
Enabling Entity-Based Aggregators for Web 2.0 data

Ekaterini Ioannou
L3S Research Center

ioannou@L3S.de

Claudia Niederée
L3S Research Center

niederee@L3S.de

Yannis Velegrakis
University of Trento

velgias@disi.unitn.eu

ABSTRACT
Selecting and presenting content culled from multiple heteroge-
neous and physically distributed sources is a challenging task. The
exponential growth of the web data in modern times has brought
new requirements to such integration systems. Data is not any
more produced by content providers alone, but also from regular
users through the highly popular Web 2.0 social and semantic web
applications. The plethora of the available web content, increased
its demand by regular users who could not any more wait the de-
velopment of advanced integration tools. They wanted to be able to
build in a short time their own specialized integration applications.
Aggregators came to the risk of these users. They allowed them not
only to combine distributed content, but also to process it in ways
that generate new services available for further consumption.

To cope with the heterogeneous data, the Linked Data initiative
aims at the creation and exploitation of correspondences across data
values. In this work, although we share the Linked Data commu-
nity vision, we advocate that for the modern web, linking at the
data value level is not enough. Aggregators should base their inte-
gration tasks on the concept of an entity, i.e., identifying whether
different pieces of information correspond to the same real world
entity, such as an event or a person. We describe our theory, system,
and experimental results that illustrate the approach’s effectiveness.

Categories and Subject Descriptors: I.2.3: Resolution, D.2.2
[Software Engineering]: Design Tools and Techniques.

General Terms: Design, Algorithms.

Keywords: Entity Matching, Linked Data, Semantic Web.

1. INTRODUCTION
The paramount success of Wikipedia, Blogosphere, and other

similar Social Web applications, are live evidences of the bene-
fits that collaborative content creation can offer and of the fact that
user-generated content can grow large both in terms of size, com-
plexity, and importance. This increased the demand for integration
tasks that the technical workforce could not easily cope with. An
important breakthrough, was the development of mashups [7] tech-
nologies. Mashups [7] are designed for easy and fast integration
tasks using open APIs and data sources. They typically combine
data or functionality of many sources to create a new service.

This moved much of the developing burden for reusing and in-
tegrating existing web content for social and Web 2.0 applications
from the technical experts, to the general public of web users [1]. It
also allowed applications, such as DBPedia, Freebase, Spock, and

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Figure 1: Aggregator Matching Component Architecture

DBLife, to easily incorporate knowledge already collected by other
applications [4].

The linked-data initiative [3], currently taking place in the web
community, comes to the aid of integration. The aim is to build
the infrastructure for re-using and interlinking existing data from
different sources by relying on (Semantic) Web standards and prin-
ciples for data publication on the Web. The challenge is to align
multiple representations of the same real world object, or deal with
URI aliases, typically represented as owl:same statements between
resources. This will support the integration developer by facilitat-
ing the task of identifying different representations of the same ob-
jects across different sources, leaving him/her with only the task of
combining these representations as suits best the application under
development.

Unfortunately, the plethora of existing data matching algorithms
[5] suggest the inability of a single matching algorithm to address
the matching problem. We advocate an integration framework that
is based on entities, instead of data structures like simple atomic
values or tuples. We describe an entity matching framework that
employees an extensible set of matching modules, each based on
a different matching technique. Matching is performed as a series
of steps that include selection of the most appropriate matching
algorithm and combination of results from more than one modules.

2. ENTITY-BASED AGGREGATORS
Entities are the artifacts used to model real world objects and

concepts. The characteristics of a real world object are modeled in
an entity through a series of attributes. An attribute is a name-value
pair, where the value can be an atomic value, or an identifier of
another entity. This model is generic and flexible enough to repre-
sent relational, semi-structured, and RDF data [9],while at the same
time, is closer to the human thinking. An entity has an identifier
that has been assigned locally in the aggregator, and a set of alter-
native identifiers that correspond to identifiers given for the same
real world object from other web sources. The goals of an aggrega-



tor is bifold: (i) process incoming queries describing an entity, and
identify whether such an entity already exists in the system, and (ii)
effectively merge the data of matched entities in order to maintain
the repository.

Fig. 1 illustrates our aggregator’s infrastructure. It incorporates
an entity storage component, which in our current implementation
uses the Necessity system [6]. This system provides a repository
of entity profiles, i.e., entities alongside their attributes, and an in-
dex for efficient entity retrieval. The reason for including an entity
store in our aggregators is to reduced the set of candidates in order
to provide less data to the matching modules, since the matching
algorithms are typically performing a lot of heavy operations.

When a query describing an entity is received, the matching
framework invokes the entity matching component. This compo-
nent first analyses this query to generates an initial query for the
entity store, and identifies the matching module or modules that
would more effectively evaluate the query. The initial query is then
revised by the selected matching module(s) and send to the entity
store. The store processes the query and returns a small set of entity
candidates. These candidate entities are then given to the module(s)
for performing matching and identifying the entity that corresponds
to the given query. The following paragraphs provide the details for
the main parts involved in this process.

Query Generation. The entity matching component needs to
generate a query for the storage, which for the Necessity store used
corresponds to a Lucene query. Since the store offers very efficient
but restricted search functionality, this step might also require the
generation of more that one queries, with the final entity candidate
list being the merging of the entity candidates returned by the store
for all generated queries. In addition, the query can be enhanced
and refined by the matching modules according to their needs, e.g.,
transformations on the schema level, or query relaxation.

Matching Modules. Individual matching modules implement
their own method for matching queries with entity profiles, with
each module focusing on a specific matching task (e.g., matching
in the absence of attribute names, or using associations). Modules
may also use a local database for storing their internal data, or even
communicate with external sources for retrieving information use-
ful for their matching algorithm.

In addition to individual modules, the matching framework can
also contain modules that do not compute matches directly, but by
combining the results of other modules. One methodology is the
sequential processing, where a module invokes other modules in
a sequence. So, each module receives the results of previously in-
voked module, and the resulted entity matches are the ones returned
by the last module.

The other possible methodology is parallel processing, where a
module invokes a set of modules at the same time. Once all mod-
ules return their matches, the module needs to combine their results
to a final list. This process has recently attracted research attention
and especially for probabilistic data. For example, the approach
presented in [2] aims at identifying the most possible entity merge
from the ones generated by various algorithms.

Module Section. To know the abilities of each module, the
matching framework maintains the profiles of the modules. These
profiles do not only contain module description and classification,
but also information about their matching capabilities. For exam-
ple, the average time required for processing queries, and the query
formats that they can handle.

The module profile along with the information of the query are
used for selecting the module that is more appropriate for evaluat-
ing the specific query. For example, this may include requirements
with respect to performance, existence or not of attribute names.

Module Selection & Result Combination. The current aggre-
gator’s implementation aims at effectively handling entity queries
coming from free text (i.e., keywords) and from information extrac-
tors such as OpenCalais1 or Cogito 2. We employ two modules, the
‘Group Linkage’ invoked when the query contains attribute names
and the ‘Eureka’ module invoked in the absence of attribute names.
The first is an adaptation of the algorithm suggested in [8], and
computes matches by detecting the similarity fraction between the
attributes from the query and the attributes of the entity profile in
the store. The second module deals with the lack of attribute names
in the queries by using importance weights on the attribute names
in the entity profiles, e.g., matching with attribute names full_name
will have a higher score than with residence.

3. EXPERIMENTAL EVALUATION
Our evaluation aimed at investigating efficiency and effective-

ness of matching via entity-based aggregation of Web 2.0 data. We
imported in our entity store 6.865.392 entities coming from people
and organizations from Wikipedia, and geographical entities (e.g.,
describing countries, cities, mountains) from GeoNames. We then
evaluated entity matching with the following query sets:

(A) Queries created by data generated using the OpenCalais ex-
tractor from news events, e.g., “ name=‘Carla Boni’ position=‘singer’
country=‘italian’ medicalCondition=‘long illness’ ”. Our approach
was able to correctly match and return the requested entity as the
first answer for 81% of the queries with exeuction time 0.02 sec-
onds (average over 2.000 queries).

(B) Queries created by collecting text describing entities as avail-
able on Web pages, e.g., “Jacques-Yves Cousteau French explorer”.
Entities were returned as the first answer for 74% with execution
time 0.03 seconds (average over 2.000 queries).

Please contact the authors for entity dataset and queries.

4. CONCLUSIONS
In this work we presented an approach for entity-based aggre-

gators that lead to more efficient and effective integration of Web
2.0 data. Ongoing work includes the investigation of matching in
the presence of associations, which should be also considered to
improve aggregation’s performance and quality. We also aim at
improving aggregation through external knowledge, e.g., WordNet.

Acknowledgments. This work is partially supported by FP7 EU
Project OKKAM (contract no. ICT-215032).

5. REFERENCES
[1] S. Amer-Yahia, V. Markl, A. Y. Halevy, A. Doan, G. Alonso, D. Kossmann,

and G. Weikum. Databases and web 2.0 panel at vldb 2007. SIGMOD Record,
2008.

[2] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases:
A probabilistic approach. In ICDE, 2006.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The story so far.
IJSWIS, 2009.

[4] N. N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon,
S. Keerthi, and S. Merugu. A web of concepts. In PODS, 2009.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Trans. Knowl. Data Eng., 2007.

[6] E. Ioannou, S. Sathe, N. Bonvin, A. Jain, S. Bondalapati, G. Skobeltsyn,
C. Niederée, and Z. Miklos. Entity Search with Necessity. In WebDB, 2009.

[7] G. D. Lorenzo, H. Hacid, H. young Paik, and B. Benatallah. Data integration
in mashups. SIGMOD Rec., 2009.

[8] B.-W. On, N. Koudas, D. Lee, and D. Srivastava. Group linkage. In ICDE,
2007.

[9] M. Zhong, M. Liu, and Q. Chen. Modeling heterogeneous data in dataspace.
In IEEE IRI, 2008.

1http://www.opencalais.com/
2http://www.expertsystem.net/page.asp?id=1515/


