit den beschriebenen

Charakteristiken gezeigt.

Schlagworte: Datenintegration, Duplikaterkennung, Probabilistischer Verlinkungs-

datenbanken.



Abstract

A plethora of collections is nowadays created by merging data from a variety of

different applications and information sources. These sources often use different

identifiers for data that describe the same real world object, for example an artist,

a conference, an organization. The large number of existing entity linkage ap-

proaches are not designed for the characteristics of modern applications and Web

data. These includes data heterogeneity that is due to the lack of uniform standards,

uncertainty resulting in imperfections in the extraction process or the reliability

of the sources, and the volatile nature of the data due to constant modifications

through interactions with users or external applications.

This dissertation introduces a novel methodology to address the entity linkage

problem for heterogeneous, uncertain, and volatile data. The methodology is based

on a probabilistic linkage database, which is able to simultaneously capture the

entities from the original collection data and the possible linkages between entities,

as these are generated by a number of the existing entity linkage techniques.

The probabilistic linkage database consists of two main components. The first

is related to efficient query processing. The proposed query mechanism does not

only consider the entities and the probabilistic linkages, but it also handles the

uncertainty present in them.

The second component is related to the processing of the entity data for gener-

ating probabilistic linkages between entities. In order to handle the heterogeneity

and the volatile nature of the data, this part focuses on incremental and adaptive

techniques that consider not only the available textual information but also their

inferred semantics. Both effectiveness and efficiency of the introduced algorithms

are illustrated through an experimental evaluation that involves real world data.

Keywords: Data Integration, Entity Linkage, Probabilistic Linkage Database.
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Chapter 1

Introduction

The modern Web has grown from a publishing place of well structured data and

HTML pages for companies and experienced users, into a vivid publishing and

data exchange community in which everyone can participate, both as a data con-

sumer and as a data producer. Unavoidably, the data available on the Web became

highly heterogeneous, ranging from highly structured and semi-structured to highly

unstructured user-generated content, reflecting different perspectives and structur-

ing principles. The full potential of such data can only be realized by combining

information from multiple sources. For instance, the knowledge that is typically

embedded in monolithic applications can be outsourced, and thus used also in other

applications [DKP+09]. Numerous systems nowadays are already actively utilizing

existing content from various sources such as WordNet or Wikipedia. Some well

known examples of such systems include DBPedia, Freebase, Spock, and DBLife.

A major challenge during combining and querying information from multi-

ple heterogeneous sources is entity linkage, i.e., the ability to detect whether two

pieces of information correspond to the same real world object [Len02, EIV07].

The task is also important in data cleaning applications [DJ03] and can be found

in the literature under different names, such as merge-purge [HS98], entity iden-

tification [MVB08], deduplication [SB02], data matching [BMC+03, DLLH03],

reference reconciliation [DHM05], or resolution [BGMM+09]. This topic has re-

ceived considerable research attention with many interesting results relying on dif-

ferent methodologies, such as string similarity metrics [CRF03, BMC+03], entity

inner-relationships [KM06, DHM05], and clustering [BG04b].

1



2 CHAPTER 1. INTRODUCTION

Unfortunately, existing approaches for entity linkage assume that data is rela-

tively static. Thus, they typically perform data processing off-line in order to have

the results readily available at query time. In modern Web applications, where data

may at any time change not only their syntax or structure but also their semantics

[Vel08], these techniques are so effective or efficient [EIV07]. This calls for entity

linkage techniques that consider and deals with the special characteristics of such

data.

This dissertation introduces a novel approach for addressing the entity linkage

problem for heterogeneous, uncertain, and volatile data. Section 1.1 presents the

motivation for this work. Section 1.2 discusses the related challenges. Section 1.3

provides an overview of the approach introduced in this dissertation, and Section

1.4 summarizes its contributions. Section 1.5 presents the structure of this disser-

tation.

1.1 Motivation

Consider a system created for monitoring and integrating data from multiple het-

erogeneous data sources on the Web. The basic data exchange unit of the system

is an entity, composed of an identifier and a number of attribute name-value pairs

describing the properties of the real world object the entity represents.

The first part of Figure 1.1 illustrates three entities existing in the system. The

top two are referring to the story of Harry Potter and the Chamber of Secrets. The

first entity has been extracted through text analysis of Wikipedia articles. Since

entity extraction from text is not always accurate, the extracted entity attributes

are accompanied with some probabilities reflecting the amount of confidence on

the existence of these attributes. In the figure, this confidence is illustrated by the

numbers next to the attribute values. The second entity has been extracted from a

set of online bookstore databases. A number of these databases contain outdated or

inconsistent data, thus, the attributes of the entity are also probabilistic. Finally, the

third entity has been extracted by a corpus of news archives. For reasons similar to

those of the first entity, its attributes have also some confidence associated to them.

Since the system needs to handle volatile data, we expect continuous appear-

ance of new entities and these entities that need to be integrated with the data

already present in the system. The second part of Figure 1.1 illustrates two addi-

tional entities, which the system needs to integrate. Similar to the entities already

existing in the system, these two entities also have a set of attribute name-values
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title: Harry Potter and the Chamber of Secrets 0.6
starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer: J.K. Rowling 0.6
genre: Fantasy 0.6

title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
writer: J.K. Rowling 0.7

codename: The Big Blue 0.8
location: California 0.5

e2

e1

e3

e4

name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7e5

existing entities

new entities

Figure 1.1: A small fraction of the new entities that should be integrated with the
entities already existing in the system.

pairs, each with some confidence value.

A traditional entity linkage methodology [EIV07] would simply use a prede-

fined threshold and accept the merging of these entities when their computed simi-

larity is above this threshold. For the entities of Figure 1.1, this might mean merg-

ing the first two entities. In this situation, a new entity would be created using the

data from both entities, which might also involve the removal of some name-value

pairs when these are considered as redundant, conflicting, or replicas.

There are two main issues with the traditional entity linkage methodologies.

The first is that the system will return no results if asked to return an entity de-

scribed using some of the attributes that were removed during the merging. The

second is that the arrival of a new entity might cause the system to get into a stage

that does not accurately reflect reality, since the system is now limited to two op-

tions: either decide that the new entity describes the same real world object as

one of those that already exist in the system, or that the new entity is not among

the already existing entities. This unfortunately ignores the possible options that

would arise from reviewing any of the previous merging decisions. For instance,
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consider a system that has previously performed a merging between entities ea and

eb, and that it now needs to process the new entity ec. Merging entity ec with ea

might provide a better solution than mering it with the previously merging of ea

with eb. Of course, an alternative methodology for considering all possible options

would be to maintain the original entities and at each addition re-execute an entity

linkage technique over the original entities, ignoring the results from previous ex-

ecutions. Unfortunately, this approach has a prohibitively high computational cost

and typically can not be applied.

1.2 Challenges

An effective and efficient solution for the entity linkage problem needs to consider

the characteristics and challenges that appear in such scenarios. More specifically:

Challenge 1 - Volatile Data. Information spaces created by combining Web

data or extracted data describing resources constantly change and evolve through

interactions with users or external applications. Therefore, the knowledge avail-

able to the entity linkage techniques is subject to data reduction, addition, and

modification. This implies the need for supporting an incremental computation

and adaptation of the linkage information.

Challenge 2 - Heterogeneous Information. Effectively addressing the entity

linkage problem implies the ability to handle highly heterogeneous data. The most

common methodology to detect entity linkages is based on observing similarities

between the attribute values from the entities. However, this assumes that entities

describing the same real world objects would have the same, or at least similar, at-

tribute values. Another methodology relies on identifying and facilitating semantic

information, such as relationships between the entities. For example, co-authoring

relationship in publications increases the belief that two authors describe the same

object. Using a combination of these two methodologies can significantly improve

entity linkage.

Challenge 3 - Diversity in Requirements. A wide variety of applications can

be executed on top of integrated information spaces. Each application might have

different requirements for the entity linkage solution. For example, one applica-

tion might need only certain linkages (e.g., searching), whereas other applications

might accept uncertain linkages based on only few evidences (e.g., recommenda-

tions that will further process the results). Therefore, entity linkages should be

accompanied with a metric, indicating the belief that the corresponding entities de-
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scribe the same real world object, based on the evidence that is currently present in

the information space.

Challenge 4 - Data Uncertainty. Apart from the uncertainty in the linkage in-

formation, data uncertainty also appears for other reasons. One example is data un-

certainty that comes directly from the extraction process, due to the very low qual-

ity that typically accompanies the unstructured data of such applications [GS06].

Another example is the uncertainty introduced when building structures for pro-

cessing the data, e.g., social network analysis [AR07]. These approaches typically

affect the quality of data, which is then reflected through probabilities. Unfortu-

nately, incorporating uncertainty in a system may break a number of assumptions

that many entity linkage techniques rely upon. Thus, performing entity linkage

over uncertain data is a major challenge.

1.3 Summary of the Approach

The methodology we follow, takes into consideration heterogeneity, uncertainty,

and the volatile nature of the data. It is based on maintaining the linkage informa-

tion among the entities. As an example, let us consider the entities in Figure 1.1. It

is easy to see that the first two entities may represent the same real world object, for

instance the first entity may represent the actual movie whereas the second entity

a DVD with the respective movie. Given that we do not have enough evidence to

support a definite decision on whether these entities represent the same real world

object or not, we do not perform a merging between them. We compute and store

a probabilistic linkage connecting the two entities. The addition of the new entities

requires only the computation of the linkages or (in some cases) the recomputation

of the probability of existing linkages.

Figure 1.2 illustrates the computed linkages through the interconnecting dotted

lines and alongside their probabilities. As depicted in the figure, these entities have

three probabilistic linkages, two among the movie entities that are labeled e1-e3,

and one among the company entities that are labeled as e4 and e5. Once we reach

a final decision that two or more entities are linked, we can replace them by an

equivalent entity consisting of the union of their attributes.

Consider now a user looking for the IBM consulting corporation. As is typi-

cally the case in dataspaces [HFM06], queries are expressed as a series of attribute

name-value pairs. Thus the user sends the following query to the system:

〈name=“International Business Machines”, base=“New York”〉
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title: Harry Potter and the Chamber of Secrets 0.6
starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer: J.K. Rowling 0.6
genre: Fantasy 0.6

title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
writer: J.K. Rowling 0.7

codename: The Big Blue 0.8
location: California 0.5

name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7

e2

e1

e3

e4

e5

0.9

0.6

0.8

Figure 1.2: Entities and their probabilistic linkage information.

Clearly among the five entities e1, e2, e3, e4, and e5, only the fourth satisfies these

two conditions. Of course, since the attributes of the specific entity exist with

some uncertainty, specified by the respective probabilities, the existence of the

entity in the query answers should also be probabilistic. A significant amount of

research has been carried out in the area of the probabilistic databases [DS07b]

on specifying the semantics and on the development of efficient query answering

techniques for this kind of scenarios.

Assume now that a user is interested in the works of J.K. Rowling in the year

2002. She sends to the system the following query:

〈writer=“J.K. Rowling”, year=“2002”〉

None of the three entities in Figure 1.2 contain both attribute name-value pairs

as specified in the query, thus, any probabilistic database approach will return an

empty set as an answer. However, the linkage information between entity e1 and

e2 indicates that they may represent the same real world object. If they do, then

they can be both merged into one entity, say e12 that contains as attributes the union

of the attributes e1 and e2. That entity will satisfy both the conditions of the last
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query, and should be part of the answer set, even though it is not one of the three

entities that are actually stored in the repository.

In a similar situation, assume that the user sends the query:

〈writer=“J.K. Rowling”, genre=“Fantasy”〉

A complete answer to the query should take into consideration all the different

cases that may exist based on the entity linkages. In particular, a complete answer

should contain three entities, namely, entity e1, entity e3, and the entity e13 which

is the merging of entities e1 and e3. Each of these entities should of course be in

the answer set of the query with some degree of belief, based on the belief of the

linkages and the belief of the attributes writer and genre.

The answer set for this query, could also contain entities e12 and e123, which are

created by the merging of entity e2 with e1, and entity e2 with e1 and e3, respec-

tively. Including in the merging the attributes of e2 will create entities that have

additional attributes, such as date=2002. We consider such additional attributes as

redundant, since the user did not requested them through the query. Our basic prin-

ciple is that we do not want to produce results that are not required, and therefore

no merging should take place unless it is justified by the query given by the user,

the linkages, and the attributes composing the entities.

Our approach creates the entities mergings by using available entity linkages.

Since the linkages are probabilistic, for an effective query mechanism we need to

take into consideration all the different combinations that may occur. Each such

combination will partially contribute to the answer set. However, materialization

of all combination will lead to exponential increase of the data, which is inefficient

to generate and store. Instead, query processing at run time takes into considera-

tion the related probabilistic linkages, computes the different combinations, along

with their respective probability of existence, and then generates the answer set by

merging the data produced from each combination.

1.4 Contributions

The main focus of this dissertation is to efficiently and effectively address the en-

tity linkage problem as this appears in heterogeneous, uncertain, and volatile data.

This is achieved by allowing data integration systems to generate and maintain

probabilistic linkage information, and perform entity-aware query processing over

their data and thus retrieve answers to queries that reflect the corresponding real
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world objects. This methodology avoids pitfalls that may result from the one-time

a-priori merging decisions, as performed by traditional entity linkage techniques.

Furthermore, it can support highly volatile data more efficiently. The reason is

that since no merging decisions have taken place, the only updates required are on

the linkages related to new data incorporated in the system, or modified data. The

following paragraphs summarize the main contributions introduced in this disser-

tation. Each contribution is accompanied by the publications in which the specific

contribution was originally introduced.

I. Modeling Entities and Linkages

In an effort to address the entity linkage problem for volatile data, we introduce

a model for representing entities and linkages that aims at bringing together two

worlds: the world of entity linkage and the world of probabilistic databases. The

novelty of this data model is that it uses a generic entity-based representation model

for highly heterogeneous data that supports the simultaneous representation of pos-

sible linkages between entities alongside the original data, as generated by a num-

ber of the existing entity linkage techniques. This means that no data merging is

performed in advance, but the outcome of the entity linkage algorithms, i.e., the

pairs of entities possibly representing the same real world object with the belief

of that being true, are stored in the data. The outcome is a database that contains

uncertainty not only on the attributes of the entities, but also on their linkages.

This work was introduced in the following publications:

[INNV10] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, Yannis Vele-

grakis. On-the-Fly Entity-Aware Query Processing in the Presence of Link-

age. In Proceedings of the VLDB Endowment (PVLDB), Vol. 3, No. 1,

pages 429-438, 13-17 Sep. 2010, Singapore.

[INNV11] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, Yannis Vele-

grakis. LinkDB: A Probabilistic Linkage Database System. In Proceedings

of the ACM SIGMOD International Conference on Management of Data,

12-16 June 2011, Athens, Greece.

[Ioa09] Ekaterini Ioannou. Entity-Aware Query Processing for Heterogeneous

Data with Uncertainty and Correlations. In Joint EDBT/ICDT Ph.D. Work-

shop, March 2009, St.-Petersburg, Russia.
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[SI] Slawek Staworko, Ekaterini Ioannou. Management of inconsistencies in data

integration. Chapter to be included in Dagstuhl Follow-up Series on Data

Exchange, Integration, and Streams.

II. Entity Linkage Detection

In order to cope with the variations in the entity descriptions, we introduce tech-

niques for detecting the possible linkages between entities. Unfortunately, the typ-

ical situation is that we do not have enough evidences to support a definite decision

on whether the linked entities represent the same real world object or not. For

that reason, the linkage information among the entities is probabilistic. Therefore,

for each linkage we compute a probability that indicates our belief according to

the evidences currently available in the information space. The clear separation

of the entities and linkages enables the incremental update of linkages when new

information becomes available. The benefits of this methodology are further ex-

tended as the introduced techniques do not need to reprocess data for recomputing

linkages as would have been done in traditional approaches, but maintain internal

structures that can be updated to reflect the new data.

This contribution was introduced in the following publications:

[INN08] Ekaterini Ioannou, Claudia Niederée, Wolfgang Nejdl. Probabilistic En-

tity Linkage for Heterogeneous Information Spaces. In Proceedings of the

20th International Conference on Advanced Information Systems Engineer-

ing (CAiSE), pages 556-570, June 2008, Montpellier, France.

[IPSN10] Ekaterini Ioannou, Odysseas Papapetrou, Dimitrios Skoutas, Wolfgang

Nejdl. Efficient Semantic-Aware Detection of Near Duplicate Resources. In

Proceedings of the 7th Extended Semantic Web Conference (ESWC), pages

136-150, 30 May - 03 June 2010, Heraklion, Greece.

Furthermore, the following additional publications are related to this specific con-

tribution:

[MPC+10] Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demartini,

Julien Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, Wolfgang Nejdl.

Leveraging Personal Metadata for Desktop Search - The Beagle++ System.

In Journal of Web Semantics, Vol. 8, No. 1, pages 37-54, 2010.

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, Peter Fankhauser.

Efficient Entity Resolution for Large Heterogeneous Information Spaces. In
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Proceedings of the 4th International Conference on Web Search and Data

Mining (WSDM), February 2011, Hong Kong, China.

III. Query Answering under Probabilistic Linkages

We introduce a methodology to efficiently compute the answers for entity queries

relying on the introduced model that contains a set of probabilistic linkages. Query

answers reflect the entity linkage and entity representation information, with spe-

cial emphasis given to the computation of the probabilities of the possible worlds

based on the data and the matching uncertainty.

Generating entities by combining probabilistic linkages has several benefits.

First, it produces additional valid query answering results compared to those of

entity linkage and probabilistic databases, which cannot be simulated with previous

techniques. An interesting feature is that reasoning about the entity linkages is done

on the fly, meaning that some query results may not be explicitly represented in the

database but might be a product of the reasoning which is based on the data as well

as on the query conditions, i.e., by considering the union of all the attributes of the

structures to be merged with corresponding probabilities [WMK+09].

This work was introduced in the following publications:

[INV] Ekaterini Ioannou, Claudia Niederée, Yannis Velegrakis. Searching Web

2.0 Data through Entity-Based Aggregation. To be submitted at Communi-

cations of the ACM (CACM).

[INNV10] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, Yannis Vele-

grakis. On-the-Fly Entity-Aware Query Processing in the Presence of Link-

age. In Proceedings of the VLDB Endowment (PVLDB), Vol. 3, No. 1,

pages 429-438, 13-17 Sep. 2010, Singapore.

[INV10] Ekaterini Ioannou, Claudia Niederée, Yannis Velegrakis. Enabling Entity-

Based Aggregators for Web 2.0 data. In Proceedings of the 19th International

World Wide Web Conference (WWW), pages 1119-1120, 26-30 April 2010,

Raleigh, NC, USA.

[MBB+10] Z. Miklós, N. Bonvin, P. Bouquet, M. Catasta, D. Cordioli, P. Fankhauser,

J. Gaugaz, E. Ioannou, H. Koshutanski, A. Mana, C. Niederée, T. Palpanas,

H. Stoermer. From Web Data to Entities and Back. In 22nd International

Conference on Advanced Information Systems Engineering (CAiSE), pages

302-316, June 2010, Hammamet, Tunisia.
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[ISB+09] Ekaterini Ioannou, Saket Sathe, Nicolas Bonvin, Anshul Jain, Srikanth

Bondalapati, Gleb Skobeltsyn, Claudia Niederée, Zoltán Miklós. Entity

Search with NECESSITY. In Web and Databases Workshop (WebDB) co-

located with ACM SIGMOD, June 2009, Providence, Rhode Island.

1.5 Structure of the Dissertation

The organization of this dissertation is as follows. Chapter 2 presents and discusses

existing approaches that are related to the techniques presented in this dissertation.

Chapter 3 introduces and explains the data model, which includes the represen-

tation of entities and linkages, as well as the mechanism for dealing with data

uncertainty. Chapter 4 explains the mechanism for dealing with probabilistic link-

age information through entity-aware query processing. Chapter 5 introduces two

techniques for detecting linkages between entities and computing their probabili-

ties. The first technique is for detecting linkages using evidences collected from

the data. The second technique focuses on efficiently detecting linkages in RDF

data. Chapter 6 presents an entity aggregation framework that provides a complete

mechanism for addressing the entity linkage problem using the linkage detection

and entity-aware query processing. Finally, Chapter 7 concludes the dissertation,

and provides an overview of current and future work.
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Chapter 2

Related Work

The work presented in this thesis is closely related to the task of entity linkage,

which is used for identifying and merging entity referring to the same real world

objects. Typically, the entity linkages techniques compute some similarity between

the data that indicates the belief they have that this data are for the same object, and

then merge the data that have a similarity value exceeding a predefined threshold.

This whole process is performed offline, and thus at run-time query answering is

simply performed over the merged data. A significant amount of research propos-

als focusing on efficiently and effectively addressing this challenge already exist.

They can be found in the literature under different names, such as merge-purge

[HS98], deduplication [SB02], entity identification [MVB08], reference reconcili-

ation [DHM05], or entity resolution [WMK+09].

The existing approaches follow various directions to deal with entity linkage,

based of the causes of the entity linkage problem. More specifically, the main

causes can be summarized as follows:

Text variations. One of the most common source for the entity linkage problem is

the text variations, i.e., using similar string for the same objects. Variations

can appear due to introduced spelling mistakes, or due to the use of acronyms

(e.g., “ICDE” for ‘International Conference on Data Engineering”), or ab-

breviations (e.g., “J. Web Sem.” for “Journal of Web Semantics”).

Local knowledge. The lack of a global coordination for identifier assignment forces

each source to create and use its own identifiers for the entities. In addi-

tion, each source uses text values in entities in a way most adequate for its

purpose. For instance, in an entity representing a publication an author is

13
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representing by its email address, but in an entity representing a user of an

application the user maybe represented by her full name.

Evolving nature of data. Another source for the different entity descriptions is

the evolving nature of the data. As time passed, data describing the entities

is added, removed, or modified [RVMB09]. For example, the famous ex-lady

of the US was born as “Jacqueline Lee Bouvier” but this was later changed

to “Jackie Kennedy” and then to “Jackie Onassis”.

New functionality. Entity creation can be done by various tools. For example,

extractors that automatically or semi-automatically extract entities from re-

sources such as Web pages, content used in applications, and documents. In

many cases we also have the direct reuse of existing content (e.g., Wikipedia)

mainly through import of (partial) existing datasets for building new datasets

(see DBPedia, Freebase, Spock, and DBLife), as data is of interest not only

to the application by which it was created, but can also be reused by other

applications [DKP+09].

The following paragraphs present and discuss existing approaches grouped into

four categories according to the information used in the processing: (i) atomic sim-

ilarity methods for comparing strings (Section 2.1), (ii) similarity methods for com-

paring sets of strings (Section 2.2), (iii) methods incorporating inner-relationship

information (Section 2.3), and (iv) methods related to uncertain data manage-

ment (Section 2.4). A complete overview of the existing work in this domain,

can be found in surveys [DH05, GD05, EIV07] and related workshops/tutorials

[KSS06, OS99].

2.1 Atomic Similarity Methods

The first category includes methods that compute similarity between two entity

representations, where each representation is a single word or a small sequence of

words, e.g., “John D. Smith” vs. “J. D. Smith”, “Transactions on Knowledge and

Data Engineering” vs. “IEEE Trans. Knowl. Data Eng.”. The linkage and merging

of entity descriptions is performed when these methods detect high resemblance

between the text values found in the descriptions. Differences in strings (i.e., single

words or sequence of words) are a common situation that are typically resulted

from misspellings and naming variants due to the use of abbreviations, acronyms,

etc.
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The first group of methods that belong to the category with atomic similarity

methods are based on the characters composing the string. These methods com-

pute the similarity between two strings as a cost that indicates the total number

of the operations needed to convert the first string to the second string. The basic

method of edit distance, named Levenshtein distance [Lev66], counts the number

of character deletions, additions, and modifications that are required for converting

the first to the second string. The variations of this method extend it with additional

aspects, such as operation cost depending on the character’s location, and consid-

eration of additional operations, including open gap, and extend gap [Nav01]. The

Jaro [Jar89] computes similarity by considering the overlapping characters in the

two strings along with their locations, and it suitable to small strings, e.g., first and

last names. An extension of this method is the Jaro-Winkler [Win99] that gives

higher weight to matching prefix, which increase the applicability of the approach

to names. A second group of methods are the ones that compute the similarity

between collection of words. Known methods from this group are the Jaccard sim-

ilarity coefficient, and the TF/IDF similarity [SM86].

Fuzzy matching similarity [CGGM03] is another approach of this category.

It is a generalized edit distance similarity that combines transformation opera-

tions with edit distance methods. Another method is the Soundex similarity. This

method converts each word into a phonetic encoding by assigning the same code

to the string parts that sound the same. The similarity between two words is then

calculated as the difference between the corresponding phonetic encodings of these

words. Finally, [CRF03, BMC+03] describe and provide an experimental compar-

ison of various basic similarity methods used for matching names.

Although, the existing approaches are successful in identifying the similar

string, the idea of linking entities based on their string similarity is only partly

correct, since the concepts to which the context of these entities refer is totally

ignored. For example, consider two people with the exact same name. Using a

similarity method from this category would result in incorrectly linking the entities

of these people. For this reason, these methods are typically used only as part of

the initial steps of more sophisticated matching approaches, in order to identify

potential matches which are then further processed.
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2.2 Entities as sets of data

In contrast to the previous category, the methods of this category focus on dealing

with entities that are provided as sets of data. As such, these methods extend the

methods of the previous category since they combine basic string methods with

more complicated methodologies.

The first group of methods for this category are those that consider each rela-

tion (i.g., record) as an entity. The approaches suggested in [KMS04] and [Coh00]

concatenate all data composing each relation and create strings, which they then

compare using one of the string similarity methods. One of the most known meth-

ods of this category is the merge-purge [HS98], aiming in identifying whether two

relational records refer to the entity. Merge-purge considers every database rela-

tion (i.e., record) as an entity, and first sorts the relation using the different available

column names, uses the sorting to easy compare between similar information, and

then merges the records according to the found resemblances.

The approaches proposed in [TKM02] and [DLLH03] aim at matching enti-

ties by discovering possible mappings from one entity to another entity. More

specifically, in [TKM02] a mapping is identified by applying a collection of trans-

formations, such as abbreviation, stemming, and initials. For the same purpose,

Doan et al. [DLLH03] apply profilers, which are described as predefined rules

with knowledge about specific concepts. Profilers are created by various sources,

such as domain experts, learned from training data, or constructed from external

data.

Cohen et al. [CR01] use methods for string similarity (presented in the previous

category) to create techniques to adaptively modify the document similarity met-

rics. Li et al. [LMR05] also focus in handling multiple types of entities, addressing

the problem as this appears in the context of the text documents.

As noted in [EIV07], one mechanism for enhancing the processing efficiency is

data blocking. Instead of comparing each entity with all other entities, the entities

are placed in blocks and are compared only with the ones inside their block. The

challenge is to create blocks of entities that are most likely to refer to the same real

world objects. Relevant methods typically associate each entity with a Blocking

Key Value (BKV) summarizing the values of selected attributes and then operate

exclusively on it. The Sorted Neighborhood approach [HS95], for instance, sorts

entities according to their BKV and then slides a window of fixed size over them,

comparing the records it contains. The StringMap method [JLM03] maps the BKV
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of each record to a multi-dimensional Euclidean space, and employs suitable data

structures for efficiently identifying pairs of similar records. Alternatively, the q-

grams based blocking presented in [GIJ+01] builds overlapping clusters of records

that share at least one q-gram (i.e., sub-string of length q) of their BKV. Canopy

clustering [MNU00] employs a cheap string similarity metric for building high-

dimensional overlapping blocks, whereas the Suffix Arrays approach, coined in

[AO05] and enhanced in [dVKCC09], considers the suffixes of the BKV instead.

2.3 Facilitating inner-relationships

This category includes methods that identify linkages between two entity descrip-

tions by discovering and exploiting inner-relationships among entities. These inner-

relationships can be seen as links, or associations between the entities and parts of

the entity data. As an example consider co-authorship in publications, which a

widely used inner-relationships. By knowing that a publication has α, β, and γ

as authors, and another publication has β’, and γ as authors, we can increase our

belief that β describe that same author as β’.

To capture the inner-relationships found inside an entity collection, the meth-

ods of this category model the collection into a supportive structure. For instance,

the approach in [ACG02] uses dimensional hierarchies, and the approached in

[BG04a] and [KMC05] uses graphs. Ananthakrishna et al. [ACG02] exploit di-

mensional hierarchies to detect fuzzy duplicates in dimensional tables. The hier-

archies are build by following the links between the data from one table to data

other tables. Entities are matched when the information along these generated hi-

erarchies is found similar. Getoor et al. [BG04a, BG04b] model the metadata as

a graph structure. The nodes in this graph is the information describing the enti-

ties, and edges are the inner-relationships between entities. The algorithm uses the

edges from the graphs to cluster the nodes, and the clusters detected are then used

to identify the common entities.

In [KMC05, KM06], the entity collection is also modeled as a graph following

a similar methodology as the previous methods. These methods also generate other

possible relationships to represent the candidate matches between entities. The ad-

ditional relationships became edges that enhance the generated graph. Then, graph

theoretic techniques are applied for analyzing the relationships in the graph and de-

ciding the possible entity linkages. Other approaches follow a different methodol-

ogy to create their internal supportive structures. In [PD04], the nodes represent the
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possible matches between two entities (and not one node representing one entity)

and the edges the inner-relationships between the possible linkages, i.e., matches

between entities. The relationships from the structure are then used to decide the

existence of nodes (matches between entities), and information encapsulated in

identified matches is propagated to the rest of the structure.

Some approaches have been proposed in the area of metadata management.

The TAP system [GM03] uses a process named Semantic Negotiation to iden-

tify common descriptions (if any) between the different resources. These com-

mon descriptions are used to create a unified view of the data. Benjelloun et al.

[BGMM+09] identify the different properties on which the efficiency of such al-

gorithm depends on, and introduce different algorithms to address the possible

combinations of the found properties.

Another well-know algorithm is the Reference Reconciliation [DHM05]. Here,

the authors begin their computation by identifying possible associations between

entities by comparing the corresponding entity descriptions. The information en-

coded in the found associations is propagated to the rest of the entities in order to

enrich their information and improve the quality of final results. [AMNR+06] is

a modified version of the reference reconciliation algorithm which is focused on

detecting conflict of interests in paper reviewing processes.

2.4 Methods in Uncertain Data

Uncertain data management approaches deal with a variation of the entity linkage

problem. More specifically, they consider the existence of more than one entities

(modeled as relational relations) for the same real world object [RDS07, DS07c].

So, for each real world object the database contains a small set of possible entities,

each coming with a probability that indicates the belief we have that this is the

correct one.

Dong et al. [DHY07] investigate the use of the probabilistic mappings between

the attributes of the contributing sources with a mediated schema. Applying this

method on entities would have considered the possible mappings between the at-

tribute names as given by contributing sources with a mediated schema S . This

means that an attribute of entities α, β, and γ is mapped to an attribute from S

with a probability to show the uncertainty of each mapping. Querying the medi-

ated schema S is then based on these mappings. However, it does not really reflect

the expected answer, since the expectation is to merge the data of the entities that



2.4. METHODS IN UNCERTAIN DATA 19

describe the same objects and thus they should be merged accordantly. In fact, the

probabilistic schema mappings described in this approach, can become an input to

our approach by representing them as entity linkage information.

The approach in [AFM06] is more similar to the one presented in the thesis,

since the focus is not on the schema information but on the actual data. The authors

assume that the duplicate tuples for each entity are given. In our motivating exam-

ple (Chapter 2) this means that linkages do not have probabilities (i.e., we know if

they exist or not) and that all tuples describing alternative attributes have the same

identifier, e.g.,:

Entity Identifier Alternative Attribute Probability

idx a10 p1

idx a20 p2

The tuples that represent the alternative attributes are considered as disjoined. This

means that only one tuple for each identifier can be part of the final resulted entity.

Other related approaches are Dataspaces [HFM06] and Trio [ABS+06]. The

main focus of these approaches is to create database systems that support uncer-

tainty along with inconsistency and lineage. To some extend these systems also

deal with duplicate tuples and uncertain data. The part of these systems that is

responsible for providing correct answers over uncertain data which represent du-

plicated tuples faces similar issues as our approach. Our approach addresses more

challenges of heterogeneous data, mainly by considering linkage/matching on the

data (not only on schema information), and also correlations between entities.

Another important aspect of our approach is the efficient management of un-

certainty in data; a topic that has received a lot of attention recently. Dalvi and

Suciu [DS07a] used the notion of possible worlds to introduce query semantics for

independent probabilistic data and presented how to efficiently evaluate queries.

The approach by Sen et al. [SD07] moved towards defining and using different

correlations, for example that existence of one tuple implies or disallows the exis-

tence of another tuple. The methodology identified used in probabilistic databases,

for performing efficient query execution is also followed in our approach. We

however also extend this methodology to provide its incorporation into a two level

processing, i.e., generating possible words inside the generate possible worlds (as

explained in Chapter 3).
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Chapter 3

Probabilistic Linkage Database

This chapter introduces and explains the modeling of the information related to

addressing the entity linkage problem. To effectively model highly heterogeneous

information spaces we need a simple and flexible model. Strongly typed data mod-

els require full knowledge of the data schema, thus, they are not suitable for highly

heterogeneous data. XML had been a success story in this direction, but its strict

hierarchical structure caused some limitations, especially during metadata model-

ing [SV07]. For being able to represent relational, XML, RDF, and object oriented

data without significant loss of information, we have chosen to go with a graph-

based model that is typically used in dataspaces [HFM06], RDF [LC08], while it

is also aligned with the notion of concepts [DKP+09].

The model we use is based on the notion of an attribute, which is a unit de-

scribing some characteristics of a real world entity. Each attribute is composed of

a name and a value. More formally, assuming the existence of an infinite set of

identifiers O, an infinite set of names N and an infinite set of atomic valuesV, an

attribute is a pair 〈n,v〉, with n∈N and v∈V∪O. Let A=N×{V∪O} represent the

infinite set of all the possible attributes.

Definition 3.1. An information space IS is a finite set of attributes, i.e., IS⊆A.

These attributes correspond to the n resources included in the information space,

and thus IS =
⋃n

i=1attr(ri) where attr(ri) provides the attributes included in the in-

tegration system for resource ri.

The value of an attribute can be atomic, for example, a string or an integer, but it

can also be an identifier. The ability to use an identifier as an attribute value allows

the support of relationships. This enables the modeling of complex data models,

21
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such as the RDF data generated for describing desktop resources [MPC+10].

The resources included in the information space contain descriptions of en-

tities, which describe real world objects. For example, the data provided for a

publication resource will contain entities for describing the authors of the publica-

tion and the conference. Each entity has its own identifier, assigned to the entity

by the source that created it. Ideally, the same identifier should be used whenever

entities describe the same real objects. However, since the identifier assignment is

not globally coordinated, multiple identifiers are used for single real world entities.

Therefore, even if identifiers provide an appropriate formalism for distinguishing

entities, the entity linkage problem is still present (Chapter 2 ).

Our goal is to effectively and efficiently manage the entity linkage problem in

the information space, i.e., discover and merge the entities describing the same real

world object. To achieve this we introduce the probabilistic linkage database. Sec-

tion 3.1 introduces and explains how we model entities and linkages, and Section

3.2 how we deal with the data uncertainty.

3.1 Entities and Linkages

The fundamental component of our data model is the entity, a design artifact used

to represent a real world object. To model entities we adopt a flexible and proba-

bilistic approach. It has the ability to handle highly heterogeneous data, and after

its introduction in the context of dataspaces [DH07] started being used in applica-

tions. Its popularity is also based on its similarities to the human way of thinking,

which unlocks the potential of developing integration applications for the modern

web. A model based on similar ideas can also be found in the literature as concept

model [DKP+09]. Furthermore, the plethora of existing data structures, makes data

hard to describe to regular users. This, in combination with the fact that the users

often have vague ideas of what they are actually looking for, preferring a more ex-

ploratory nature of interaction with the integration systems, leads unavoidably into

a simple boolean query language with probabilistic answers.
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An entity is a data structure consisting of a unique identifier and a set of at-

tributes describing its characteristics. Since each entity is distinguished by its

unique identifier, for the rest of the document, the terms entity and entity identifier

will be considered equivalent.

Definition 3.2. An entity e is a tuple 〈id, A〉 where id∈O is the entity identifier and

A⊆A, finite, and referred to as the set of entity attributes.

To deal with the entity linkage problem we create and maintain a database that

is a collection of entities. Each entity is partially modeling some part of a real

world object through its corresponding attributes. For being able to identify the

possible modelings of the same object we also maintain a collection of supporting

evidences.

Definition 3.3. A supporting evidence s is a tuple 〈ai, a j, φ〉, where ai∈IS , a j∈IS ,

and φ a function that reports similarity between ai and a j.

As explained in Chapter 1, the new entities that will be given for integration

could describe the same real world objects as the entities already existing in the

information space. To overcome the absent of complete knowledge regarding the

entity matches, we use the collected supporting evidences to compute an entity

match P(ei=e j) for all pairs of entities in the information space. Each match ex-

presses the probability with which the specific entities correspond to the same real

world object, and we thus say that to two entities are linked. In the remaining

document, we will also use notation lei,e j to represent P(ei=e j).

Example 3.1. Consider again the first two entities from Figure 1.1 for time x, which

we will name entity eα and eβ. Both entities, i.e., eα and eβ, could describe the

same real world object. We represent the probability for this through P(eα=eβ).

As we show in Section 5.1, we compute this probability using supporting evi-

dences. Two examples for the specific probability are: s1=〈“writer: J. K. Rowl-

ing”, “writer: J. K. Rowling”, S tringS im(.)〉, and s2=〈“genre: Fantasy”, “genre:

Fantasy”, S tringS im(.)〉, where S tringS im is a string similarity function, e.g., Jaro

[Jar89] or Jaro-Winkler [Win99]. In this situation, the attributes from the two enti-

ties are identical, however this does not happens for all entities.
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Table 3.1: Notation used throughout Chapters 3-6.
Notation Description

ai=〈n,v〉 Attribute, i.e., a name-value pair
ri={a j} Resource (e.g., a publication), set of attributes

IS =
⋃n

i=1attr(ri) Information space
ei=〈id, A〉 Entity, i.e., an identifier and a set of attributes
〈ai, a j, φ〉 Supporting evidence

lei,e j=P(ei=e j) Linkage, i.e., possible match between two entities
D=〈E,L, pa,pl〉 Probabilistic linkage database

plw(D) Possible l-worlds for D
Lsp Linkage specification>

i Factor, i.e., pairwise linked entities

Definition 3.4. A linkage database is a tuple 〈E,L〉, where E is a finite set of entities

and L is a linkage assignment on E. A linkage assignment over a set E is a binary

relation L⊆E×E that is commutative, transitive, symmetric, and reflexive. Two

entities e1,e2∈E of a database 〈E, L〉 are said to be linked, denoted as le1,e2 , if

(e1, e2)∈ L. A maximal group of pairwise linked entities forms a factor.

A linkage assignment can be equivalently expressed either through explicit

enumeration of the binary relationships or through a set of groups of entities, with

each group representing a factor. For instance, given entities e1, e2, . . . , e5, the

set {{e1, e2, e3}, {e4, e5}} describes a linkage assignment with two factors. The first

factor consists of entities e1, e2, and e3, and the second of the e4, and e5. The al-

ternative representation is through the set of linkages that consists of the set of all

pairwise relationships in each factor.

Since two or more linked entities model parts of the same real world object,

they can be replaced by a third representing the information of both. In a linkage

database this action needs to be followed by the respective update of every refer-

ence to these entities found in linkages or attributes, to the newly created entity.

Definition 3.5. A merge of a set of entities e1, e2, . . . , en, , denoted as merge(e1,

e2, . . . , en), is a new entity enew=〈id, A〉 where id is a new identifier and A=∪n
i=1Ai,

with Ai representing the attributes of the entity ei.

The result of a merge m of entities e1,e2,. . . ,en into enew in a linkage database D, is

a new linkage database D′ constructed by:

1. eliminating from D all entities e1,e2,. . . ,en, introducing entity enew,
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2. for k,m=1..n eliminating all linkages of the form (ek, em),

3. replacing any linkage of the form (ek, e) (respectively (e, ek)) with (enew, e)

(respectively (e, enew)), and

4. replacing every entity attribute of the form 〈na, ek〉 with 〈na, enew〉. This

relationship between D and D′ is denoted as D
m
→D′.

The core of a linkage database D is a database Dc such that there is a sequence m1,

m2, . . ., mm of merge operators such that D
m1
→D1

m2
→ . . .

mm
→ Dc and no other merge

is possible on Dc.

By definition, the set of linkages in a core is always empty. It can be shown that

the core of a linkage database is always unique but different linkage databases may

have the same core. We now show that the core of a linkage database Dc is always

unique as derived from D through a sequence of merge operators, i.e., D
m1
→D1

m2
→

. . .
mk
→ Dc. The proof is by induction on the results for the size of merge operators

with the smallest number.

Hypothesis: Let E denotes the entities in D, i.e., {e1,e2,. . . ,en}. We have to

perform two merge operators, merge m1 on the entities in S a that results in entity

ea, and merge m2 on the entities in S b that results in entity eb.

Induction base: Entity sets S a and S b are subsets of E, and by definition

the entities in the merge operators are mutually exclusive, so S a∩S b={}. The two

possible sequences are as follows:

(1) D
m1
→ D-S a∪{ea}

m2
→ D-S a∪{ea}-S b∪{eb} =D-S a-S b∪{ea,eb}

(1) D
m2
→ D-S b∪{eb}

m1
→ D-S b∪{eb}-S a∪{ea} =D-S a-S b∪{ea,eb}

Both sequences result in the same linkage database.

Induction step: We now show that if the hypothesis holds, then it also holds

for an arbitrary number of merge operations. So, applying a set merge operators M

on a linkage database D in any sequence produces the same core linkage database

Dc.

Let {m1, m2, . . ., mk} denote an initial merge sequence. We can create a new

sequence M′ by swapping two nearby merge operators insider M, i.e., {. . ., mi+1,

mi, . . .}. Given the induction hypothesis, we know that the resulted Dc will be the

same. With iterative swapping of merge operators in the created sequence, we can

generate various sequences (and eventually all possible sequences), with each one

of this sequences resulting in the same Dc. �
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e2

e3

title:“Harry Potter and the…”

starring:“Daniel Radcliffe”α10

α9

starring:“Emma Watson”

writer:“J.K. Rowling”α12

α11

genre:“Fantasy”α13 title:“Harry Potter and the…”

year:“2002”α22

α21

starring:“Daniel Radcliffe”

starring:“Emma Watson”α24

α23

title:“Harry Potter…”α31

genre:“Fantasy”α32

writer:“J.K. Rowling”α33

…α30
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Figure 3.1: A fraction of a probabilistic linkage database, including some of the
entities and linkage information that were illustrated in Figure 1.2.

3.2 Dealing with Uncertainty

To capture the uncertainty that may exist on the data, we adopt and extend the idea

of the probabilistic databases. First, we associate to each entity attribute a value be-

tween 0 and 1. In the absence of linkages, this results into a traditional probabilistic

database [DS07b]. A probabilistic database D represents a set of possible worlds,

each being a database in which only a fraction of the attributes in D are present in

each entity. An attribute probability indicates the likelihood that an attribute1 is

present in a randomly selected possible world. In the presence of linkages among

the entities, we have a probabilistic database with linkage relationships. A prob-

abilistic database with linkage relationships is also representing a set of possible

databases, i.e., a set of possible worlds. This set is the set of possible worlds of its

core.

1By abuse of terminology, the term attribute refers to the pair attribute name-attribute value.
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title: Harry Potter and the Chamber of Secrets 0.6
starring: Daniel Radcliffe 0.7
starring: Emma Watson 0.4
writer: J.K. Rowling 0.6
genre: Fantasy 0.6
title: Harry Potter and the Chamber of Secrets 0.7
date: 2002 0.8
starring: Daniel Radcliffe 0.5
starring: Emma Watson 0.9

title: Harry Potter and the Chamber of Secrets 0.8
genre: Fantasy 0.8
writer: J.K. Rowling 0.7

codename: The Big Blue 0.8
location: California 0.5
name: International Business Machines 0.9
base: New York 0.7
date: 2002 0.7

e12

e3

e45

Figure 3.2: The core of the l-world of the database in Figure 1.2 generated by the
linkage specification {le1,e2 , le4,e5}.

We push the idea of the probabilistic databases beyond the traditional defi-

nition, by introducing uncertainty also on the linkages among the entities. This

uncertainty exists naturally from the entity identification or deduplication tech-

niques. The result is a new form of database, referred to as a probabilistic linkage

database, which is a linkage database with probabilities associated on its linkage

relationships and entity attributes.

Definition 3.6. A probabilistic linkage database is a tuple 〈E,L, pa,pl〉, where

E is a set of entities, L is a linkage assignment on E, and pa, pl are attribute and

linkage probability assignment functions respectively. In particular, pl|L7→[0, 1]

and pa|B7→[0, 1] with B={a | ∃〈id,A〉∈E ∧ a∈A}.

Example 3.2. Consider again the entities from Figure 1.2. The probabilities shown

in the figure correspond to the attribute pa and linkage pl probability assignment

functions. An alternative illustration of the corresponding probabilistic linkage

database for a fraction the entities and linkage information is shown in Figure 3.1.
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The Attributes table contains the list of the attributes of the entities in the database.

Table Entities records the assignment of attributes to entities along with their prob-

ability value. Tables Entities and Attributes contain all the information needed to

construct the probabilistic entities of the database. The linkage information among

these entities is recorded in the Linkage table.

Due to the probabilities on the linkages, a probabilistic linkage database models

a number of different probabilistic databases with linkage relationships. Each such

database is generated from the probabilistic linkage database by selecting a fraction

of its linkages. We refer to these probabilistic databases with linkage assignments

as possible linkage worlds, or possible l-worlds for short. The set of all possible

l-worlds of a probabilistic linkage database D is denoted by plw(D).

A possible l-world of a probabilistic linkage database is specified by a link-

age specification which determines what linkage relationships should be kept and

what should be dropped. Not all the specifications are semantically meaningful.

For instance, a specification that accepts a linkage between entities e1 and e2, and

between e2 and e3 but not one between e1 and e3 is not semantically meaningful

since the latter contradicts the first two from which it can be inferred that e1 and e3

are linked due to the transitivity property.

Definition 3.7. Given a probabilistic linkage database D=〈E,L, pa,pl〉, a linkage

specification is a linkage assignment Lsp⊆L such that ∀x∈Lsp: pl(x),0. The

boolean expression of a linkage specification is the expression
∧

1,n ck, where

ck =

 x , y if (x, y)∈L ∧ (x, y)<Lsp

x = y if (x, y)∈Lsp

A linkage specification is invalid if its boolean expression is always false.

As an example, consider a database with a linkage assignment L={le1,e2 , le2,e3 ,

le1,e3}, and a linkage specification Lsp={le1,e2 , le2,e3}. Independently of what the

probabilities of the linkages are, the boolean expression ofLsp is (e1=e2) ∧ (e2=e3)

∧ (e1,e3) which is always false, thus the linkage specification is invalid. In our

work we consider l-worlds constructed by valid linkage specifications only. By

definition, given a probabilistic linkage database, and a possible l-world of it, there

is only one linkage specification defining this possible l-world.

We will use the symbol
>

i to refer to the i-th factor, and Lsp>
i

to denote all the
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probabilistic
linkage database

probabilistic database
with linkages

(a possible l-world)

linkage
specification

...

probabilistic database
(the core)

Core 
computation

regular database
(a possible world)

attribute
selection

...

Figure 3.3: The different kinds of probabilistic databases.

possible linkage specifications between its entities. The k-th assignment in Lsp>
i

is

denoted by Lsp>
i

(k). Since the factors are independent of each other, the probability

of a possible l-world W can be computed by the product of the probabilities of the

factor assignments:

Pr(W) =

n∏
i=1

Pr(Lsp>
i

(.)) (3.1)

Example 3.3. Consider the probabilistic linkage database of Figure 1.2 and the link-

age specification {le1,e2 , le4,e5}. The specification generates a possible l-world that

is exactly as the database illustrated in Figure 1.2, but without the probabilities on

the dotted lines and without the dotted lines between entities. Its core will be the

one illustrated in Figure 3.2. Entity e12 is the result of the merge of e1 and e2, while

entity e45 is the result of the merge of entities e4 and e5. Note that our model allows

duplication on the attributes, thus, the fact that the same attribute name/value pair

appears twice in an entity is not a problem. Elimination of this kind of duplication

and consideration of dependencies among the attributes can be handled at a later

stage.

Figure 3.3 provides a graphical explanation of the relationships among the dif-

ferent types of databases defined here. As shown, by starting from the probabilis-

tic linkage database and applying the different possible linkage specifications, we

generate a number of probabilistic databases with linkages, which are also named

possible l-worlds. Through the core computation, each of this possible l-world is

mapped to a probabilistic database. By selecting the attributes in a probabilistic

database, we generate a number of possible worlds, which are basically the reg-
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ular databases and correspond to the entities in the original probabilistic linkage

database.

Our data model and approach can be applied on the results of various entity

linkage techniques and not just the ones introduces in this dissertation (Chapter 5).

Therefore, it is important to note here that, in general, traditional entity linkage

techniques measure beliefs. Some recent works explain how to turn these beliefs

into probabilities [AFM06, DHY07, EIV07]. We consider this task outside the

focus of the current work. We assume that this information has been computed

by some data analysis tools [BNV07] or some other form of linkage discovery al-

gorithms [DHY07], and has been provided to our framework as input. Another

important note is regarding the meaning of a probabilistic linkage between two

entities. A linkage represents the belief that the two entities are linked, indepen-

dently of any other third entity. It is not a global belief. This means that through

different linkage paths, different linkage beliefs may be computed. For instance,

consider the simple example of three entities e1, e2 and e3, with the following link-

ages between them: le1,e2=0.3, le2,e3=0.5 and le1,e3=0.8. Through transitivity, from

the linkages le1,e2 and le2,e3 , it can be inferred a belief that entity e1 and e3 are linked

with probability 0.3× 0.5=0.15 which is different from the 0.8 direct linkage le1,e3 .

The way all these different probabilities are combined together to form the global

belief of linkage between e1 and e3 is up to the query mechanism. It can be, for

instance, the maximum value, their sum, or something else. In our system, this

situation is taken care through the probability computation of the factor, that will

be presented later.

For a query language we have adopted a flexible formalism that covers the

needs of the emerging case of concept databases [DKP+09]. In particular, a query

is a conjunction of attribute name-value pairs in which the user describes the char-

acteristics, i.e., attributes, that the retrieved entities are expected to satisfy. An an-

swer to a query is a set of entities. Consider a probabilistic linkage database D, and

a query Q:a1∧. . .∧an, with each ai being an expression of the form namei=valuei.

An entity e is in the answer set of Q if there is a possible world W of a probabilistic

database Dp, such that Dp is the core of a possible l-world WL of the database D,

entity e is in W and it contains an attribute namei with value valuei for every i=1..n.

In other words, the answer to a query is the union of the answers over all the pos-

sible worlds of all the possible l-worlds. Each entity in the answer set of a query is

accompanied with a probability, which represents the belief we have that this entity

will be selected among all the possible worlds of all the possible l-worlds of the
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probabilistic linkage database. This probability is computed based on the attribute

and linkage probabilities.

3.3 Summary

In this chapter we introduced a generic representation model for highly heteroge-

neous data that supports the simultaneous representation of the same real world

object under different formats. The model is based on the concept of entity which

records its information through a number of attribute name-value pairs. The model

probabilistic that can record uncertainty not only on the data values but also on the

linkages among the entities.
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Chapter 4

Dealing with Probabilistic
Linkages

In this chapter we introduce entity-aware query processing that is responsible for

the evaluation of a query Q over a probabilistic linkage database 〈E,L,pa,pl〉. The

semantics of query answering as presented and explained in Chapter 3, suggest an

evaluation strategy that consists of the computation of all possible l-worlds, and for

each such l-world the computation of its possible worlds, and then an evaluation of

the query Q over each such world. For each entity in the answer set, the number of

its appearances in the possible worlds can be computed to determine its probability.

It is clear that such an evaluation is prohibitively expensive both in terms of space

and time.

Instead of the brute-force evaluation, we propose here an alternative evaluation

strategy that is based on a novel technique that avoids high computational cost and

requires no materialization of worlds. The general high level idea, may seem to

be similar to the evaluation of queries in probabilistic databases [SD07], but the

existence of linkages makes the problem fundamentally different. Existing models

for correlated tuples in probabilistic databases [SD07], for instance, cannot handle

this situation. Despite the correlation they support among tuples, they still consider

the tuples independent structures and manage them as such. In our case the linked

entities are merged into one.

A distinguishing feature of our approach is that it restricts the computation to

only those possible l-worlds and their corresponding linkage specifications that are

meaningful for the query at hand. As a consequence, it is not simply the entities in

the answer set that depend on the query, but also their structure, i.e., the attributes

33
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Algorithm 4.1: Entity-Aware Query Evaluation
Input: Query Q
Output: Set R of Entities satisfying query conditions

1 LA← findRequiredLinkageAssignments(Q);
2 PLW ← ∅;
3 R← ∅;
4 foreach la ∈ LA do
5 W ← findPossibleLWorlds(la);
6 foreach w ∈ W do
7 w.prob← calculateLWorldProbability(la);
8 PLW ← PLW ∪ {w};
9 end

10 foreach plw ∈ PLW do
11 E ← evaluateQuery(plw, Q);
12 foreach e ∈ E do
13 e.prob← combineProb(e.prob, plw.prob);
14 R← R ∪ {e};
15 end
16 end
17 end

they contain: adding an extra condition to a query may trigger the consideration

of additional linkage specifications, which —in turn— may result in additional at-

tributes for the entities in the answer set. This feature has two major benefits.

First, it makes the whole process computationally cheaper, since only the required

merges take place. Second, it avoids overwhelming the user with answers contain-

ing long lists of attributes originating from different possibly linked entities that

are outside the users’ interests.

Algorithm 4.1 sketches an overview of query evaluation. The algorithm does

not generate the possible l-worlds, but identifies ans uses only those related to the

query that should be processed. The steps of the algorithm are listed here, and

explained in more details in the remaining of this chapter:

1. We build an index on all the factors (Section 4.1).

2. Since there is a one-to-one correspondence between possible l-worlds and

linkage specifications, and between linkage specifications and entity merges,

we start by finding the entity merges required in order to generate an answer

to the query at hand (Section 4.2)
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3. From the merges we find the linkage assignments that need to be considered,

and from these assignments the possible l-worlds. Then the probability of

each possible l-world is computed (Section 4.3).

4. Finally, the possible worlds of each l-world are generated alongside their

own probability, which is combined with the probability of the respective

l-world and then included in the answer set of the query (Section 4.4).

4.1 Representing & Indexing Factors

A commonly used approach [AKO09, DS07b, RS08, SD07] in answering queries

over probabilistic data is to partition the data into a series of disjoint/independent

groups. These groups can be found in the literature under names such as factors

[SD07] or components [AKO09]. The possible combinations of these groups gen-

erate all the possible worlds.

This idea is not directly applicable to our case. The transitive property of

linkage may generate additional correlation, i.e., dependencies, that are equally

important for the correct identification of the possible worlds.

We do, however, follow a similar idea to the one of managing uncertain data

with correlations [SD07], and as a first step, we divide the set of entities into sets

of connected components, i.e., factors (Definition 3.4). To compute all possible

l-worlds of a database, we need to consider all the possible valid linkage speci-

fications. This number can easily get large to make the computation intractable.

Based on the fact that no linkage exists between entities in different factors, we can

improve the situation by considering each factor independently.

Each possible l-world is based on some linkage specification within each fac-

tor. Thus, the set of possible l-worlds can be derived by combining the alternative

linkage specifications withing each factor.

plw(〈E,L, pa, pl〉) = L
sp>
1
× L

sp>
2
× . . . × L

sp>
n

The probability of a generated l-world is computed using Formula 3.1, and is

based on the assignments of its linkage specifications. The probability of assign-

ment Lsp>
i

(k) is based on the probabilities of the linkages it uses. We compute it

by considering only the linkages that can not be derived, and thus use set M⊆Lsp>
i

that does not include more than once the same information. This probability is
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computed as
∏

li∈M ( pl(li) ) ·
∏

li∈(Lsp−M) ( 1 - pl(li) ). In this work, we selected to

remove linkages that had a lower probability than their corresponding derived one.

However, other options can also be incorporated.

Example 4.1. In the database of Figure 1.2, the set of entity linkages is L = {le1,e2 ,

le1,e3 , le4,e5} in which two independent factors can be identified:
>

1 = {e1,e2,e3} and>
2 = {e4,e5}. The first contains entities e1, e2, and e3 with linkages Lsp={le1,e2 ,

le1,e3}, and the second contains e4 and e5 with linkages Lsp={le4,e5}. The sets of

possible linkage specifications with the respective probabilities of the l-world they

specify are:

Factor
>

1 = {e1,e2,e3} Factor
>

2 = {e4,e5}

L
sp>
1

(1)={le1,e2 ,le1,e3} 0.9×0.6=0.54 L
sp>
2

(1)={le4,e5} 0.8

L
sp>
1

(2)={le1,e2} 0.9×(1-0.6)=0.36 × Lsp>
2

(2)={} (1-0.8)=0.2

L
sp>
1

(3)={le1,e3} 0.6×(1-0.9)=0.06

L
sp>
1

(4)={} (1-0.9)×(1-0.6)=0.04

Considering all the possible combination of the above individual linkage specifica-

tions of factors, the linkage specifications of the whole database can be constructed.

Each such specification, specifies a possible l-world. The following table provides

these l-worlds (through the linkages that each one considers) alongside the respec-

tive entity merges that need to take place in the computation of the core of the

l-world. The meaning of the notation e≡e′ is that in the core computation of the

respective l-world the merge of entities e and e′ needs to take place.

Possible l-world Required Merges Probability

I1= {le1,e2 , le1,e3 ,le4,e5} e1≡e2≡e3, e4≡e5 0.54 × 0.8 = 0.432

I2= {le1,e2 , le1,e3} e1≡e2≡e3, e4, e5 0.54 × 0.2 = 0.108

I3= {le1,e2 , le4,e5} e1≡e2, e3, e4≡e5 0.36 × 0.8 = 0.288

I4= {le1,e2 } e1≡e2, e3, e4, e5 0.36 × 0.2 = 0.072

I5= {le1,e3 , le4,e5} e1≡e3, e2, e4≡e5 0.06 × 0.8 = 0.048

I6= {le1,e3} e2, e1≡e3, e4, e5 0.06 × 0.2 = 0.012

I7= {le4,e5} e1, e2, e3, e4≡e5 0.04 × 0.8 = 0.032

I8= {} e1, e2, e3, e4, e5 0.04 × 0.2 = 0.008

The sum of the probabilities of the possible l-worlds in the above table is 1. In

certain cases, the sum could have been less. This is because of the fact that certain
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linkage specifications are not valid and are not considered. This would have been

the case in the specific example, for instance, if there was also a linkage between

entities e2 and e3.

To avoid recomputing the factors every time, we create an index structure that

is dynamically maintained. The index is based on the idea of equivalence classes.

Actually, each factor is an equivalence class. When the data is modified and new

linkages are introduced or old are eliminated, changes occur on the equivalence

class memberships, and thus on the factors.

4.2 Deciding the Entity Merges

Clearly, not all the possible l-worlds need to be created every time a new query

needs to be answered. If the core of a possible l-world contains no entity that

satisfies all the attributes requested in the query, then it is certain that every possible

world of the core will return no answer to the query. To avoid these l-worlds, we

exploit the list of factors that have been precomputed and indexed. From all the

possible factors, only those that for every attribute mentioned in the query, contain

at least one entity satisfying that attribute, are considered.

The above step already provides a considerable reduction to the number of

linkages and entities that need to be processed. However, merging all the enti-

ties in each of the selected factors may result into entities with a large number of

attributes. We exploit the linkage specifications to push the optimization even fur-

ther by considering only the linkage specifications of each factor that are between

entities satisfying at least one attribute from those in the query. Furthermore, it is

required that the union of the attributes of the factor entities involved in the link-

ages of the linkage specification to be a superset of the set of attributes in the query.

In practice the above selections and the merges are actually computed in one step.

Algorithm 4.2 provides the steps we follow. For each query attribute we create

a set Ei with all the entities satisfying the specific attribute. Then we create the

cartesian product of these sets, with the extra requirement that the entities should

belong to the same factor. Since an entity may belong to more than one Ei set, we

involve a duplicate elimination step at the end.

Example 4.2. Consider the query Q: starring=“Emma Watson” ∧ date=2002 on

our usual probabilistic linkage database example of Figure 1.2. Only entities e1 and
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Algorithm 4.2: Generate Entity Merges

Input: Query Q := 〈a1, a2, . . . , ak〉, Database 〈E,L,pa,pl〉

Output: Entity Merges M
1 foreach ai in Q do
2 Ei ← {e | e=〈id, A〉 ∧ e∈E ∧ ai∈A};
3 end
4 N ← {(e1, . . . en) | ∀i=1..n: ei∈Ei ∧ ∀i=2..n: f actor(ei−1)= f actor(ei) };
5 M ← {eliminateDuplicates(m) | m ∈ N} ;

e2, both belonging to factor
>

1, satisfy the first attribute starring=“Emma Watson”,

thus, the list E1={
>

1−e1,
>

1−e2} is constructed. Similarly, the list E2={
>

1−e2,
>

2−e5}

is also constructed for the attribute date=2002 of the query. The cartesian product

of these two lists, with the additional condition of agreement on the factors gives

the pairs: 〈
>

1−e1,
>

1−e2〉 and 〈
>

1−e2,
>

1−e2〉 which becomes 〈
>

1−e2〉. This suggest

one merging of e1 and e2 and one that considers e2 with no merging. Both make

sense since we cannot distinguish between the attribute starring=“Emma Watson”

of e1 and that of e2. However, notice that although e3 also belongs to factor
>

1, it is

not considered, since it contains no attribute that has been asked by the query.

4.3 Computing l-world probabilities

Having decided the merges that need to be performed for satisfying the given query,

the next step is to compute the probabilities of the respective l-worlds. Equation

3.1 under the conditions from a merge that needs to take place, becomes:

Pr(I|cm) =

m∏
i=1

Pr(Lsp>
i

| cm) (4.1)

where cm are the conditions describing merge m. Recall, however, that a merge

may be true in many possible l-worlds. There are two alternatives that one can

follow. The first is to compute the probability of the merge as the sum of the

probabilities of all l-worlds that satisfy this merge. The second is to compute and

consider only the maximum of these probabilities. The latter requires significantly

less computation time, since it only needs to identify the l-world with the highest

probability. For systems that simply use that probability as a ranking mechanism

for the entities before displaying them to the user, this second option is typically

sufficient.
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The algorithm for computing the maximum probability is based on the algo-

rithm for finding shortest paths in graphs. In particular, provided the entity linkages

L
sp>
i

, we generate a weighted undirected graph G as follows: every entity partici-

pating in a linkage of lei,e j becomes a node of the graph. Each linkage lei,e j becomes

an edge that connects the nodes representing entities ei and e j. The weight of such

an edge is given by the probability of the respective linkage.

An entity merging merge(e1,e2,. . . ,en) corresponds to a spanning tree that con-

nects all entities e1,e2,. . . ,en. Computing the merging that maximizes the prob-

ability is similar to computing the maximum connected component of the graph

that has the highest total probability (i.e., multiplication of the probabilities of its

edges). Since the nodes of the graph correspond to the entities of a factor, they are

all connected, thus, the maximum connected component will include all the nodes

of the graph. To compute it, we rank the edges in decreasing order of their linkage

probability. Initially, all the entities (i.e., nodes) are marked as not-visited. The

highest ranked edge is first selected and the two nodes it connects are marked as

visited. Then as a list of edges is considered the subset of the edges that have one

endpoint marked visited and one non-visited. The one with the highest probability

is selected and its non-visited endpoint is marked as visited. The same step is re-

peated until all the nodes in the graph have been marked as visited. The probability

of the merge is the multiplication of the probabilities of the edges that have been

used in this process, and by construction this probability is the maximum.

4.4 Possible worlds and their probabilities

Each possible world from an l-world essentially represents a different combina-

tion over the attributes of the entities participating in a specific l-world. For in-

stance, consider the data in Figure 3.2, and in particular the attributes involved in

merge(e1,e2). The entity merge(e1,e2) needs to include all attributes from entities

e1 and e2, as shown in Figure 4.1. Two issues need to be taken into consideration.

One is the probabilities of the attributes, specifically in the case of duplication, and

the other is the dependencies that may exist among them.

The attributes that appear in real world datasets are not always independent.

The correlations (i.e., dependencies) between attributes that need to be considered

in attribute merge, strongly depend on the nature of the sources and their datasets.

Our framework is able to handle such correlations in a uniform manner. The fol-

lowing paragraphs provide more details for generating worlds with two possible
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Table 4.1: Possible worlds for merge(e1≡e2) for exclusive attributes.

aid. name value p
• a10 starring Daniel Radcliffe 0.7
� a11 starring Emma Watson 0.4

a12 writer J.K. Rowling 0.6
a13 genre Fantasy 0.6
• a20 starring Daniel Radcliffe 0.5
� a21 starring Emma Watson 0.9

Possible Worlds
(1) (2) (3) (4)
a10 a20 a10 a20
a11 a11 a21 a21
a12 a12 a12 a12
a13 a13 a13 a13

collections:

A. Independent Attributes One option is to assume no correlation and thus no

restrictions on which attributes to include in the resulted entity merge. This

case results is only one world given by the union of all attributes:

merge(e1, . . . , en) = 〈id′,∪n
i=1ei.A〉

B. Exclusive Attributes In certain cases, the attributes originating from different

entities participating in the entity merge are exclusive. This requires that only

one occurrence of such an attribute to be in the entity resulted by the merge.

A typical example of such an attribute are the distinct attribute names, e.g.,

a person can have only one name. Other examples are the attributes with the

same name but similar (semantically or syntactically) values, e.g., attributes

a11 and a21 from Figure 4.1. A simple method is to cluster the exclusive

attributes from each entity, i.e., M = {{e1.αi, e1.α j, . . .}}. We can then use

this set to generate worlds with these correlations:

merge(e1, . . . , en) = 〈id′, A〉,where

A ⊆ (M1 × M2 × . . . × Mm) ∪ {α | α < ∪m
i=1Mi.α}

The overall probability of a possible world depends on the probability of the

attributes included or not included in the world. It is computed as the product of

probability pα when attribute α is part of the world and (1 − pα) when attribute α

is not part of it:
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Table 4.2: Linkages in the Cora datasets.

Entity Linkages (under threshold t)
t=0.52 t=0.58 t=0.62 t=0.68 t=0.72 t=0.78
12,440 12,012 10,775 6,394 5,985 4,184

Pr( e′ | merge(e1, e2, . . . , en)) = Pr(〈E,Lc, pa, pl
c〉) ×∏

α∈e′.A pα ×
∏

α<e′.A & α∈ei.A(1 − pα) (4.2)

Example 4.3. Figure 4.1 shows the attributes involved in merge(e1,e2). The exclu-

sive attributes are given by set M={{α10,α20},{α11, α21}}. Figure 4.1 shows the four

generated possible worlds, and their probability is computed according to above

formula.

4.5 Experimental Evaluation

For the experimental evaluation we used a JAVA 1.6 implementation of our ap-

proach, which we will refer to as EAQP. We also used a JAVA implementation of

two additional methodologies described in the following paragraphs.

4.5.1 Approaches under Consideration

Entity Linkage Technique (ELA)

This implementation is the methodology currently followed by existing entity link-

age techniques. Once a linkage algorithm is applied on the data (e.g., reference rec-

onciliation [DHM05], or entity resolution [WMK+09]), a list of the matched data

along with the derived matching probability is generated [EIV07, KSS06]. Then,

the entity linkage technique uses a predefined threshold to accept and keep only

the linkages those probability is higher than this threshold.

The data of the accepted linkages are consider to exist (i.e., no probabilities),

and thus used for creating the finally integrated dataset in which the data found

to describe the same real world entity is merged. Matched data is merged using

the approach described in [WMK+09]. Following this approach, the entities in the

dataset are not directly merged and updated, but for each entity we maintain all
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Figure 4.1: Precision-recall for the movie datasets.

matched data, and use them when we need to retrieve the entity from the dataset.

Therefore, during query processing, an entity will be retrieved even when the query

contains data that are not in the final entity representation, since this data is pre-

sented in the entity’s matched data.

Probabilistic DBs Technique (PDBT)

A couple of recent approaches have been introduced for addressing the uncertainty

appearing with linkage algorithms [ABS+06, AFM06]. They consider duplicate tu-

ples as alternative representations for the same real world object. These techniques

expect that the alternative representations for each entity are known and that only

one of them can exist in the final integrated data, i.e., alternative representations

are disjoin events. Furthermore, an entity is basically described by the information

encapsulated in a single record, and not a set of records.

id attr. attr. name value prob.
e1 a a starring Daniel Radcliffe pr
e1 b a starring Radcliffe, Daniel pr
e1 c b starring Emma Watson pr
e1 d b starring Watson, Emma (II) pr
e2 . . . . . .

The existing techniques can not represent and handle the uncertainty on the

entity linkage information (Chapter 1). For being able to perform a comparison

of our EAQP approach with PDBT, we converted the problem as it can be repre-

sented by the technique introduced in [AFM06]. More specifically, we assume that
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Figure 4.2: F-measure for EAQP and ELA.

the attributes of the entity (i.e., characteristics) are given and that each of these

attributes have a set of alternative representations. The above tables show how this

representation would apply on the data from Figure 1.2.

Although this representation allows us to provide a comparison between the

time required for query processing between the EAQP and the PDBT technique, we

still need to note the differences in their semantics: (i) PDBT needs to be provided

with the exact linkages for then handling possible alternatives for attributes, and

(ii) EAQP is able to handle other types of conditions and is not restricted to disjoin

events.

4.5.2 Datasets

Cora Dataset

It is a collection of publications and authors from CiteSeer1, that is typically used

to evaluate linkage techniques [AFM06, DHM05, PD04]. It contains 9, 774 au-

thor descriptions that refer to 2, 882 real world objects. We generated entity link-

ages between authors (i.e., entities) using the probabilistic entity linkage algorithm

[INN08]. Figure 4.2 shows the number of linkages for different linkage thresh-

olds. Precision and recall of the generated entity linkages are similar to the ones

generated by other algorithms such as [DHM05, PD04]. For our approach we did

not apply a threshold in order to obtain all the linkages, even those with low prob-

abilities.

1http://www.cs.umass.edu/̃ mccallum/data/cora-refs.tar.gz
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Figure 4.3: Query success of EAQP and ELA.

Movie Dataset

For evaluating the efficiency we needed a sufficiently large dataset and also link-

ages coming from different linkage techniques. We generated such a dataset by

integrating data describing 13, 435 movies coming from two real world systems:

23, 182 IMDb movies (relational data) and 28, 040 DBpedia movies (RDF data).

We converted both datasets to our data model and stored them in a relational

database. For generating the entity linkages we compared the movie titles using

two standard string similarity methods [CRF03], Jaccard and Jaro. Figure 4.1

plots the precision-recall graph resulting when using these techniques to link enti-

ties, with Jaccard being more successful in linking IMDb to DBpedia movies than

Jaro. As expected, for both techniques we see the typical dependency between

precision and recall. Linkage techniques always have to make a trade-off between

the two. In our experiments we investigate how our approach addresses this issue.

All evaluations are reported on the average of 800 queries, constructed by ran-

domly selecting object attributes.

4.5.3 Evaluation Results

Effectiveness

In our first experiment we examine the result quality of our approach using the

Cora dataset. We processed the 800 queries and compared the results returned by

EAQP and by ELA. Evaluation of the effectiveness is based on the ground truth of

the Cora Dataset. For ELA, queries are evaluated over the already pre-merged en-
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Figure 4.4: Data statistics for the factors.

tities (based on the respective entity linkage threshold). Selecting a low threshold

(t=0.6) will provide linkages with a high recall but low precision, whereas selecting

a higher threshold (t=0.8) will provide linkages with significantly higher precision,

but with lower recall. So by increasing the threshold only linkages with high prob-

abilities are accepted and the number of linkages, thus, is reduced (see Figure 4.2

for the exact numbers). We examine the behavior of EAQP as well as of ELA for

increasing linkage threshold values.

Figure 4.2 shows the average F-measure (weighted harmonic mean of precision

and recall) of the 800 queries for various entity linkage thresholds. As expected,

when moving towards higher thresholds, the entity linkage technique accepts less

and less linkages. This makes the technique unable to find the entities described by

the queries. EAQP exhibits a higher F-measure than ELA for the entire range of

considered linkage threshold values. The difference is especially high for linkage

threshold between threshold values 0.65 and 0.75, where EAQP is still able to

identify many of the searched entities. For instance, for t=0.66 EAQP returned the

correct entity for around 10% more queries than ELA. This is because EAQP can

find connecting linkages to construct the entity described in the query, even if the

linkage probability is below the threshold. ELA had to reject these linkages due to

their low threshold.

Figure 4.3 shows the numbers of queries that were correctly answered for dif-

ferent linkage thresholds. As shown query processing with our approach returns the

correct results to more queries than ELA. In additional experiments we performed,

we noticed that the entities returned by EAQP were with higher confidence (i.e.,
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Figure 4.5: Query answering time.

with higher probability) than the entities returned by ELA. For instance, for t=0.6

EAQP returned 421 correct answers whereas ELA returned 238 correct answers.

For 91 answers, the entities of EAQP had higher probability than the entities of

ELA.

Efficiency

The core of our approach is based on generating factors by grouping entities which

are pairwise linked. During query processing we select the factors to construct the

entities relevant for the query. The number of entities in the factors influences the

execution time of our approach. In this experiment we examined this influence us-

ing the Movie dataset. We computed the size of the generated factors as the number

of entity linkages contained in the factors. We then constructed the histogram of

factor sizes. Figure 4.4 shows appearances per factor sizes as generated by both

entity linkage techniques, Jaro and Jaccard. It can be seen that only few factors

have a large size, which means less overall processing time.

Our final evaluation was to measure the time required for EAQP, and also to

compute the overhead that a system will have for offering this additional func-

tionality. Figure 4.5 shows the average time taken to answer queries with EAQP,

PDBA, and ELA. We show time over different number of entity linkages in dataset.

As expected there is an increase in the time required by our approach, but this is

relatively small and it remains under 70 milliseconds. Furthermore, time does not

increase as the dataset gets larger. On the contrary, query time remains stable even

when the data size doubles. This behavior is justified by the effective grouping of
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Figure 4.6: Average time for computing the possible world with the maximum
probability over factor sizes.

linkages into factors that takes place and allows the algorithm to easily detect and

use only a small subset of the linkages during query processing. As expected the

additional time required by the PDBA is lower than that of EAQP, since PDBA

does not cover the full semantics of our approach, especially not considering link-

age probabilities. This clearly leads to a much lower number of possible worlds to

be considered, which is reflected in the smaller increase in run time.

Time to retrieve possible worlds

As we presented in the above text, our approach separates linkages into factors

and query precessing is performed on the related factors. The size of the factors

influences the time required for processing queries, so we now investigate the ef-

fectiveness for factors of different sizes.

For this experiment, we measured the time needed to identify the possible

world with the highest probability in respect to the factor size (Section 4.3). Figure

4.6 shows the average time required for processing queries over different factor

sizes. As expected, for larger factor sizes the algorithm requires more time than

for smaller factor sizes, which however still remains below 4 milliseconds. For

small factor sizes (i.e., 20-40 entity linkages) that constitute the dominating major-

ity among the factors, the algorithm requires around 1 millisecond.
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Figure 4.7: The number of queries, from the ones shown in Figure 4.3, in which
EAQP entities had higher probability, and identified entities whereas the ELA
failed.

Improvements over ELA

We further analyzed the results of the evaluation related to effectiveness, and iden-

tified two situations in which EAQP performs better than ELA. The first is that

our approach has less failures, i.e., empty result set as an answer to queries. For

instance, for t=0.6 EAQP was able to return the correct answers for the 150 queries

in which ELA did not return anything.

The second situation is that there are cases in which the entities returned by

EAQP were with higher confidence (i.e., with higher probability) than the entities

returned by ELA. As shown in Figure 4.3, for t=0.6 EAQP returned 421 correct

answers whereas ELA returned 238 correct answers. For 91 answers, EAQP had

higher probability that ELA. Figure 4.7 presents the exact numbers for these two

situations for various entity linkage thresholds. As shown by the results of the

evaluation, EAQP exhibits a higher effectiveness than ELA. There are of course

cases in which both approaches return the same answer set. For these cases, we

can view the additional processing time of EAQP as a disadvantage in comparison

to ELA.

4.6 Summary

We have introduced a novel approach that allows on-the-fly entity-aware query

processing in the presence of linkage information. Our approach can be applied
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on various data formats and structures using a generic entity representation. We

explained how query processing can be performed efficiently over the entities and

their possible linkages as these are generated by existing entity linkage techniques.

Special focus was given on handling the uncertainty that appears in the entity link-

age information as well as in the entity data. Our experimental evaluation con-

firmed that incorporating entity-aware query processing in a system makes the sys-

tem able to better handle the entity linkage problem, and able to provide query

answers that reflect the possible entity solutions for the current data. The approach

has a small overhead in time required for processing queries, but due to our effi-

cient processing strategy this cost remains low and constant even for large datasets

with a large amount of entity linkages.
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Chapter 5

Detecting Entity Linkages

Detecting and generating probabilistic entity linkages requires computing the sim-

ilarity between entities. As explained in Chapter 2, comparing two entities based

only on their textual values may not be sufficient. For instance, two people enti-

ties, or two news articles entities that are written by different authors with different

writing styles, may not have a very high similarity when compared using a bag of

words representation, while they may still refer to the same entities and qualify as

entities referring to the same real world object. In contrast to existing techniques,

our focus is to address this problem while also dealing with the special character-

istics and challenges described in Chapter 1.

This chapter introduces and explains two techniques for detecting probabilistic

linkages. Both techniques considers not only the entity textual values but also the

available relationships. The first technique (Section 5.1) detects linkages using the

evidences collected from the information space for computing the probability for

each possible linkage between entities. The second technique (Section 5.2) focuses

RDF data, and it combines an indexing scheme for similarity search with the RDF

representations of the resources. This techniques is provided with probabilistic

analysis that allows applications to configure it for satisfying their specific quality

requirements.

5.1 Linkages based on evidences

The strong relationships between the entities of information spaces are a valuable

source of evidences for entity linkages. Existing techniques operating in such infor-

mation spaces, such as [DHM05] and [BM05], did not restrict themselves to entity

51
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attributes only but also systematically exploit the context of the entity, taking into

account associations with other entities. For instance, Dong et al. [DHM05] use

association properties of entities in combination with normal attributes for com-

puting record linkage. Also, Bekkerman et al. [BM05] exploit the link structure of

Web pages about persons as an indicator for entity (person) relationships. The tech-

nique we introduce now is most similar to the technique presented in [DHM05],

which uses entity context in the form of relationships and propagation of matching

evidence information. However, we go further by also using an incremental com-

putation and adaptation of entity linkage information, while achieving comparable

precision and recall performance.

Our approach focuses on managing entity linkage information in heteroge-

neous information spaces using probabilistic methods. We create and maintain

a Bayesian network for modeling the evidences that support the possible matches

between entities along with the interdependencies between them. This enables us

to flexibly update the network when new information becomes available, and to

cope with the different requirements imposed by applications build on top of in-

formation spaces. The probabilities for all entity linkages are then easily retrieved

through the inference over this Bayesian network.

We begin the description of this technique by providing a brief overview over

Bayesian Networks and Inference (Section 5.1.1). Then, we present the structure

of the network (Section 5.1.2), followed by the procedure for incremental com-

putation and maintenance of the network (Section 5.1.3). Finally, we report the

results of the experimental evaluation (Section 5.1.4), which show good precision

and recall on real-life data collections.

5.1.1 A Brief Review of Bayesian Networks and Inference

Bayesian Networks

Bayesian networks [Pea88, Jen01] are probabilistic graphical models for reasoning

under uncertainty, using cause-effect relationships modeled as a directed acyclic

graphs. Each node in the graph represents a variable with two or more possible

states. Each edge from parent node X to child node Y , represents a cause-effect

relationship with X being the cause and Y the effect, whenever the state of Y is

directly influenced by the state of X. Each node X is accompanied with a local

probability distribution P(X | U1, ..,Um), showing the conditional probability of

all states in X given the states of its parents U1,...,Um. Nodes without parents are
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associated with an unconditional P(X), representing prior probabilities.

Bayesian networks represent the joint probability distribution over all vari-

ables, defined as the product of all local probability distributions, as follows:

P(X1, X2, ..., Xn) =

n∏
i=1

P(Xi | parent(Xi)),

where P(Xi | parent(Xi)) corresponds to the local probability distribution of node

Xi, and parent(Xi) to the parent nodes of Xi.

Probabilistic Inference

Bayesian networks successfully determine the conditional probabilities of cause

nodes based on the current probabilities of the effect nodes, a task called prob-

abilistic inference. Given any new effects (evidences), probabilistic inference re-

computes the probability of the cause nodes which are responsible for these effects.

One well-known algorithm for probabilistic inference is message-passing by

Pearl [Pea88]. It allows the information collected for a single node to propagate

to other nodes through the node connections. Pearl’s algorithm is iterative, and

in each iteration calculates the belief of a node based on messages exchanged by

the node X with its parents U1, ...,Um and its children Y1, ...,Yn. When node X is

activated, and receives all messages πX(Ui) from its parents, and λY j(X) from its

children, it calculates its own belief as:

BEL(X) = αλ(X)π(X), where

α is a normalization constant,

π(X) =
∑

U1,...,Um

P(X|U1, ...,Um)
m∏

i=1

πX(Ui), and

λ(X) =

n∏
j=1

λY j(X) .

After calculating its belief, node X computes and sends new messages λX(Ui) to its

parents, and πY j(X) to its children. These messages are:

πY j(X) = α π(X)
∏
k, j

λYk (X)

λX(Ui) =
∑

X

λ(X)
∑

Uk:k,i

P(X|U1, ...,Uk)
∏
k,i

πx(Uk)
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metadata for publ. #77 (M(r77))={...,
〈 file:///P77, type, ‘publication’〉,
〈 file:///P77, title, ... 〉,
〈 file:///P77/a 1, name, K. Marriott〉,
〈 file:///P77/a 2, name, P. J. Stuckey〉}

metadata for publ. #127 (M(r127))={...,
〈 file:///P127/a 1, name, ‘Marriott, K’〉,
〈 file:///P127/a 2, name, ‘Sndergaard, H’〉,
〈 file:///P127/a 3, name, ‘Kelly, A’〉}

metadata for email #128 (M(r128))={...,
〈 file:///E128/to 1, name, Kelly A. 〉,
〈 file:///E128/from, name, Sndergaard H.〉,
〈 file:///E128/to 2, name, Stuckey P.〉}

type: ‘publication’
title: …

eP77.a1

eP77.a2

eP77

name: K. Marriott

name: P. J. Stuckey

eP77.a1

eP77.a2

eE128.to1

eE128.from

eE128.to2

eE128

name: Kelly A.

name: Sndergaard H.

eE128.to1

eE128.from

… …
(a) (b)

Figure 5.1: (a) Metadata extracted for desktop resources, and (b) an illustration of
the corresponding entities following the suggested data model (Section 3.1).

5.1.2 Structure of the Bayesian Network

Figure 5.1(a) shows the metadata generated for describing two publication re-

sources and one email resource[MPC+10]. Following the data model of Section

3.1 we can generate the corresponding entities. Some of these entities are as shown

in Figure 5.1(b), and since this metadata does not contain probabilities we expect

that each attribute is with belief 1.0. Due to this, the attribute probabilities in the

entities are omitted from the figure.

The goal of our algorithm, is to compute the probability of each possible entity

linkage, i.e., P(ei=e j) providing the probability for the match between entities ei

and e j. This is done by constructing and maintain a Bayesian network with entities

and supporting evidences for all linkages. Thus, information is encoded into the

network using the following node types:

Linkage Nodes

These nodes represent a possible entity linkage, e.g., l4=P(eP77.a1 = eP127.a1). As

explained in Section 3, the information space D does not have the information to

directly compute linkages, thus we can not specify the states of entity nodes. The

probability of their states is computed through probabilistic inference based on the

cause-effect relationships in the network.
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Evidence Nodes

These nodes represent evidences for the linkage nodes, and it is the first type of

nodes we use to represent evidence for linkage nodes. Each evidence node repre-

sents a supporting evidence s(ai, a j, φ), with ai and a j being attributes from the two

entities participating in the possible linkage. Evidence nodes form the prior prob-

abilities in our network, since they have no parent nodes upon which they depend.

The unconditional probability distribution is determined by the similarity function

φ used for creating them. In our current approach, we rely on the comparison of

literals from ai and a j to measure compatibility between the corresponding prop-

erties. An extension of our approach for operation in more heterogeneous contexts

is the inclusion of a comparison of the properties themselves and the inclusion of

these similarities into the aggregation of the matching probabilities. This can be

achieved by the introduction of further evidence nodes.

Direct-Relation Nodes

These nodes rely on the fact that two entities are related when their descriptions

contain references to the same entities. It is the second type of nodes that influence

the states of linkage nodes. For example, possible linkage P(eP77.a1 = eP127.a1)

implies a relation between entities eP77 and eP127, encoded in the direct-relation

node dir-rel(eP77, eP127). Finding evidences for more shared references between

these entities (e.g., additional common authors) increases the belief for the relation

of eP77 with eP127, and consequently the belief in the corresponding possible link-

age. Direct-relation nodes are the effect we can observe for entity nodes and for

deductive-relation nodes (explained bellow). The local probability distribution of

their states is directly influenced by their relationships with these node types.

Deductive-Relation Nodes

These nodes represent the indirect relation between two entities, inferred by com-

bining the information of two nodes, either direct-relation or deductive-relation.

Combining direct-relation nodes dir-rel(eP77, eP127) and dir-rel(eP77, eE128) for ex-

ample, implies a new relation between eP127 with eE128 (due to the common re-

source e127), which we encode in deductive-relation node del-rel(eP127, eE128). The

local probability distribution for this node type is computed using the two nodes

from which this node is inferred.
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Table 5.1: The possible cause-effect relationships used in our Bayesian network.

Effect Nodes: (1) Evidence (2) Direct-Rel. (3) Deductive-Rel.
Cause nodes:

(1) Linkage
√ √

(2) Ded.-Rel.
√ √

An important aspect of the Bayesian network is the cause-effect relationships

between the nodes of the Bayesian network. We have explained these together with

the different types of nodes. Table 5.1 gives a summary.

5.1.3 Incremental Computation of the Network

To compute the probability of possible linkages we collect evidences, positive and

negative. We then calculate their probability by constructing a Bayesian network,

modeling linkages and related evidence. Starting point for this computation is an

incrementally growing metadata set (i.e., entities), which are added toD. We have

to update the Bayesian network incrementally, after addition of new metadata (i.e.,

entities).

Upon addition of a new metadata, and thus a new set of entities, the algorithm

performs four steps. Mere details and explanations are provided in the following

paragraphs.

1. Processes the entity descriptions contained in the added metadata. By com-

paring the attributes from the new entities with the attributes of previous

entities, the algorithm identifies similarities, and updates the network with

new evidence and linkage nodes.

2. Creates direct-relation nodes to represent the effects we observed that could

cause these new linkage nodes.

3. Analyzes the updated network and generates new information about the re-

lation of entities, represented using deductive-relation nodes.

4. Performs probabilistic inference on the Bayesian network, and generates the

updated probabilities for the possible linkages.
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Step 1 - Adding Entity & Evidence Nodes.

The new metadata contains one or more entity descriptions. In the first step, the

algorithm updates the Bayesian network with new evidences generated using these

entities. We start with similarity computations to identify resemblance between

attributes from the new entity enew.k with compatible attributes from the existing

entities eexists.m. In the current version of our algorithm, similarities are detected

using two functions. The first algorithm is String Similarity, detecting string resem-

blance between literals of attributes1. The second algorithm is Soundex Similarity,

which detects the resemblance in pronunciation between literals2. Whenever sim-

ilarity is above a given threshold, we consider it as supporting evidence for the

possible linkage P(enew.k = eexists.m).

An evidence node is created for each similarity identified. Since the current

version of our algorithm includes two similarity algorithms, we create one or two

suporting evidence nodes for each possible linkage. All evidence nodes have three

states, Good, Moderate, and Poor, which we set based on computed similarity.

A linkage node is created to represent the identified match P(enew.k = eexists.m),

if such node does not yet exists. The relation between the newly created supporting

evidence nodes with the linkage node is represented by introducing cause-effect

relationships. All linkage nodes have two possible states, Exists to indicate that

the corresponding linkage is true, and Exists Not to indicate that the linkage is not

true. This probability for each assignment is done based on probabilistic inference.

Step 2 - Adding Direct-Relation Nodes.

Direct-relation nodes represent the observed effect that linkage nodes could cause.

These node are created by using only information from the linkages as follows: for

each linkage P(enew.k = eexists.m) we extract its entities, and use them to create a

direct-relation node del-rel(enew,eexists), if this node does not yet exist. If there is

more than one linkage referring to the same two entities, we represent this through a

cause-effect relationships created between the linkage nodes and the corresponding

direct-relation node. The direct-relation nodes have two possible states, Yes to

indicate that the two entities are related, and No to indicate that the entities are

not related. The probabilities of these states are again computed by probabilistic

inference.

1For String Similarity we use the JaroWinkler method from the SecondString API [CRF03].
2For Soundex Similarity we use the Apache Codec API.
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Step 3 - Adding Deductive-Relation Nodes.

This step analyzes the current status of the network to extract indirect relations

between the entities. The underlying idea is similar to the one represented by

the direct-relation nodes. To identify possible indirect relations, our algorithm

inspects the direct-relation and deductive-relation nodes. Each node is consid-

ered as a transitive, binary relation (b-relation) between the two participating en-

tities. For example, dir-rel(eP77,eP127) corresponds to b-relation (eP77,eP127), and

dir-rel(eP77,eE128) to b-relations (eP77,eE128). The algorithm extracts more rela-

tions by transitively combining b-relations: b-relation (eP127,eP127) for example is

the transitive combination of our two previous b-relations. We encode the new

b-relation using a ded-rel node, for example del-rel(eP127,eP127).

Since computing transitive b-relations is a recursive process, we need an ap-

propriate stopping criterion. In the current version of our algorithm, we enforce

a fixed ratio between linkage nodes and deductive-relation nodes. This approach

allows us handle specific characteristics possibly present in D. If D contains only

few linkages, the algorithm will be forced to search for evidence by incorporating

many deductive-relation nodes. On the other hand, if D contains a relatively big

number of linkages, the algorithm will include only a small subset of them, enough

to increase the belief for the specific node without overloading the network with

nodes.

Step 4 - Updating the Linkages.

Once the network is updated with nodes representing new possible linkages and

supporting evidences, we need to recalculate the probability for the states of each

node. This task is performed through probabilistic inference which updates all

nodes according to the current status of the network. To minimize the time needed

for doing this, we execute probabilistic inference only on the newly added nodes

and nodes related to them.

As explained in Section 5.1.1, computing the probability of a node requires

information from its neighbor nodes. Computed results are propagated back to the

neighbor nodes to allow them to recompute their probability. For example, consider

node R from the Bayesian network of Figure 5.2. Once node R is activated, and

receives messages λr1(R), λr2(R), πR(l1), and πR(l2) from its parent and children

nodes, it computes: (i) its own belief as BEL(R) = αλ(R)π(R) (marked as eq. 5.1

in the following equation list), and (ii) new messages to send to its parent nodes
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πR(l1)

l1: linkage(eP127.a2,eE128.from)
l3: linkage(eP77.a2,eE128.to2)

l4: linkage(eP77.a1,eP127.a1)l2: linkage(eP127.a3,eE128.to1)

r1: dir-rel(eP77,eE128)

r2: dir-rel(eP77,eP127)

R: dir-rel(eP127,eE128)

s1: support(αP127.a2,
αE128.from, stringSim)

s2: support(αP127.a2,
αE128.from, soundexSim)

support(

su

supp

support(αP127.a3, α support(αP127.a3,αE128.to1,soundSim)

λR(l1) λr1(R)

πr1(R)λr2(R)

πr2(R)

πR(l2)λR(l2)

Figure 5.2: An illustration of the Bayesian network for the data of Figure 5.1.

(eq. 5.2), and children nodes (eq. 5.3). These messages are as follow:

λ(R) = λr1(R)λr2(R), and π(R) = P(R|l1, l2)πR(l1)πR(l2) (5.1)

λR(l1) = P(R|l1, l2)πR(l2)λ(R) (5.2)

πr2(R) = π(R)λr1(R) (5.3)

The message computation in this example shows the main benefit of using cause-

effect relationships between nodes. Although node l1 is not directly connected to

node l2, the algorithm is able to propagate information from one node to the other,

through their cause-effect relationships with node R. Consequently, a high belief

of node l2 affects the belief of node R (eq. 5.1), which is reflected in the message

node R sends to node l1 (eq. 5.2). Finally, node l1 is affected when it recomputes

its belief using the message sent to it by node R.

After executing probabilistic inference, we have an updated set of matches that
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Entity Linkage information:
〈 el:///linkage p127.a2 p128.from, entity, file:///P127/a 2 〉
〈 el:///linkage p127.a2 p128.from, entity, file:///P128/from 〉
〈 el:///linkage p127.a2 p128.from, belief, 0.96 〉
...

Figure 5.3: Part of the resulted entity linkage information that was generated by
our algorithm, for the data shown in Figure 5.1.

reflect the metadata present in the information space. Different representations of

the results matches are possible (i.e., include or do not include the probability of

each match), and the selected representation depends on the needs of the specific

system. Figure 5.3 shows one possible representation for the results of the metadata

from Figure 5.1. In this example, the matches are used for generating additional

metadata to represent each match in the Bayesian network using the corresponding

object representations and belief.

5.1.4 Experimental Evaluation

We evaluated our approach using a JAVA implementation of our entity linkage

algorithm, including all features we described in the previous sections. For per-

forming probabilistic inference3on the Bayesian network we used the jS MILE

API4, and for creating a database to store internal information we used MyS QL

5.05. The following paragraphs present the effectiveness of our algorithm on two

datasets, the Cora and a PIM dataset.

Cora Dataset

The Cora dataset6 is a collection of publications collected from CiteSeer. Each

publication contains title and author names, using different forms for the names

(e.g., ‘J. Antonisse’, ‘Antonisse , H. J.’, ‘Antonisse’, ‘Jim Antonisse’). The dataset

was manually processed, each publication author is accompanied with an identifier

that indicates the corresponding real-world entity.

3For efficiency reasons we use the ‘Backward simulation’ algorithm; a modified version of Pearl’s
algorithm that performs approximate inference.

4http://genie.sis.pitt.edu/
5http://www.mysql.com/
6We used the version from http://www.cs.umd.edu/˜indrajit/ER/index.html

http://genie.sis.pitt.edu/
http://www.mysql.com/
http://www.cs.umd.edu/~indrajit/ER/index.html
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We processed the Cora dataset and converted each publication into RDF triples.

Our process generated 14392 attributes describing title and authors for 1563 re-

sources (publications). A total of 2882 attributes described authors, with 9768

matches between these authors. The number of matches for author references

ranged between 1 and 43, with an average of 3,39. Following the definitions of

Section 3, we use as entity eAi.Ck , the attributes describing author Ai as given in

the attributes generated for publication Ck. The task of our algorithm is then to

compute the probability for entity linkages of author Ai from publication Ck with

author A j from publication Cn, represented by P(eAi.Ck=eA j.Cn).

The goals of our Cora dataset experiments were twofold: (i) evaluate the ef-

fectiveness of our algorithm in identifying the entities, and (ii) compare the effec-

tiveness of our algorithm with the effectiveness of the basic similarity functions

we use for generating the evidence nodes. We measured effectiveness, as usual

in information retrieval, by calculating precision and recall. These measures were

calculated with respect to the actual real world objects, as specified by the unique

identifier given for the authors of each publication in the Cora dataset.

We executed the experiments, by adding the attributes generated from the Cora

dataset incrementally into an information space, which uses our algorithm for en-

tity linkage. After adding triples for 100 publications, we performed probabilistic

inference on the Bayesian network generated by our algorithm. The following table

shows the number of the entity linkages that correspond to the different numbers

of publications.

Publications 1000 1100 1200 1300 1400 1563

Linkages 4129 4620 5050 6036 7337 9774

Entity Linkage Effectiveness.

Figure 5.4 shows the plot for precision, and Figure 5.5 the plot for recall. Both plots

are for different probability thresholds and for several publications groups. The

plots do not include groups that contain less than 1000 publications because the

number of the corresponding matches is too small. Small values of the probability

threshold (θ <0.4) are not included in the plots since the results are similar to θ=0.4.

As shown in Figures 5.4 and 5.5, our algorithm is able to maintain the same

values for precision and recall for the different probability thresholds. For lower

probability thresholds (i.e., θ=0.4, and θ=0.5) we see that recall is very high and

precision is already quite satisfactory (around 0.9). Moving toward higher proba-
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Figure 5.4: Precision vs. different thresholds.

bility thresholds (i.e. θ=0.6, θ=0.7,) we see precision values increasing and, as ex-

pected, decreasing recall values. Precision does not ‘automatically’ increase with

groups that have more publications —more data, and thus entities are available—

but rather reflects the belief we have for the entities in our current data.

The results of these plots follow exactly the behavior explained in the analysis

of our algorithm. It is clear that external algorithms are able to control the pre-

cision/recall of the entities by selecting an appropriating value of the probability

threshold. For example, an application that needs only very certain linkages will

choose a high probability threshold, whereas an application that accepts uncertain-

linkages a lower.

We also used our Cora dataset experiments to compare with previous approaches

described in the literature. The authors of [DHM05] reported precision 0.994 with

recall 0.985, the authors of [PD04] had precision 0.842 with recall 0.909. To com-

pare these numbers with our results, we considered only linkages generated by

our algorithm that exceed a preselected low probability threshold (e.g., θ=0.5). As

shown in our two plots, these linkages have high precision and high recall, similar

to the ones given by these other algorithms. Our algorithm offers two additional ad-

vantages: (i) identified matches do not alter original data, (ii) our algorithm is able

to further classify these linkages according to the belief we have for their existence.

Comparison with basic similarity functions.

In this experiment we performed a comparison of the effectiveness of our algorithm

with the basic similarity functions used for generating evidence nodes. The algo-
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Figure 5.5: Recall vs. different thresholds.

rithms we considered were Soundex Similarity and String Similarity, as described

in Section 5.1.3.

Table 5.2 shows precision and recall values given by the two similarity func-

tions on different publications groups. In all cases we assume that the real world

objects are the ones those probability is above threshold 0.7. Our evaluation shows

our entity linkage technique clearly improves effectiveness of the basic similarity

functions.

PIM Dataset

As a second dataset for evaluating our algorithm we use metadata generated in a

personal information management environment, for desktop resources. As there is

no publicly available PIM dataset, we created a suitable collection of metadata by

simulating the behavior of a PIM application.

Our PIM dataset included metadata describing desktop resources from three

groups:

• The first group contains publications, randomly selected from the DBLP

system, to simulate arbitrary publications downloaded from the Web. This

group resulted in metadata describing 700 imported resources, with 1326

triples (i.e., attributes) corresponding to authors.

• The second group contains publications imported into the PIM environment

from the DBLP system for which one of the authors is our co-worker at L3S.

The results of this import were metadata for 250 resources, with 480 triples
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Figure 5.6: (a) Precision, and (b) Recall vs. different thresholds.

(i.e., attributes) describing authors.

• The third group contains personal emails from one of the author’s email

client. Our goal was to identify and link authors from the publications with

the corresponding person sending emails. The entity linkage problem in

this case is somehow limited since persons are usually accompanied with

email addresses which can act as unique identifiers for them. For this reason,

we applied our entity linkage algorithm only on the existing email address,

person name pairs. To capture the connections between these people, we

randomly selected a small portion of available emails. This group contained

metadata for 200 resources, with 400 triples describing people. This group

contains the most heterogeneous data, since each person has various email

addresses and name variants.

We evaluated our algorithm on this PIM dataset, adding data incrementally into

an information space, which uses our algorithm for entity linkage. We performed

probabilistic inference on the Bayesian network generated by our algorithm, after

adding the data of these three groups. Figure 5.6 shows the precision of the results

generated by our algorithm. As shown, adding emails does not reduce the precision

of the generated results, which is what we would have excepted since the emails

contain the most heterogeneous data. The results indicate that our algorithm is

able to handle the heterogeneous instances of persons referenced in emails, and

successfully link them with the author instances gained from the publications.
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Table 5.2: Precision/Recall of the entity linkage, and the basis similarity functions
we used for generating the evidence nodes (θ=0.7).

Publications Entity Linkage String Sim. Soundex Sim.
200 0.219/0.969 0.892/0.081 0.482/0.362
400 0.218/0.977 0.422/0.065 0.246/0.346
600 0.358/0.982 0.329/0.05 0.181/0.220

5.2 Linkages based on RDF structure

In the Semantic Web resources are annotated with metadata in the form of RDF

statements. These annotations can be made manually or (semi-)automatically us-

ing tools for natural language processing and information extraction, such as the

Calais Web Service [Ope] or metadata extractors [MPC+10], which identify and

extract from unstructured text entities, facts, relationships, and events, and pro-

vides them in the RDF format. This structured and semantically rich information

can be exploited to more accurately identify entity linkages between resources. Ex-

isting approaches that deal with the problem of efficiency in similarity search, e.g.,

[BCG05, GIM99, MJS07], do not operate on structured data.

The introduced technique is named RDFsim. Short for “RDF Data Similar-

ity”, RDFSim performs semantic-aware and efficient detection of entity linkages

by combining indexing schemes for similarity search with the RDF representations

of the resources, i.e., entities. The following paragraphs present the formalization

and an overview of the technique (Section 5.2.1). We then present the steps of

RDFsim in detail, starting from how it semantically represent RDF resources (Sec-

tion 5.2.2). Next, we introduce the indexing structure that is employed from the

RDFsim (Section 5.2.3). We then explain the use of this indexing structure for

querying possible duplicate resources, and thus retrieving the probabilistic entity

linkages (Section 5.2.4). Finally, we report the results of the experimental evalua-

tion (Section 5.2.5).

5.2.1 Overview of RDFsim

A resource in the Semantic Web is described by a set of RDF triples of the form

(sub ject, predicate, ob ject), where sub ject is a URI identifying a resource, predicate

is a URI representing a property of the resource, and ob ject represents the value of

this property, which can be either a literal or a URI identifying another resource.
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These triples form a graph, where the nodes correspond to subjects and objects,

and the edges correspond to predicates. When a node is not identified by a URI

(i.e., blank nodes), we use the node id information that is provided. Hence, each re-

source is represented by an RDF graph R, constructed from the RDF triples which

describe this resource.

Let R be the set of all available resources, each one describing an entity. Func-

tion sim : R × R → [0,1] computes the similarity between two resources, based on

their RDF graphs. We define possible duplicate resources as follows:

Definition 5.1. Given two resource descriptions R1 and R2, a similarity function

sim, and a similarity threshold minS im, then these two resources are possible du-

plicates if sim(R1,R2) ≥ minS im.

Given a potentially large set of resources R, the problem we focus on is to

efficiently identify all pairs of possible duplicate resources in R. A straightforward

solution to this problem is to first perform a pairwise comparison between all the

resources, and then to select those pairs having similarity above the given threshold.

However, this is not scalable with respect to the number of resources, and hence not

suitable for performing this task under time restrictions (e.g., online processing),

or when the set of resources R is dynamic.

To address this problem efficiently, we need to avoid the pairwise comparisons

of resources. For this purpose, we propose a method that relies on Locality Sen-

sitive Hashing (LSH) [GIM99]. First, each resource is converted into the internal

representation used by the algorithm, which is then indexed in an index structure

based on LSH. This index structure allows us to efficiently detect the possible du-

plicates of a given resource, with probabilistic guarantees.

Probabilistic Entity Linkages

RDFsim enables the efficiently retrieval of the possible duplicates for any given

resource, i.e., entity. If we have an entity we can first make a collection with all

its possible duplicates, and then use an entity linkage technique for computing

the probability between the given entity with each of the entities in the retrieved

collection. We therefore can efficiently retrieve the linkage probability for an entity.
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〈#L〉
c:hasCity //

c:hasCountry ++

Washington

United States

〈#R〉

c:hasLocation

88

c:hasPerson
**

c:has...

!!

Barack

〈#P〉

c:hasName 33

c:hasS urname //

c:hasOccupation ++

Obama

President

〈...〉

Figure 5.7: Representation of resources for RDFsim takes into consideration the
semantic structure.

5.2.2 Resource Representation

Our method emphasizes on semantic-aware detection of possible duplicate re-

sources, i.e., it operates on the RDF representation of the resources. As this in-

formation is often not available a priori, a pre-processing step may be required to

extract semantic information for the resources. There are several tools that can be

used for this purpose, such as the Calais Web Service [Ope] (see Section 5.2.5 for

more details). Subsequently, ontology mapping methods can be applied to handle

the cases where different vocabularies are used by different sources. In addition,

some metadata may be deliberately filtered out by the application, as they may

not be relevant to the task of possible duplicate detection. For example, in the

case of the news aggregation scenario, an article identifier assigned to the article

by the particular agency publishing it should not be taken into consideration when

searching for possible duplicate articles.

Once the RDF graph describing the resource has been constructed, it needs to

be transformed to a representation that is suitable for indexing in an index based on

LSH, while preserving the semantic information for the resource. For this purpose,

the algorithm applies a transformation of the RDF graph of each resource Rx as

follows: each RDF triple is represented as a concatenation of the predicate and the

object. In the case that the object is a literal, then the predicate is concatenated with

the literal. In the case that the object is itself the subject of another RDF triple, e.g.,

Ry, then the predicate is concatenated with the representation rep(Ry) of Ry, which

is generated recursively. During this recursive generation, cycles are detected and

broken. This process is illustrated by the following example.
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Example 5.1. Consider the RDF graph shown in Figure 5.7. The representation of

the nodes L and P are the following:

rep(L) = {“c:hasCity, Washington”, “c:hasCountry, United States”}

rep(P) = {“c:hasName, Barack”, “c:hasSurname, Obama”,

“c:hasOccupation, President”}

Then, the representation of the resource R is generated recursively using the repre-

sentations of the resources under R (e.g., L and P) as follows:

rep(R) = {“c:hasLocation, L”, “c:hasPerson, P”, . . . } ∪ rep(L) ∪ rep(P)

Notice that some resources may have large and complex RDF graphs (e.g.,

large documents), which leads to large representations. However, this does not

constitute a problem since these representations do not need to be maintained in

main memory. Instead, the representation of each resource is only computed and

used once, as an intermediate step for the purpose of hashing it in the index struc-

ture.

Along with the resource representation, our algorithm also needs a similarity

method (see Definition 5.1) that is used for computing the similarity between two

RDF representations. For the purpose of this work we apply one of the standard

similarity measures, Jaccard coefficient. However, the algorithm and the underly-

ing LSH index can incorporate other measures, and there have already been ana-

lytic results which enable LSH on different distance measures [Cha02], for example

for the cosine similarity.

5.2.3 Indexing Structure

The index used by the algorithm is based on the Locality Sensitive Hashing (LSH)

approach of [GIM99]. The main idea behind LSH is to hash points from a high

dimensional space using a hash function h such that, with high probability, nearby

points have similar hash values, while dissimilar points have significantly different

hash values, i.e., for a distance function D(·, ·), distance thresholds (r1, r2), and

probability thresholds (pr1, pr2):

• if D(p, q) ≤ r1, then Pr[h(p) = h(q)] ≥ pr1

• if D(p, q) > r2, then Pr[h(p) = h(q)] < pr2
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Figure 5.8: An illustration of the process followed for generating the labels of RDF
resources, which are used for inserting these resources into the indexing structure.

More specifically, we use an indexing structure I that consists of l binary trees,

denoted with T1,T2, . . . , Tl. To each tree, we bind k hash functions, randomly

selected from a family of locality sensitive hash functions H . We denote the hash

functions bound to tree Ti as h1,i, h2,i, . . . , hk,i.

Figure 5.8 shows the process we follow for indexing resources. When a new

resource Rx arrives, first its representation rep(Rx) is computed as described above.

Recall that rep(Rx) consists of a set of terms (i.e., the elements of the set rep(Rx)).

We compute l labels of length k. Each label corresponds to a binary tree. The

algorithm computes the label of rep(Rx) for each tree T j as follows:

• It hashes all the terms in rep(Rx) using each hash function hi, j(·) that is at-

tached to the binary tree T j.

• It detects the minimum hash value produced by hi, j(·) over all terms in rep(Rx),

denoted as min(hi, j(·)).

• It maps min(hi, j(·)) to a bit 0 or 1 with consistent mappingM 7→ [0, 1]. This

resulting bit is used as the i’th bit of the label of rep(Rx).

The same map M is used for all the binary trees. Any mapping function can be

used, for example mod 2, as long as it returns 0 and 1 with equal probability.
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Figure 5.9: Inserting and searching for resources in a tree of the algorithm.

After computing the l labels of a resource, the algorithm inserts the resource in

the inverted index. Let Labeli(rep(Rx)) denote the binary label computed from Rx

for the binary tree Ti. Then, Rx is inserted in the tree using Labeli(rep(Rx)) as its

path. For example, if Labeli(rep(Rx)) = 0001, then Rx is inserted at the node with

the specific path in tree Ti (see Figure 5.9).

5.2.4 Retrieving Linkages

Executing a query for possible duplicate resources is similar to the process de-

scribed above for indexing a resource. Let Rq denote the resource for which we

want to search for possible duplicates, and minS im the minimum similarity be-

tween the query Rq and another resource Rp ∈ R for considering the two resources

as possible duplicates. Our method provides a trade-off between performance and

recall, expressed by the minimum probability minProb that each possible duplicate

of Rq is found.

First, we create the labels for the query Label1(rep(Rq)), Label2(rep(Rq)),. . . ,

Labell(rep(Rq)), which correspond to each of the l trees T1, T2, . . . , Tl. Assume

now that we are interested only for exact matches of Rq, i.e., exact duplicates.

Then, the query would be executed by performing a lookup of each label in the

corresponding tree, selecting the resources indexed in the identified nodes, and

examining whether each of these resource is an exact duplicate of Rq. Notice that

due to the hashing and mapping functions employed during the indexing process,

several resources may be indexed under the same node, hence the last step in the

aforementioned process is required to filter out false positives.

Since in our case we are interested in finding the possible duplicates of Rq,
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we need to relax the selection criterion in order to retrieve resources that are not

exact matches but highly similar to Rq. Recall that due to the property of Locality

Sensitive Hashing, similar resources are indexed at nearby nodes in the tree with

high probability. Hence, the selection criterion can be relaxed by performing a

lookup not for the entire label but only for a prefix of it, of length k′. The ques-

tion that arises is how to determine the appropriate value for k′. Setting a high

value for k′ leads to a stricter selection, and hence some possible duplicates may

be missed. On the other hand, a low value for k′ retrieves a large result set, from

which false positives need to be identified and filtered out, thus reducing the per-

formance of query execution. For example, in the extreme case where k′ = 1,

half of the resources from each tree are retrieved, leading to a very large result

set. Consequently, k′ should be set to the maximum value that still allows for pos-

sible duplicate resources to be detected with probability equal or higher than the

requested minProb. Once k′ has been determined, we retrieve from each tree the

resources with the same prefix to the respective label of Rq, which results in the set

of candidate possible duplicates for Rq, denoted byNDcand(Rq). Then, for each re-

source inNDcand(Rq), we compute its similarity to Rq, filtering out those resources

having similarity lower than minS im. In the following, we provide an analysis on

how to determine the right value for k′.

The appropriate value k′ of the prefix length to be used for the lookup during

query execution is determined by the values of minProb and minS im. We assume

that the index comprises l binary trees, and labels of total length k (k′ ≤ k). The

computation is based on the following theorem.

Theorem 5.1. Let sim(P,Q) denote the Jaccard similarity of two resources P, Q,

based on their respective representations rep(P) and rep(Q). The corresponding la-

bels Labeli(rep(P)) and Labeli(rep(Q)), i = 1 . . . l, of the two resources are equal

with probability Pr[Labeli(rep(P)) = Labeli(rep(Q))] =
(

1+sim(P,Q)
2

)k
. Further-

more, the probability that the two resources have at least one common label is

1 −
(
1 −

(
1+sim(P,Q)

2

)k
)l

.

Proof. As explained in Section 5.2.3, each bit in the label is computed by (a) hash-

ing all terms of the representation using a hash function from a family of LSH

functions H , (b) getting the minimum hash value over all terms, and (c) mapping

it to binary. Let min(hi, j(rep(P))) denote the minimum value of the hash function

hi, j over all the terms of rep(P), and M(min(hi, j(rep(P)))) the result of the map-
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ping function. The labels Label j(rep(P)) and Label j(rep(Q)) of the two resources

P and Q will have the same corresponding bit i if either of the following holds:

(a) min(hi, j(rep(P))) = min(hi, j(rep(Q))), or

(b) min(hi, j(rep(P))) , min(hi, j(rep(Q))) and

M(min(hi, j(rep(P))))=M(min(hi, j(rep(Q))))

The probability of (a) is directly related to the similarity of the two representations

[BCFM98], and is equal to:

Pr[min(hi, j(rep(P))) = min(hi, j(rep(Q)))] = sim(rep(P), rep(Q)) (5.4)

The probability of (b) equals to:

(
1 − Pr[min(hi, j(rep(P))) = min(hi, j(rep(Q)))]

)
/2

Since the two cases are mutually exclusive, the probability that either (a) or (b) is

true is the sum of the two probabilities, and equals to:

1 + sim(P,Q)
2

For two resources to have the same label i, then all bits 1, 2, . . . , k of the two

labels must be equal. The probabilities are independent, therefore:

Pr[Labeli(rep(P)) = Labeli(rep(Q))] =

(
1 + sim(P,Q)

2

)k

(5.5)

Then, the probability that the two resources have at least one common label is:

Pr[∃i : Labeli(rep(P)) = Labeli(rep(Q))] (5.6)

= 1 − Pr[¬∃i : Labeli(rep(P)) = Labeli(rep(Q))]

= 1 −

1 − (
1 + sim(P,Q)

2

)kl

�

Following directly from Equation 5.6, we can compute the value of k′ as:

k′ =

− log
(
1 − (1 − minProb)1/l

)
log(2) − log(1 + minS im)

 (5.7)
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The number of trees l comprising the index and the length k of each label are set

during the initialization of the algorithm. Higher values of l allow the algorithm to

also use longer prefixes of length k′ for querying, which results to fewer false posi-

tives, and consequently to lower cost for retrieving the candidate possible duplicate

resources and comparing them to the query. However, as l increases, there is an ex-

tra cost imposed for maintaining the additional trees. For tuning these parameters

l and k, one needs to have some knowledge regarding the queries and the distri-

bution of the resources to be indexed. If this information is not available, one can

choose values that are large enough to support a wide range of queries, while still

having a good performance. For our experiments, we experimented with different

combinations of l and k, and we observed that an index with l = 20 and k = 50

enabled the algorithm to answer queries efficiently, for probabilistic guarantees as

high as 98% and minimum similarity as low as 0.8. By further increasing l and

k one can enable stricter probabilistic guarantees and lower similarity thresholds,

albeit with a higher cost for maintaining the index.

Maintenance of the binary trees

Another aspect of our approach is the implementation details for the binary trees.

In practice, a fast and memory-efficient implementation of binary trees is important

for the efficiency and scalability of the algorithm. In this work, we consider two

techniques: (i) a main memory binary tree implementation, and (ii) an implemen-

tation using a relational database.

An efficient main memory implementation of binary trees has been proposed

in [BCG05] for solving the approximate k-nearest neighbor problem. To reduce

the amount of required memory, the binary trees are represented as PARTICIA

tries [Mor68]. PARTICIA representation reduces the memory requirements by

replacing long paths in the tree with a single node, which represent these paths.

This compression technique makes the number of tree nodes linear to the number

of resources stored in it. Since there are l trees, the total memory requirements will

be O(n ∗ l), where n is the number of indexed resources.

Several other binary tree disk-based implementations were also considered and

discussed in [BCG05]. For the algorithm, there is no benefit using one of these

implementations compared to a relational database. In fact, commercial relational

databases build their indices using some of these implementations, therefore we do

not need to reimplement them from scratch for the algorithm. We instead use them

indirectly via the relational database, and thereby benefit from efficient generic
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database optimizations, e.g., caching.

Parameter Configuration

For running a possible duplicate query, the user first selects the minimum similarity

between two resources for considering them as possible duplicates. Additionally,

for each query, the user may choose the trade-off between the completeness of the

results and the system’s efficiency, expressed with probabilistic guarantees. In this

section, we show how given an existing inverted index with l trees, and labels of

total length k, the algorithm decides on the length of the query labels k′, which will

satisfy the probabilistic guarantees requested from the user at the minimum cost.

Clearly, there is a trade-off between the query cost and the quality of the results.

Query cost includes the cost of retrieving all documents that have common labels

with the query, and the cost of comparing all retrieved documents with the query,

for filtering out the false positives and keeping only the true possible duplicates.

This cost is influenced from the length of the labels k: when k is small the number

of false positives increases. For example, in the extreme case where k = 1, half of

the documents would be retrieved from each tree for a query. On the other hand,

when k is large, the cost decreases, but the probability that each possible duplicate

will be detected is also reduced. Since k is fixed when the inverted index is first

initialized, the algorithm changes the length of the query labels k′ instead. Based on

the required probabilistic guarantees and the minimum similarity for considering

two resources as possible duplicates, the algorithm finds the optimal k′ that satisfies

the required probabilistic guarantees. The optimal k′ for the given index is the

maximum value which satisfies the required probabilistic guarantees.

5.2.5 Experimental Evaluation

In this section, we describe a prototype implementation that uses the algorithm to

identify possible duplicate news articles. We then report the results of our experi-

mental evaluation using the news articles collected by our prototype application.

Prototype Implementation

To test our approach on a real-world scenario, we consider a news aggregation ser-

vice, which aims at providing a unified view over the articles published on the Web

by various news agencies, identifying and grouping together all possible duplicate

articles. In particular, we have implemented a prototype in Java 1.6 that uses the
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algorithm to index the RDF representations extracted from incoming news articles

and to entity linkages.

The application operates on a large collection of RDF data extracted from real-

world news articles. In particular, we crawl news articles from the Google News

Web site, which links to articles from various news agencies, such as BBC, Reuters,

and CNN. For each newly added news article, we use the OpenCalais Web service

[Ope] to extract the RDF statements describing the information available in it7.

OpenCalais analyzes the text of the news articles and identifies entities described

in this text, such as people, locations, organizations, and events, providing an RDF

representation of the information in the article.

For the implementation of the binary trees required for indexing the RDF rep-

resentations of the articles, there are two alternatives that can be used: (a) a main

memory binary tree implementation, or (b) an implementation on secondary stor-

age, e.g. a relational database. An efficient main memory implementation of binary

trees has been presented in [BCG05] for solving the approximate k-nearest neigh-

bor problem. The binary trees are represented as PATRICIA tries [Mor68], which

reduces the amount of required memory by replacing long paths in the tree with a

single node representing these paths. This compression technique makes the num-

ber of tree nodes linear to the number of resources stored in it. In our case, since

there are l trees, the total memory requirements will be O(n×l), where n is the num-

ber of indexed resources. However, although accessing the main memory is much

faster compared to secondary storage, this approach is limited by the capacity of

main memory, and hence it is not suitable for a large number of RDF resources.

Hence, in our implementation, we have used a relational database, in particular

MySQL 5, to efficiently store and retrieve all the resources with a given label.

The resources are stored in a relational table I as tuples of the form (resource id,

tree id, hash value). The algorithm needs to find all labels that share the same

prefix of length k′ with the query, where k′ ≤ k. This can be efficiently executed

in a relational database using SQL operators, e.g., the LIKE operator in MySQL.

Hence, all the resources with prefix v from the tree t can be retrieved using the

following expression:

πresource id(σtree id=t and hash value LIKE ′v%′(I))

The size of the database is O(n × l), where n is the number of resources, and

7The RDF schema for the Web service output is available at:
http://www.opencalais.com/documentation/calais-web-service-api

http://www.opencalais.com/documentation/calais-web-service-api
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Figure 5.10: Probabilistic guarantees vs. recall.

the complexity of querying is O(log(n)) per tree, i.e.,O(l × log(n)) in total.

Upon receiving a keyword query, the application identifies the news articles

containing these keywords. Then, for each of the found news articles, it retrieves

its possible duplicates. Based on the possible duplicates, it groups the news articles

and it returns these groups as the answer to the query. In addition, for each group,

we also generate a data cloud that summarizes the entities found in these news

articles, taking into consideration the frequency of appearance of these entities in

the articles.

Evaluation Results

The purpose of the experiments was to evaluate the algorithm with respect to qual-

ity and efficiency, for executing queries for possible duplicate resources. Efficiency

was measured as the average time required to execute each query, and quality was

measured with recall, i.e., the number of possible duplicates detected, divided by

the number of total possible duplicates in the repository. Note that precision is

always 1, since RDFsim includes a filtering step that filters out false positives, as

described in Section 5.2.4. All the experiments were executed on a server using 1

Gb RAM and one Intel Xeon 2.8GHz processor.

As testbed, we have used the prototype described in Section 5.2.5. The data set

consisted of 94.829 news articles, with a total of 2.711.217 entities, described as

RDF statements8, and it was stored in a MySQL 5 database, residing at the same

8http://out.l3s.uni-hannover.de:8898/rdfsim/data.html

http://out.l3s.uni-hannover.de:8898/rdfsim/data.html


5.2. LINKAGES BASED ON RDF STRUCTURE 77

20

30

40

50

60

70

80
on

 ti
m
e 
pe

r 
qu

er
y 
(m

se
c) Q[0.8]

Q[0.9]

0

10

20

30

40

50

60

70

80

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98

Ex
ec
ut
io
n 
ti
m
e 
pe

r 
qu

er
y 
(m

se
c)

Required probability minProb

Q[0.8]

Q[0.9]

Figure 5.11: Probabilistic guarantees vs. average query execution time.

machine.

We indexed all the news articles using 20 binary trees (l = 20), and labels of

length 50 (k = 50). The ground truth for the experiments was constructed by apply-

ing an exhaustive search to detect all pairs of articles that have pairwise similarity

above a threshold minS im. With Q[minS im], we denote the set of resources that

have at least one possible duplicate for the threshold minS im. For each article in

Q[minS im], we detected the possible duplicate articles. All queries were repeated

for different required probabilistic guarantees, expressed as the minimum proba-

bility minProb that each possible duplicate article with the query will be returned,

with minProb ∈ [0.8, 0.98].

Figure 5.10 plots the average recall for the queries, for minS im = 0.8 and

minS im = 0.9. As expected, recall increases with the required probability minProb.

This is due to the fact that when minProb increases, the algorithm chooses a smaller

length k′ for the prefixes of the query labels (see Section 5.2.4), and thereby the

query retrieves a larger number of candidates. However, it is not necessary to set

minProb to very high values in order to get high recall; for our dataset, a value

of minProb = 0.9 already results in recall over 0.98, which satisfies the practical

requirements for most applications.

We also note that the recall is always higher than the value of minProb, which

verifies that the probabilistic guarantees of the algorithm, described in Section

5.2.4, are always satisfied. In fact, the difference between the actual recall and

the expected recall (the recall guaranteed by minProb) is notable, especially for

low minProb values. This happens because minProb controls the probability that
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Table 5.3: Values of k′ for different combinations of similarity and probability.

minSim/

minProb 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98
0.8 24 23 23 22 21 21 20 19 18 16
0.9 49 48 47 46 44 43 41 39 37 33

each possible duplicate will be retrieved, under the assumption that all possible

duplicates have similarity minS im with the query. However, in practice most of

the possible duplicates have similarity higher than minS im. Therefore, the indi-

vidual probability that these possible duplicates are retrieved ends up to be higher

than minProb, and the overall quality of the results is better than the one expected

according to the value of minProb.

With respect to efficiency, Figure 5.11 shows the average execution time per

query, for varying minProb values. The measured time includes the total time re-

quired to answer the query, i.e., generating the labels for the query, detecting and

retrieving the candidate possible duplicates, and comparing all retrieved possible

duplicates with the query to filter out the false positives. We see that for all con-

figurations, the average execution time is small, always below 100 msec per query.

Note that, if exhaustive comparisons are used instead for detecting the possible

duplicate resources, the time required is around 1 minute per query.

We also see that the average execution time for the queries in Q[0.9] is always

less than the corresponding time for the queries in Q[0.8]. This is due to the effect

of the similarity threshold minS im on k′: for a higher minS im value, the algo-

rithm can choose a higher value for k′, thereby avoiding many false positives and

reducing the execution cost significantly. For example, for minProb = 0.8, the

algorithm sets k′ to 49 for minS im = 0.9, whereas the corresponding k′ value for

minS im = 0.8 is only 24. Table 5.3 shows the different combinations of the values

of these parameters.

As expected, the execution time increases as the requested probability minProb

increases. This is also due to the lower k′ value chosen by the algorithm for an-

swering queries with higher minProb values. This effect is more noticeable for

minS im = 0.8, since the lower minS im value causes an additional reduction to

k′, and increases the false positives significantly. For minS im = 0.9, the effect of

increasing the probabilistic guarantees minProb is not so noticeable because the

value of k′ remains high, i.e., k′ ≥ 33, and therefore the algorithm does not retrieve
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many false positives. However, even for queries with very high requirements, e.g.,

minProb = 0.98 and minS im = 0.8, the execution time is less than 80 msec per

query. Summarizing, the experimental results verify the probabilistic guarantees

offered by the algorithm and confirm the effectiveness of the algorithm for de-

tecting possible duplicate resources in large RDF repositories in real-time and for

configurable requirements.

5.3 Summary

We addressed the problem of identifying and linking heterogeneous entities refer-

ring to the same real world objects. The first technique algorithm uses a Bayesian

network to explicitly model evidences supporting possible matches between dif-

ferent references, along with interconnections between these matches. The algo-

rithm runs incrementally and does not modify existing data. The second technique

focuses on dealing with data from the Semantic Web. It utilizes the RDF repre-

sentations of resources to detect possible linkages by taking into consideration the

semantics and structure in the entity descriptions. For efficient processing it em-

ploys an index using LSH which allows to avoid the need for a large number of

pairwise similarity computations. We provided a probabilistic analysis that allows

to configure the algorithm according to specific quality requirements of users or

applications. Our evaluations showed that both techniques successfully achieves

our goal of efficiently and effectively linking data in heterogeneous information

spaces.
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Chapter 6

Entity Aggregation Framework

This chapter introduces an integration infrastructure for entity-based aggregation

of data from various sources. As explained in the previous chapters, the plethora

of existing entity linkage techniques suggests the inability of a single matching

technique to globally address the entity linkage problem [EIV07]. To address this

specific aspect of the problem, our infrastructure incorporates an extensible set of

matching modules, each based on a different matching technique. This provides

the ability to address the entity linkage problem over a large domain of data char-

acteristics.

More specifically, the introduced infrastructure is equipped with an Entity-

Name-System component (ENS) that acts as a repository for entities. ENS con-

sists of an entity store that allows searching over a large number of entities, and

a matching framework that is responsible for the selection of the most appropriate

matching technique, or combination of the probabilistic entity linkages resulted

from more than one matching modules. The architecture of the aggregator is illus-

trated in Figure 6.1. Its core components are the matching, the merging, and the

aggregation support. The following paragraphs describe these components.

Matching Component. The main functionality of this component is to efficiently

and effectively match an entity against the entities stored in the ENS repos-

itory. Such a match denotes that the entity in the given query and the entity

from the ENS repository describe the same real world object. The details of

the matching component are provided in Sections 6.1 and 6.2.

Merging Component. If a match to an entity is found by the matching component

in the ENS repository of the aggregator, the entity search query must be

merged with the entity found in the ENS repository. The merging component

81
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Figure 6.1: The architecture of the aggregator.

is responsible for this task, and it involves decisions on what will be the set

of attributes and alternative identifiers of the merged entity.

Aggregator Support Component. This component of the aggregator’s infrastruc-

ture includes services for managing knowledge and statistics about attribute

names, as a mechanism to alleviate the absence of complete and uniform

schema information. Such knowledge could for example be used to detect

conflicts and inconsistencies in attribute values from the entities, and thus,

can be used both in the merging and the matching component. Furthermore,

it contains services for storing and assessing confidence information about

the sources that can be used, for instance, in the merging component to assist

in deciding which attributes to keep in the merged entity.

In addition, an aggregator has also an Entity-Centric related System that makes

the requests with the entity descriptions collected from various sources. For exam-

ple, this can be a system that uses extracted information from WWW web-pages,

with one of the many currently available information extraction tools, such as Cog-

ito1 and OpenCalais2. This system can be also retrieving information from other

applications through mashup services, such as Yahoo! Pipes3, or through other

kinds of source wrappers.

The entity-centric related system poses function requests to the aggregator in-

frastructure. In the case of findEntity function this is an entity search query provid-

ing the attributes of the entity in request, as explained in Chapter 3. This query is

first given to the matching component, which retrieves the set of entities from the

1http://www.expertsystem.net/page.asp?id=1515&idd=200
2http://www.opencalais.com
3http://pipes.yahoo.com/pipes/

http://www.expertsystem.net/page.asp?id=1515&idd=200
http://www.opencalais.com
http://pipes.yahoo.com/pipes/
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ENS repository that are found to possibly match the specific query.

The matching component relies on the functionality of the ENS. There exist

two possibilities for the ENS: (i) a local ENS service that is developed exclusively

for the aggregator, and (ii) a global ENS public service that already exists, such

as the one offered by the OKKAM system4. The latter has the benefit of enabling

global, cross-system, re-usability of entity identifiers, which can trigger a network

effect for easing entity-based integration, especially when the ENS is already in

use by other systems.

The output of the matching component is sent to the merging component,

which continues in merging together the attributes of the entity found to match

in the ENS with the entity described in the query that was provided as an input to

the matching component. Merging expands the ENS entity with the information

from the query. The set of alternative identifiers is enhanced with the identifier

and any alternative identifiers of the entity from the query. In addition, the set of

attributes is updated with the information from the query’s attributes. The default

approach for this is to take the union of all the available attributes in the two enti-

ties. More complex solutions (as also explained in Section 4.4) are also supported

in order to address: (i) updates in the entity status, (ii) different levels of confidence

of the sources, (iii) conflicting attributes, (iv) freshness, and (v) inconsistencies.

Consider the challenges of integrating Web 2.0 data. Such data do not have a

fixed schema and may consist of name-value attributes, attributes with only values,

or a mix of both. Furthermore, the data given for integration may contain only one

entity, or a collection of entities that are somehow related to each other, such as

those present in the repositories of Social applications. Despite the many existing

results in entity linkage techniques (i.e., as discussed in Chapter 2), no solution has

been found to work for all situations.

The aggregator leverages this problem by using a generic methodology for

matching that incorporates an extendable set of matching modules, each focus-

ing on addressing a specific situation. Matching queries with entities is performed

through a series of steps that involve the retrieval of a small set of matching can-

didates from the potentially very large entity store, and the further processing of

these candidates either by the most promising module given the specific query data

(i.e., matching technique), or by a combination of different modules. The infras-

tructure for entity-based aggregation was evaluated in respect to the idea of using

various matching techniques and scalability of the entity store. Section 6.1 explains

4http://fp7.okkam.org/

http://fp7.okkam.org/
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the entity store component, and Section 6.2 the matching framework. Section 6.3

reports the results of the experimental evaluation.

6.1 NECESSITY Entity Store

For an entity store we introduce and use Necessity, which provides a repository of

entities along with an index for efficient entity retrieval. The reason for including

an entity store in our framework is to reduce the set of entity candidates in order

to provide less data to the matching modules, since the matching algorithms are

typically performing a lot of heavy operations.

The Necessity entity store is essentially a search engine which returns a ranked

list of entities that are relevant to the specified query. It is composed of two main

parts, as shown in Figure 6.2. The first part is implemented as a key-value Volde-

mort repository5 and it is able to maintain a large number of entities. Scalability

in Voldemort is obtained by simply adding more servers when more entities are

added to the repository, which means that the remaining components of the ag-

gregator are left untouched. Moreover, this key-value repository supports linear

scalability since it is designed from scratch to scale by simply adding new nodes.

The second part of Necessity is the inverted index, implemented as a Solr

Brocker6, which uses Lucene7 for full-text indexing and search. When a new query

arrives, the Solr broker will assign the query to some of its shards, collect their

top − k entities, and then aggregate them to identify the k best entities. The re-

sulting entities are then returned to the matching framework and correspond to the

candidate entities that could be a match with the given user/application query.

6.2 Matching Framework

The matching framework is responsible for receiving the queries requesting an en-

tity, and controlling the evaluation flow. Figure 6.2 illustrates the main components

of the matching framework.

Given a request describing an entity, the matching component invokes the en-

tity search planner. This first analyses the given entity request to generate an initial

query for the entity store, and identifies the matching module or modules that could

5http://project-voldemort.com/
6http://lucene.apache.org/solr/
7http://lucene.apache.org/

http://project-voldemort.com/
http://lucene.apache.org/solr/
http://lucene.apache.org/
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Figure 6.2: Matching queries with entities is performed through a series of pro-
cesses, and may involve either the most promising module (i.e., matching tech-
nique) for the given query, or a combination of different matching modules.

process it. The initial query is then revised by the selected matching module(s) and

send to the entity store. The store processes the query and returns a small set of

entity candidates. These candidate entities are then given to the module(s) for per-

forming matching and identifying the entity that corresponds to the given query.

The following paragraphs provide the details for the main parts involved in this

process.

Matching Modules

Individual matching modules implement their own methods for matching queries

with entities. Naturally, the algorithm of each module will focus on a specific

matching task. For example, we can have matching modules focusing on entities

that do not contain attribute names, or for entities that contain inner-relationships.

As shown in Figure 6.2, modules may also use a local database for storing their

internal data, or even communicate with external sources for retrieving information

useful for their matching algorithm.

In addition to the individual modules, the matching framework can also contain

modules that do not compute matches directly, but by combining the results of other

modules. The current version of aggregators can handle the following two types of
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combination modules:

• Sequential Process: The matching module invokes other modules in a se-

quence, and to each module it gives the results of the previously invoked

modules. Thus, each module refines the entity matches it received. The

resulting entity matches are the ones returned by the last module.

• Parallel Process: The matching module invokes a set of matching modules at

the same time. Each module returns its entity matches (i.e., entity linkages),

and thus this combination module needs to combine their results.

To be able to choose the right modules for each query, the matching frame-

work maintains the profiles of the modules. These profiles contain not only the

module description and classification, but also information on their matching ca-

pabilities. For example, the average time required for processing queries, and the

query formats that they can handle.

Both entity linkage techniques presented in Chapter 5 are possible matching

modules and can be used in the the matching framework of the entity-based aggre-

gation infrastructure. As explained, these techniques generate probabilistic entity

linkage information during the processing of new entities that are given to the in-

frastructure. This information is maintained in the Entity Linkage Management

component.

Query Generation

The entity search planner needs to generate a query for the storage. More specifi-

cally, for the Necessity entity store this corresponds to a Lucene query. Since the

entity store offers very efficient but restricted search functionality, this step might

also require the generation of more that one queries, with the final entity candidate

list being the merging of the entity candidates returned by the entity store for all

generated queries.

As shown in Algorithm 6.1, the query can be enhanced and refined by the

matching modules according to their needs. This might involve query transforma-

tions on the schema level, for adapting from attributes used by the user/applications

to attributes available in the repository, or to include attribute name alternatives, or

to relax the query to the most frequent naming variants.
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Algorithm 6.1: Evaluation of entity search queries.
Input: Query Qe := {A}
Output: Entities E := {〈id1,A1〉, . . ., 〈idκ,Aκ〉}

1 Qs ← generateStoreQuery(Qe) ;
2 MM ← selectMatchingModule(Qs) ;
3 Q′s ← MM.updateQuery(Qs) ;
4 MC ← retrieveEntityCandidates(Q′s) ;
/* ability here to also relax query - if needed (e.g.,

when |MC|=0) */

5 for candidate ∈ MC do
6 score←MM.match(Qe, candidate) ;

/* a module has the capability to also invoke

additional modules */

7 if acceptable(Qe, candidate, score) then
8 R.add(〈 candidate, score〉);
9 end

10 end
11 orderList(R); // based on score;
12 return R

Module Section & Combination

The planner needs to select the best suitable matching module to perform the entity

matching for the given entity. Different options for module selection are possible:

• The aggregator explicitly picks a matching module, a selection which for

example is based on previous experience or because it has the knowledge

that a specialized matching module is more effective when integrating the

data of a specific Social application.

• The matching module is selected based on information in the entities to be

integrated. This may include requirements with respect to performance or

supported entity types.

• The module is selected based on an analysis of the data in the entity to be

integrated, for example existence or not of attribute names.

The entity-aware query processing presented in Chapter 4 is a possible mech-

anism for the combination of matching module results and can be used in the

matching framework of the entity-based aggregation infrastructure. In this case,

the query processing of the infrastructure will be using the probabilistic linkage
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information from the Entity Linkage Management component, which are stored by

the individual matching modules.

6.3 Experimental Evaluation

This section presents the results of our experimental evaluation. The evaluation

was performed using a JAVA 1.6 prototype of the entity-based aggregator (Section

6.3.1). The focus our experiments was to evaluate the effectiveness of the aggrega-

tor (Section 6.3.2) and the scalability of the entity store (Section 6.3.3).

6.3.1 Prototype’s modules, section, and combination

With our current aggregator’s implementation we aim in effectively handling en-

tity queries coming mainly from information extractors. For this we include two

modules, namely “Group Linkage” and “Eureka”.

The currently embedded module selection is rule-based, and proceeds as fol-

lows: We process and analyze the given query. If the query specifies a module

or the entity type correspond to a specific module, then this module is selected.

We then check whether the query contains attribute information, or it is composed

only by keywords. For the first case we select the “Eureka Module”, and for the

latter the “Group Linkage”. This selection criteria was concluded by a series of

evaluation using these two modules.

Group Linkage

This module adopts to our aggregator the algorithm suggested in [OKLS07]. Ac-

cording to this algorithm, an entity matches a candidate when we detect a large

fraction of similarities between predicates from the entity with attribute value pairs

from the matching candidates. To use this algorithm we consider the given en-

tity Q and the matching candidate C as the two entities. The matching probability

between entity Q and matching candidate C is given by:

MP(Q,C) =

∑
∀ai∈Q∀a j∈C

 sim(ai, a j) i f sim > t

0 otherwise

|Q| + |C| − matched pairs,
(6.1)

where |C| gives the number of name-value attribute pairs in the matching candi-

date, |Q| the number of predicates in the entity, and matched pairs the number of
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Table 6.1: A small fragment of the entity queries from Historical Records.

Historical Records

Don Henderson British actor
Jacques-Yves Cousteau French explorer
Fred Zinnemann Austrianborn director
John Carew Eccles Australian neurophysiologist

recipient of the Nobel Prize in Physiology or Medicine
George Wald American scientist recipient of

the Nobel Prize in Physiology or Medicine

sim(ai, a j) higher that threshold t.

Eureka Matching

The matching algorithm of the Eureka module computes the overlap of the predi-

cates in the query with the attributes of the matching candidates. As an initializa-

tion step, the algorithm creates a small local inverted index as follows: Each term

(i.e., word) in the values from the name-value pairs composing the query become

keys in a hash table. We then process the information in each matching candidate

and when we identify a candidate containing one of these values, we add the candi-

date’s identifier with the attribute values to the list of entities of the corresponding

key. The score MP(Q,C) between entity Q and matching candidate C is computed

by:

MP(Q,C) =
∑

∀a1∈Q, ∀a2∈C


1 × importance(a1.name),

i f a1.name = a2.name & a1.value ∈ a2.value

0.5 × importance(a1.name),

i f a1.name = null & a1.name ∈ a2.name
(6.2)

where importance is a weight that reflects the importance of a specific attribute

name, e.g., name is more important than attribute data for entity e5 of Figure 1.2.
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6.3.2 Effectiveness of Aggregation

Datasets

Many applications typically contain local lists of entities, for example members of

organizations, or historic records in online newspapers8. The Historical Records

dataset is composed of such a list of entities. In particular, we use the list main-

tained by Wikipedia for two reasons: (i) it is large, and (ii) the Wikipedia URLs

allow us to retrieve the ground truth for our evaluation.

We crawled all available historical records from Wikipedia and used the col-

lected data about the entities directly in the integration process, i.e., no extraction

process. A small fragment of these entity queries are shown in Table 6.1. Our

process resulted in 3, 381 entities, out of which 2,202 were in the ENS and 1, 179

not in the ENS. In our experiments we used all these entities.

The second dataset is based on the data from Blogosphere, which is one of

the most popular sources of Web 2.0 data. There exist applications that focus on

monitoring new entities of Web blogs for creating new services. To evaluate the

capabilities of our aggregation approach on this data, we crawled entities from a

few blogs9 and used the OpenCalais extractor to retrieve the described entities. A

small fragment of these entity queries is shown in Table 6.2.

This process resulted to a total of 19, 426 entities. We randomly selected some

entities from this dataset and manually identified their corresponding aggregator’s

identifiers. These identifiers were used to automatically evaluate the decisions of

the entity-based integration. For this experiment we detected 200 entities that al-

ready existed in the ENS, and another 200 that were new entities.

Methodology

We performed our evaluation under the following scenario: given a system which

uses our aggregation process with an already sufficiently large entity store, we

integrate the entities from applications and sources described above.

As an existing large store we used the entities extracted and stored in the entity

repository of the OKKAM project. This provided the entity store with 6, 865, 392

entities, which included people and organizations from Wikipedia10, and a large

8Examples: http://en.wikipedia.org/wiki/January_1/, and
http://www.bbc.co.uk/history/historic_figures/

9Example: http://www.barackoblogger.com/
10http://www.wikipedia.org/

http://en.wikipedia.org/wiki/January_1/
http://www.bbc.co.uk/history/historic_figures/
http://www.barackoblogger.com/
http://www.wikipedia.org/
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Table 6.2: A small fragment of the entity queries from Web Blogs.

Web Blogs

name=“John Quincy Adams”
name=“Barbara A. McKinzie”
name=“Ted Kennedy Speech”
name=“Theola Labb??-DeBose”
name=“Geoff McFetridge”
name=“Hillary Rodham Clinton”
name=“Shepard Fairey-Yes We”

amount of geographical entities (e.g., describing countries, cities, roads, moun-

tains, rivers) extracted from GeoNames11. These entities were extracted using Cog-

ito and follow the entity representation model described in [BCPS08], which —in

its simplest form— corresponds to a set of name-value attributes and conforms to

the entity model described in Chapter 3.

For creating a ground truth for the evaluation, the entities we wanted to inte-

grate were equipped with the corresponding entity identifier used within the entity

store (and the aggregator), if the specific entity was already described/integrated

in the data of the aggregator. For performing the evaluation, we posed requests

with each of the queries from the datasets using the functionality of the aggrega-

tor’s matching component, and checked whether the returned identifier was the one

given by the ground truth (Case: Existing Entity). In case the specific entity was

not yet available in the aggregator (Case: New Entity), there should be no identifier

returned by the system.

We measured the overall accuracy of integration decisions as the sum of correct

“Creation decisions” (when a new entity was encountered) and correct “Merge

decisions” (when an existing entity was encountered), divided by the total number

of decisions.

We measure accuracy for two possible system configurations: (1) automatic,

and (2) semi-automatic. A system configured with the automatic configuration

proceeds to entity creations and merges automatically, without requiring feedback

from the user. A system configured to semi-automatic proceeds to entity creations

and entity merges only when it has strong evidence for them. When the evidence is

weaker, the system provides up to three entities, which could match the requested

entity and asks the user to make the final decision.

11http://www.geonames.org/

http://www.geonames.org/
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Figure 6.3: Accuracy of matching modules for two different entity datasets.

Comparison of Modules Effectiveness

We integrated the entities from datasets “Historical Records” and “Web Blogs”

using our matching modules. Figure 6.3 shows the overall accuracy for both the

modules, corresponding to an automatic and a semi-automatic configuration.

As we can see from Figure 6.3, on the “Historical Records” dataset the accu-

racy of module-A is higher than the accuracy of module-B. On the “Web Blogs”

dataset we observe the opposite behavior, that the accuracy of module-B is higher

than the accuracy of module-A. Considering again the differences between the en-

tity descriptions composing these datasets (Tables 6.1 and 6.2), confirms that there

is no single module (i.e., algorithm) that is able to perform the best matching for all

possible descriptions - a statement that is also reflected by the plethora of matching

approaches already suggested in the literature. The ability to incorporate various

algorithms enables our aggregation process to effectively perform entity search

over various data formats coming from various sources and applications.

6.3.3 System Scalability

Entity Dataset

In order to show the scalability of the entity store of our aggregator, we needed a

dataset that would be large and also composed of real data. We generated such a

dataset using the Census12 database. Using this synthetic database, we generated

12http://www.census.gov/genealogy/names/

http://www.census.gov/genealogy/names/
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75 million person entities which follow the distribution of frequently occurring

first names and surnames of US citizen from the 1990. Each entity was describing

a citizen and was composed by the following attribute names: first name, last name,

age, gender, language, and city.

Methodology

Our large-scale experiment was conducted using eight servers of Intel Core2 Quad

CPU@2.40GHz with 8GB RAM. The installation of the aggregator included two

Solr shards and four Voldemort nodes. Two additional machines were used as

clients.

We added the entities from this dataset into the aggregator, and thus indexed

and stored them in the storage layer. We then evaluated our system at different

storage sizes, and more precisely when the aggregator’s store contained 25 million,

50 million, and 75 million entities. For each evaluation, we had several clients (i.e.,

simulating users) that posed queries on the system. Each client performed ten sets

of queries with 100 to 1000 queries per set, i.e, a step of 100 for every request.

Evaluation Results

We used the above methodology to study the behavior of the aggregator when

the number concurrent users increases. Figure 6.4 shows the number of requests

per seconds, averaged over the ten sets, which correspond to the number of the

concurrent users. The figure contains three series, one for each of the considered

storage sizes, i.e., 25, 50, and 75 Millions. Each experiment was reproduced 5

times, using random and unique queries.

As we can see from the results, even with a large number of entities in the

aggregator, the entity store scales almost linearly with the increase of concurrent

clients. For example, in the case of 25 Millions entities indexed and stored, 163

requests per second are processed when 10 clients are concurrently querying the

entity store. Because of the good scalability properties of our architecture, the

total throughput increases with the number of concurrent clients: 255 requests per

second are processed when 40 clients make concurrent queries. Following the

typical behavior of indexing, the average throughput decreases when the index

size gets larger. So, while the time to retrieve an entity from Voldemort remains

constant, independent of the size of the store, the query processing time at the Solr

shards is directly affected by the size of the index.
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Figure 6.4: Average request throughput of the entity store with concurrent users.

6.4 Summary

In this chapter we presented a new approach for enabling aggregators to perform

entity-based integration, leading to more efficient and effective integration for data

from various sources and applications, such as Social and Semantic Web systems.

In particular we equipped aggregators with an Entity-Name-System, which offers

storage and matching functionality for entities. The matching functionality is based

on a generic framework that allows incorporating and combining of an expand-

able set of matching modules. The entity aggregation framework follows the data

model introduced in Chapter 3, and can incorporate the entity linkages techniques

explained in Chapters 4 and 5.



Chapter 7

Conclusions

7.1 Summary

This dissertation introduced a new methodology to address the entity linkage prob-

lem for information spaces created by combining data from various applications.

More specifically, the focus was on handling collections with heterogeneous, un-

certain, and volatile data. The following paragraphs summarize the main contribu-

tions and explain how these overcome the challenges of such data collections, as

these are explained in Section 1.4.

We propose a generic data model for entities and linkages between entities.

The model is able to capture and represent the highly heterogeneous data as these

appear in several applications, for example Web data, and results from data extrac-

tors. The model is probabilistic, enabling the incorporation of the uncertainty on

the entity data and on the linkages. Relying on this model, we proposed an ad-

vanced entity-based query mechanism that exploits linkage information and uncer-

tainty for retrieving entities. The query processing does not maintain the merged

entities but operates directly over the linkage information, thereby enabling the

update of the linkage information when new data is integrated. In addition, we

described how the probabilistic entity linkages can be detected and generated, and

how they address the data heterogeneity. The introduced entity linkage techniques

are incremental, focusing on volatile data and satisfying the requirements of differ-

ent applications. An additional contribution is the entity aggregation framework,

which explains how the introduced techniques are incorporated into a single exten-

sible framework for integrating and searching for entities.

95
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7.2 Ongoing and Future Work

The following paragraphs describe and discuss interesting aspects of ongoing work

and future research.

Scaling Entity Linkage to Large Collections

We have recently witnessed an enormous growth in the volume of structured and

semi-structured data sets available on the Web. One methodology to address the

entity linkage problem in such large volumes of data is through blocking tech-

niques, i.e., by separating the data into blocks and comparing only the data inside

each block. The high dynamics, the loose schema binding, and the heterogene-

ity of (semi-)structured Web data, impose new challenges for generating and pro-

cessing blocks. Existing blocking approaches become inapplicable because they

rely on the homogeneity of the considered data and on a-priory known schemata.

The challenge here is therefore to create methods that can scale to large, noisy,

and heterogeneous data collections. We are currently investigating the possibility

to combine an attribute-agnostic mechanism for building blocks with intelligent

block processing techniques that boost blocks with high expected utility, propa-

gate knowledge about identified matches between entities, and preempt the process

when it becomes too expensive. The initial results, reported in [PINF11], show that

this approach is both effective and efficient.

Provenance for Entity Linkage

From the time that the data are given for integration until the time they are returned

as the result of a query, a number of functions/transformations are applied. This

includes the processing of the data for integration purposes, the generation of the

entity related information (from the linkage techniques), and the usage of the data

during query processing. In addition to the successful final results, many tasks

also require to know the origin of the data, namely the provenance information.

Provenance for our situation should provide information on two levels. The first

is provenance for the original heterogeneous data, such as the source that provided

the data. The second level is for the resulted entity-aware data. For the latter, we

consider information such as the data used for a specific entity representation, or

the considerations that lead to a specific entity linkage.

Considering the above levels, we are planning to work on extending our model
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for including the provenance information. Consequently, an extension of the query

language to allow querying for provenance and to adjust query processing is also

required.

Incremental and Adaptive Entity Linkage Index

As explained in this dissertation, there are two main methodologies for address-

ing the entity linkage problem. The first methodology performs data processing

off-line in order to have the merged entities readily available at query time. The

second methodology maintains the probabilistic linkage information and during

query processing use them on-the-fly to decide and compile the merged entities.

We are currently investigating the possibility of having a technique in between the

two methodologies, combining the best of their aspects. For instance, having the

merged entities readily available at query time is beneficial for entities that are

highly popular and frequently requested. On the other hand, for entities requested

very rarely, or even never, we do not need to generate the merged entities or their

entity linkages a-priori. We want to investigate an adaptive model which balances

the information generated a-priori and on-the-fly by considering the popularity of

each entity as well as its volatility.



98 CHAPTER 7. CONCLUSIONS



Bibliography

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hay-

worth, Shubha U. Nabar, Tomoe Sugihara, and Jennifer Widom.

Trio: A system for data, uncertainty, and lineage. In VLDB, pages

1151–1154, 2006.

[ACG02] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti.

Eliminating fuzzy duplicates in data warehouses. In VLDB, pages

586–597, 2002.

[AFM06] Periklis Andritsos, Ariel Fuxman, and Renée J. Miller. Clean an-

swers over dirty databases: A probabilistic approach. In ICDE,

2006.

[AKO09] Lyublena Antova, Christoph Koch, and Dan Olteanu. 10(106)

worlds and beyond: efficient representation and processing of in-

complete information. VLDB Journal, 18(5):1021–1040, 2009.

[AMNR+06] Boanerges Aleman-Meza, Meenakshi Nagarajan, Cartic Ramakr-

ishnan, Li Ding, Pranam Kolari, Amit P. Sheth, Ismailcem Budak

Arpinar, Anupam Joshi, and Tim Finin. Semantic analytics on so-

cial networks: Experiences in addressing the problem of conflict of

interest detection. In WWW, pages 407–416, 2006.

[AO05] Akiko N. Aizawa and Keizo Oyama. A fast linkage detection

scheme for multi-source information integration. In WIRI, pages

30–39, 2005.

[AR07] Eytan Adar and Christopher Re. Managing uncertainty in social

networks. IEEE Data Engineering Bulletin, pages 15–22, 2007.

99



100 BIBLIOGRAPHY

[BCFM98] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael

Mitzenmacher. Min-wise independent permutations (extended ab-

stract). In STOC, pages 327–336, 1998.

[BCG05] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH forest:

self-tuning indexes for similarity search. In WWW, pages 651–660,

2005.

[BCPS08] Barbara Bazzanella, Junaid Ahsenali Chaudhry, Themis Palpanas,

and Heiko Stoermer. Towards a general entity representation model.

In SWAP, 2008.

[BG04a] Indrajit Bhattacharya and Lise Getoor. Deduplication and group

detection using links. In LinkKDD, 2004.

[BG04b] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for

cleaning and integration. In DMKD, pages 11–18, 2004.

[BGMM+09] Omar Benjelloun, Hector Garcia-Molina, David Menestrina, Qi Su,

Steven Euijong Whang, and Jennifer Widom. Swoosh: a generic

approach to entity resolution. VLDB Journal, 18(1):255–276, 2009.

[BM05] Ron Bekkerman and Andrew McCallum. Disambiguating web ap-

pearances of people in a social network. In WWW, pages 463–470,

2005.

[BMC+03] Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep

Ravikumar, and Stephen E. Fienberg. Adaptive name matching

in information integration. IEEE Intelligent Systems, 18(5):16–23,

2003.

[BNV07] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring xml

schema definitions from xml data. In VLDB, pages 998–1009, 2007.

[CGGM03] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Mot-

wani. Robust and efficient fuzzy match for online data cleaning. In

SIGMOD Conference, pages 313–324, 2003.

[Cha02] Moses S. Charikar. Similarity estimation techniques from rounding

algorithms. In STOC, pages 327–336, 2002.



BIBLIOGRAPHY 101

[Coh00] William W. Cohen. Data integration using similarity joins and a

word-based information representation language. ACM Transac-

tions on Information Systems (TOIS), 18(3):288–321, 2000.

[CR01] W. Cohen and J. Richman. Learning to match and cluster entity

names. In MF/IR Workshop co-located with SIGIR, 2001.

[CRF03] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg.

A comparison of string distance metrics for name-matching tasks.

In IIWeb co-located with IJCAI, pages 73–78, 2003.

[DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in

the database community: A brief survey. AI Magazine, 26(1):83–94,

2005.

[DH07] Xin Dong and Alon Y. Halevy. Indexing dataspaces. In SIGMOD

Conference, pages 43–54, 2007.

[DHM05] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference recon-

ciliation in complex information spaces. In SIGMOD Conference,

pages 85–96, 2005.

[DHY07] Xin Luna Dong, Alon Y. Halevy, and Cong Yu. Data integration

with uncertainty. In VLDB, pages 687–698, 2007.

[DJ03] T. Dasu and T. Johnson. Exploratory Data Mining and Data Clean-

ing. John Wiley, 2003.

[DKP+09] Nilesh N. Dalvi, Ravi Kumar, Bo Pang, Raghu Ramakrishnan,

Andrew Tomkins, Philip Bohannon, Sathiya Keerthi, and Srujana

Merugu. A web of concepts. In PODS, pages 1–12, 2009.

[DLLH03] AnHai Doan, Ying Lu, Yoonkyong Lee, and Jiawei Han. Object

matching for information integration: A profiler-based approach. In

IIWeb co-located with IJCAI, pages 53–58, 2003.

[DS07a] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on prob-

abilistic databases. VLDB Journal, 16(4):523–544, 2007.

[DS07b] Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data:

foundations and challenges. In PODS, pages 1–12, 2007.



102 BIBLIOGRAPHY

[DS07c] Nilesh N. Dalvi and Dan Suciu. Management of probabilistic data:

foundations and challenges. In PODS, pages 1–12, 2007.

[dVKCC09] Timothy de Vries, Hui Ke, Sanjay Chawla, and Peter Christen. Ro-

bust record linkage blocking using suffix arrays. In CIKM, pages

305–314, 2009.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S.

Verykios. Duplicate record detection: A survey. IEEE Transactions

on Knowledge and Data Engineering, 19(1):1–16, 2007.

[GD05] Lise Getoor and Christopher P. Diehl. Link mining: a survey.

SIGKDD Explorations, 7(2):3–12, 2005.

[GIJ+01] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas,

S. Muthukrishnan, and Divesh Srivastava. Approximate string joins

in a database (almost) for free. In VLDB, pages 491–500, 2001.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity

search in high dimensions via hashing. In VLDB, pages 432–442,

1999.

[GM03] Ramanathan V. Guha and Rob McCool. TAP: a semantic web plat-

form. Computer Networks, 42(5):557–577, 2003.

[GS06] Rahul Gupta and Sunita Sarawagi. Creating probabilistic databases

from information extraction models. In VLDB, pages 965–976,

2006.

[HFM06] Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles

of dataspace systems. In PODS, pages 1–9, 2006.

[HS95] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge

problem for large databases. In SIGMOD Conference, pages 127–

138, 1995.

[HS98] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is

dirty: Data cleansing and the merge/purge problem. Data Mining

and Knowledge Discovery, 2(1):9–37, 1998.



BIBLIOGRAPHY 103

[INN08] Ekaterini Ioannou, Claudia Niederée, and Wolfgang Nejdl. Prob-

abilistic entity linkage for heterogeneous information spaces. In

CAiSE, pages 556–570, 2008.

[INNV10] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, and Yannis

Velegrakis. On-the-fly entity-aware query processing in the presence

of linkage. PVLDB, 3(1):429–438, 2010.

[INNV11] Ekaterini Ioannou, Wolfgang Nejdl, Claudia Niederée, and Yannis

Velegrakis. LinkDB: A probabilistic linkage database system. In

SIGMOD Conference, 2011.

[INV] Ekaterini Ioannou, Claudia Niederée, and Yannis Velegrakis.

Searching web 2.0 data through entity-based aggregation. Technical

Report.

[INV10] Ekaterini Ioannou, Claudia Niederée, and Yannis Velegrakis. En-

abling entity-based aggregators for web 2.0 data. In WWW, pages

1119–1120, 2010.

[Ioa09] Ekaterini Ioannou. Entity-aware query processing for heterogeneous

data with uncertainty and correlations. In Joint EDBT/ICDT Ph.D.

Workshop, 2009.

[IPSN10] Ekaterini Ioannou, Odysseas Papapetrou, Dimitrios Skoutas, and

Wolfgang Nejdl. Efficient semantic-aware detection of near dupli-

cate resources. In ESWC, pages 136–150, 2010.

[ISB+09] Ekaterini Ioannou, Saket Sathe, Nicolas Bonvin, Anshul Jain,

Srikanth Bondalapati, Gleb Skobeltsyn, Claudia Niederée, and

Zoltán Miklós. Entity search with NECESSITY. In WebDB Work-

shop co-located with SIGMOD, 2009.

[Jar89] Matthew A. Jaro. Advances in record-linkage methodology as ap-

plied to matching the 1985 census of tampa, florida. American Sta-

tistical Association, 84, 1989.

[Jen01] Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2001.



104 BIBLIOGRAPHY

[JLM03] Liang Jin, Chen Li, and Sharad Mehrotra. Efficient record linkage

in large data sets. In DASFAA, 2003.

[KM06] Dmitri V. Kalashnikov and Sharad Mehrotra. Domain-independent

data cleaning via analysis of entity-relationship graph. ACM Trans-

actions on Database Systems (TODS), 31(2):716–767, 2006.

[KMC05] Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploit-

ing relationships for domain-independent data cleaning. In SIAM

SDM, 2005.

[KMS04] Nick Koudas, Amit Marathe, and Divesh Srivastava. Flexible string

matching against large databases in practice. In VLDB, pages 1078–

1086, 2004.

[KSS06] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record link-

age: similarity measures and algorithms. In SIGMOD Conference,

pages 802–803, 2006.

[LC08] Ming Zhong 0002, Mengchi Liu, and Qian Chen. Modeling hetero-

geneous data in dataspace. In IRI, pages 404–409, 2008.

[Len02] Maurizio Lenzerini. Data integration: A theoretical perspective. In

PODS, pages 233–246, 2002.

[Lev66] VI Levenshtein. Binary codes capable of correcting deletions, inser-

tions and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[LMR05] Xin Li, Paul Morie, and Dan Roth. Semantic integration in text:

From ambiguous names to identifiable entities. AI Magazine,

26(1):45–58, 2005.

[MBB+10] Zoltán Miklós, Nicolas Bonvin, Paolo Bouquet, Michele Catasta,

Daniele Cordioli, Peter Fankhauser, Julien Gaugaz, Ekaterini Ioan-

nou, Hristo Koshutanski, Antonio Maña, Claudia Niederée, Themis

Palpanas, and Heiko Stoermer. From web data to entities and back.

In CAiSE, pages 302–316, 2010.

[MJS07] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. De-

tecting near-duplicates for web crawling. In WWW, pages 141–150,

2007.



BIBLIOGRAPHY 105

[MNU00] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Efficient

clustering of high-dimensional data sets with application to refer-

ence matching. In KDD, pages 169–178, 2000.

[Mor68] Donald R. Morrison. PATRICIA - practical algorithm to retrieve

information coded in alphanumeric. J. ACM, 1968.

[MPC+10] Enrico Minack, Raluca Paiu, Stefania Costache, Gianluca Demar-

tini, Julien Gaugaz, Ekaterini Ioannou, Paul-Alexandru Chirita, and

Wolfgang Nejdl. Leveraging personal metadata for desktop search:

The Beagle++ system. Journal of Web Semantics, 8(1):37–54,

2010.

[MVB08] Alexis Morris, Yannis Velegrakis, and Paolo Bouquet. Entity iden-

tification on the semantic web. In SWAP, 2008.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching.

ACM Computing Surveys, 33(1):31–88, 2001.

[OKLS07] Byung-Won On, Nick Koudas, Dongwon Lee, and Divesh Srivas-

tava. Group linkage. In ICDE, pages 496–505, 2007.

[Ope] Open Calais. http://www.opencalais.com/.

[OS99] Aris M. Ouksel and Amit P. Sheth. Semantic interoperability in

global information systems: A brief introduction to the research area

and the special section. SIGMOD Record, 28(1):5–12, 1999.

[PD04] Parag and P. Domingos. Multi-relational record linkage. In MRDM

Workshop co-located with KDD, pages 31–48, 2004.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks

of plausible inference. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 1988.

[PINF11] George Papadakis, Ekaterini Ioannou, Claudia Niederée, and Peter

Fankhauser. Efficient entity resolution for large heterogeneous in-

formation spaces. In WSDM, pages 535–544, 2011.

[RDS07] Christopher Re, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k

query evaluation on probabilistic data. In ICDE, pages 886–895,

2007.



106 BIBLIOGRAPHY

[RS08] Christopher Re and Dan Suciu. Managing probabilistic data with

MystiQ: The can-do, the could-do, and the can’t-do. In SUM, pages

5–18, 2008.

[RVMB09] Flavio Rizzolo, Yannis Velegrakis, John Mylopoulos, and Siarhei

Bykau. Modeling concept evolution: A historical perspective. In

ER, pages 331–345, 2009.

[SB02] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplica-

tion using active learning. In KDD, pages 269–278, 2002.

[SD07] Prithviraj Sen and Amol Deshpande. Representing and querying

correlated tuples in probabilistic databases. In ICDE, pages 596–

605, 2007.

[SI] Slawek Staworko and Ekaterini Ioannou. Management of incon-

sistencies in data integration. Chapter to be included in Dagstuhl

Follow-up Series on Data Exchange, Integration, and Streams.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Infor-

mation Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[SV07] Divesh Srivastava and Yannis Velegrakis. Intensional associations

between data and metadata. In SIGMOD Conference, pages 401–

412, 2007.

[TKM02] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning

domain-independent string transformation weights for high accu-

racy object identification. In KDD, pages 350–359, 2002.

[Vel08] Yannis Velegrakis. On the importance of updates in information

integration and data exchange systems. In DBISP2P, 2008.

[Win99] William Winkler. The state of record linkage and current research

problems, 1999.

[WMK+09] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Mar-

tin Theobald, and Hector Garcia-Molina. Entity resolution with it-

erative blocking. In SIGMOD Conference, pages 219–232, 2009.


	Zusammenfassung
	Abstract
	Tables
	Algorithms
	Figures
	Introduction
	Motivation
	Challenges
	Summary of the Approach
	Contributions
	I.   Modeling Entities and Linkages
	II.  Entity Linkage Detection
	III. Query Answering under Probabilistic Linkages

	Structure of the Dissertation

	Related Work
	Atomic Similarity Methods
	Entities as sets of data
	Facilitating inner-relationships
	Methods in Uncertain Data

	Probabilistic Linkage Database
	Entities and Linkages
	Dealing with Uncertainty
	Summary

	Dealing with Probabilistic Linkages
	Representing & Indexing Factors
	Deciding the Entity Merges
	Computing l-world probabilities
	Possible worlds and their probabilities
	Experimental Evaluation
	Approaches under Consideration
	Datasets
	Evaluation Results

	Summary

	Detecting Entity Linkages
	Linkages based on evidences
	A Brief Review of Bayesian Networks and Inference
	Structure of the Bayesian Network
	Incremental Computation of the Network
	Step 1 - Adding Entity & Evidence Nodes.
	Step 2 - Adding Direct-Relation Nodes.
	Step 3 - Adding Deductive-Relation Nodes.
	Step 4 - Updating the Linkages.

	Experimental Evaluation

	Linkages based on RDF structure
	Overview of RDFsim
	Resource Representation
	Indexing Structure
	Retrieving Linkages
	Experimental Evaluation
	Prototype Implementation
	Evaluation Results


	Summary

	Entity Aggregation Framework
	NECESSITY Entity Store
	Matching Framework
	Experimental Evaluation
	Prototype's modules, section, and combination
	Effectiveness of Aggregation
	System Scalability

	Summary

	Conclusions
	Summary
	Ongoing and Future Work

	Bibliography

