
Efficient Entity Resolution for
Large Heterogeneous Information Spaces

George Papadakis
L3S Research Center
Hannover, Germany

papadakis@L3S.de

Ekaterini Ioannou
L3S Research Center
Hannover, Germany
ioannou@L3S.de

Claudia Niederée
L3S Research Center
Hannover, Germany

niederee@L3S.de

Peter Fankhauser
∗

Fraunhofer IPSI
Darmstadt, Germany

fankhaus@ipsi.fhg.de

ABSTRACT
We have recently witnessed an enormous growth in the volume
of structured and semi-structured data sets available on the Web.
An important prerequisite for using and combining such data sets
is the detection and merge of information that describes the same
real-world entities, a task known as Entity Resolution. To make
this quadratic task efficient, blocking techniques are typically em-
ployed. However, the high dynamics, loose schema binding, and
heterogeneity of (semi-)structured data, impose new challenges to
entity resolution. Existing blocking approaches become inapplica-
ble because they rely on the homogeneity of the considered data
and a-priory known schemata. In this paper, we introduce a novel
approach for entity resolution, scaling it up for large, noisy, and het-
erogeneous information spaces. It combines an attribute-agnostic
mechanism for building blocks with intelligent block processing
techniques that boost blocks with high expected utility, propagate
knowledge about identified matches, and preempt the resolution
process when it gets too expensive. Our extensive evaluation on
real-world, large, heterogeneous data sets verifies that the suggested
approach is both effective and efficient.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information filtering

General Terms
Algorithms, Experimentation, Performance

Keywords
Data Cleaning, Entity Resolution, Attribute-Agnostic Blocking

1. INTRODUCTION
Due to the success of Social and Semantic Web applications, as

well as the establishment of standards and best practices for pub-
lishing and exchanging data on the Web, a large and quickly grow-
ing volume of structured and semi-structured data sets has become
available on the Web. The resulting data sets, such as Wikipedia1

∗This work was done while the author was at L3S Research Center.
1http://www.wikipedia.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02 ...$10.00.

and Freebase2, are composed of data originating from a variety of
sources, including information extractors, user-generated content,
as well as preexisting and reused content that is combined in new
ways. These data sets form large, loosely structured, and valuable
information spaces, which exhibit unprecedented levels of hetero-
geneity, both in terms of the schemata describing the same entity
types, and in terms of the separate profiles describing the same
entity. Google Base3, for instance, encompasses 100, 000 distinct
schemata corresponding to 10, 000 entity types [16].

At the same time systems that aggregate, reuse, and combine
such data collections are gaining popularity (e.g., Yahoo! Pipes4

and other mashup solutions) due to their ability to leverage the ef-
fort invested in the creation of the individual data sets. This raises
the need for effective integration solutions that can deal with such
heterogeneous, noisy, and constantly expanding data collections
through an effective, as well as efficient methodology. An impor-
tant task in data integration is Entity Resolution (ER), also called
De-duplication [3, 8].

Characteristics & Challenges. ER deals with the identification
and merging of data that describe the same real-world entity, e.g., a
person, a product, or a location. A variety of effective and efficient
ER approaches exist [7, 23]. However, their fundamental assump-
tions are broken by the (semi-)structured data sets of the Web of
Data,due to the inherent characteristics of the latter:

• Loose schema binding, since the schemata describing entities
may range from locally defined to pure tag-style annotations.

• Noise, missing, and inconsistent values, introduced by ex-
traction errors, sources of low quality, and use of alternative
descriptions. As a result, entity profiles may involve defi-
cient, or even false information.

• Large, heterogeneous information spaces, composed of data
stemming from a variety of sources and applications.

In these settings, existing ER techniques and especially block-
ing techniques are not applicable: in the core, ER is a quadratic
process, as every entity needs to be compared with all other enti-
ties. To make ER techniques applicable to large data sets, blocking
mechanisms [7, 4, 22] have been introduced. They use schema in-
formation to split the data into blocks, so that it suffices to conduct
comparisons only between entities placed within the same block.
More precisely, they identify the most appropriate attributes (usu-
ally the most distinctive ones), and then derive effective blocking
criteria from them, possibly combining several blocking criteria
into a blocking schema [18]. As such, these approaches heavily
2http://www.freebase.com
3http://www.google.com/base
4http://pipes.yahoo.com

p1 name acronym head ...
United Nations Children’s Fund unicef p4 ...

p2 name position residence
Ann Veneman unicef California

p3 organization status
unicef Fund active

p4 firstName lastName residence
Ann Veneman California

(a) Four entity profiles.

residence name firstName ...
p2, p4 p1, p2 p4 pi,p j,pk ...

(b) Blocks with traditional mechanism.

Veneman unicef California ...
p2, p4 p1, p2, p3 p2, p4 pi, p j ...

(c) Attribute-agnostic blocks.

Figure 1: An illustration of (a) entity profiles, and (b) blocks with a
traditional approach and (c) with our approach. All entities that are
grouped together in one box are considered to be in the same block.

depend on the existence of an a priori known binding schema, thus
being tailored to homogeneous data sets.

Consider, for example, the entities depicted in Figure 1(a). They
are represented as a set of attributes comprised of a name (shown
in bold) and a value. To process these entities, existing approaches
would build blocks based on one or more selected attribute names.
For each attribute name they would create blocks containing those
entities that share the same corresponding value (possibly after ap-
plying a function to the respective values). Figure 1(b) shows the
possible resulting blocks using different attribute names as block-
ing criteria. As we can see, some of the generated blocks, such as
that of the attribute ‘residence’, indeed group together entity pro-
files that refer to the same real-world objects (p2 and p4 in partic-
ular). However, this process is not always successful, and some of
the blocking criteria fail. This is the case, for instance, with the at-
tributes ‘name’, ‘firstName’, and ‘lastName’, since entities p1 and
p2, that describe the same object, are split in three separate blocks.

Applying a schema matching method to address this problem is
not possible in the settings we consider, due to the overabundance
of schemata and attributes, the high change rates, and the subtle
differences in the meaning of attributes that the (user-generated)
Web data encompasses [16].

Approach & Contributions. For handling such data sets there
is a need for methodologies that —apart from being effective in cor-
rectly identifying duplicates— are also efficient enough to scale up
to their large volume. In this paper, we introduce a novel approach
to blocking that accommodates such information spaces through
an attribute-agnostic mechanism. In essence, it is based on the idea
that profiles of duplicate entities have at least one value in common,
independently of the corresponding attribute names. Therefore, all
entities that contain the same token in any attribute of their profile
are placed in one block (i.e., we use an attribute-agnostic blocking
condition). The approach is thus very robust against heterogeneity,
noise, and loose schema binding, as is illustrated in Figure 1(c).

However, this results in a high level of redundancy, since each
entity is placed in multiple blocks that are inevitably overlapping,
inevitably increasing the number of required comparisons. In or-
der to make our approach efficient and scalable, we combine the
attribute-agnostic block building with intelligent ways of block pro-
cessing: utility-based block scheduling, duplicate propagation, and
early detection of the blocks that are unlikely to contain undetected
duplicates.

The approach we present here focuses on identifying duplicates
between different data sets, with the individual data collections that
compose the input to our method containing no matching entities in
themselves. Furthermore, we focus on enhancing the effectiveness
and the efficiency of the blocking method in heterogeneous settings.
Thus, we do not present a method for the detailed comparison of
entity profiles, but introduce a method that serves as an underlying
layer, capable of accommodating on top of it different methods for
the detailed comparison of entity profiles. For our evaluation, we
assume the existence of an oracle: when comparing two profiles, it
always judges correctly whether they are duplicates or not. This is
in line with the best practice of other blocking approaches proposed
in the literature, such as [2, 18].

The main contributions of this paper are the following:

• We introduce the attribute-agnostic blocking methodology as
an effective and robust technique for grouping into blocks en-
tities of noisy, loosely structured, and highly heterogeneous
data sets.

• We introduce the notion of block utility and provide an esti-
mation for it through a probabilistic analysis. We also demon-
strate that scheduling blocks according to their utility enables
a set of strategies that enhance the efficiency and foster the
scalability of the ER process.

• We evaluate our blocking solution through extensive experi-
ments on two large data sets, stemming from real-world ap-
plications. The outcomes of our experiments demonstrate the
effectiveness and scalability of our approach.

Organization. The rest of the paper is structured as follows. In
Section 2 we discuss related work, and in Section 3 we present a
formal definition of the problem. Section 4 introduces and explains
our approach, while Section 5 reports the results of our experimen-
tal evaluation. Finally, Section 6 provides conclusions and direc-
tions for future work.

2. RELATED WORK
A plethora of algorithms have been proposed in the literature

with the aim of effectively identifying data that describe the same
real-world entities. Suggested methods span from string similarity
metrics [3], to similarity methods using transformations [20, 21],
and relationships between data [6, 12, 14]. A complete overview of
the existing work in this domain can be found in [5, 7, 15].

As noted in [7], the prevalent method for enhancing the effi-
ciency of the resolution process is data blocking. Relevant methods
typically associate each record with a Blocking Key Value (BKV)
summarizing the values of selected attributes and then operate ex-
clusively on it. The Sorted Neighborhood approach [11], for in-
stance, sorts records according to their BKV and then slides a win-
dow of fixed size over them, comparing the records it contains. The
StringMap method [13] maps the BKV of each record to a multi-
dimensional Euclidean space, and employs suitable data structures
for efficiently identifying pairs of similar records. Alternatively, the
q-grams based blocking presented in [9] builds overlapping clusters
of records that share at least one q-gram (i.e., sub-string of length
q) of their BKV. Canopy clustering [17] employs a cheap string
similarity metric for building high-dimensional overlapping blocks,
whereas the Suffix Arrays approach, coined in [1] and enhanced
in [4], considers the suffixes of the BKV instead. As marked in [4],
the performance of existing blocking methods depends on a wealth
of application- and data-specific parameters. The error character-
istics in the data to be linked, for example, affect the performance

of the similarity metric used by canopy clustering, whereas the dis-
tribution of values affects the optimal window size of the Sorted
Neighborhood approach.

To facilitate parameter setting, several proposed methods au-
tomate this procedure with the help of machine learning. More
specifically, [18] models this problem as learning disjunctive sets
of conjunctions that consist of an attribute (used for blocking) and
a method (used for comparing the corresponding values). A typ-
ical machine learning algorithm is then applied, yielding a signif-
icant improvement over the parameters manually set by experts.
Similarly, [2] considers disjunctions of blocking predicates (i.e.,
conjunctions of attributes and methods) along with predicates com-
bined in disjunctive normal form (DNF) and compares them against
canopy clustering. The experimental evaluation suggests that DNF
predicates have the best performance, with the disjunctive ones out-
performing solely canopy clustering. However, these approaches
are only applicable to data sets having a schema with a restricted
number of distinct attributes.

An alternative approach for improving blocking techniques is in-
troduced in [22]. This work argues that more duplicates can be
detected and more pair-wise comparisons can be saved through
the iterative distribution of identified matches to subsequently (re-
)processed blocks. In this way, both the effectiveness and the ef-
ficiency of the ER process can be improved. Similarly to the rest
of the existing techniques, this method assumes an a priori known
schema that contains a limited number of agreed upon attributes.
Therefore, it cannot deal with the unstructured and semi-structured
noisy data coming from the Web [7]. Our approach explores this
direction through the attribute-agnostic processing of the data.

3. PROBLEM DEFINITION
Our aim is to develop an ER technique that can be efficiently ap-

plied in use cases where large volumes of noisy and heterogeneous
data are prevalent. In this context, we cannot make assumptions on
the used schemata, but we rather have to consider data sets that gen-
erally represent domain entities, along with their properties and re-
lationships. To describe the problem more succinctly, we introduce
a unifying data model with simple entity profiles that corresponds
to real-world entities. These profiles are basically composed of a
local ID (i.e., an identifier of this profile in the considered data set)
coupled with a set of attributes and the corresponding values. As-
suming an infinite set of attribute namesAN , along with an infinite
set of possible values V, and an infinite set of identifiers ID, an
entity profile p is formally defined as follows:

Definition 1. An entity profile p is a tuple 〈id, Ap〉, where Ap

is a set of attributes ai, and id ∈ ID is a local identifier for the
profile. Each attribute ai ∈ Ap is a tuple 〈ni, vi〉, consisting of an
attribute name ni∈AN and an attribute value vi ∈ V ∪ ID.

Tag-style attributes values, i.e., attribute values without associ-
ated attribute names, are represented by using the empty string as
attribute name. Attribute values might also be identifiers of other
entities, thus representing relationships between profiles. More-
over, attribute names can be associated with more than one value,
by assigning several tuples with the same attribute name to a pro-
file.

Through its simplicity, our model is versatile enough to accom-
modate entities described in more complex formats, such as rela-
tional, RDF, or XML data. It is suitable, therefore, for representing
data both in Web [24] and dataspace applications [10].

Definition 2. A data set D is a tuple 〈AD,VD, IDD, PD〉, where
AD ⊆ AN is the set of attribute names appearing in it, VD ⊆ V is
the set of values used in it, IDD ⊆ ID is the set of local identifiers

contained in it, and PD ⊆ IDD × P(AD × VD) is the set of entity
profiles that it comprises.

Where there is no risk of ambiguity, we use D to represent the
set of the profiles PD within the data set as a shorthand.

Consider the case where two data sets have to be merged with
each other. Since the profiles contained in them were created in-
dependently, some of the entity profiles might describe the same
real-world entity, without necessarily containing the same informa-
tion.

Definition 3. Two profiles pi and p j are said to match, denoted
with pi≡p j, when they describe the same real-world entity.

In line with other works on blocking such as [2, 18], we do not
consider any specific method for profile comparison to decide about
a match. Instead, we assume an oracle that judges always cor-
rectly whether two entity profiles match or not. In addition, we
consider two data sets, D1 with PD1 = {p1, . . . , pk} and D2 with
PD2 = {q1, . . . , qn}, that are separately duplicate-free, but probably
overlapping with each other:

∀oi, o j ∈ D1 ∪ D2 : oi ≡ o j ⇒

(oi ∈ PD1 ∧ o j ∈ PD2) ∨ (oi ∈ PD2 ∧ o j ∈ PD1)

To successfully integrate these two data sets, we need to iden-
tify their matching profiles (and merge them). Comparing every
pi ∈ PD1 with every q j ∈ PD2 would require |PD1 | · |PD2 | steps. This
is, however, inefficient or even infeasible in the case of voluminous
data sets. As demonstrated by other approaches [7, 23], it is bet-
ter to split the data into blocks, such that profiles within a block
are more likely to generate matches in comparison to profiles in
separate blocks.

A block b is the subset of a data set D that a blocking criterion
bc defines. For our purpose, bc is modeled as a combination of two
functions:

1. A transformation function ft that derives the appropriate rep-
resentation for blocking from the complete entity profile (or
parts of it). An example of such a function, is one that repre-
sents each entity with its value for the attribute “zip code".

2. A transitive, symmetric constraint function f i
cond that encap-

sulates the blocking condition, and has to be satisfied by two
entities, if they are to be placed in the same block bi. For
example, the equality on the zip code.

Definition 4. A blocking criterion bc for a data set D is defined
by a transformation function ft : PD 7→ T and a set of constraint
functions5 f i

cond : T × T 7→ {true, f alse}.

For defining effective blocking criteria, existing blocking ap-
proaches rely on schema information such as attribute names and
knowledge about the domains of the respective attributes. As men-
tioned in Section 2, these approaches typically create their block-
ing criteria by combining a transformation function that derives the
BKV from a selected (set of) attribute(s) and a constraint function
demanding equality or similarity on it. In our case, though, where
there is merely a loose schema binding and attribute names are op-
tional in the entity profiles, we may not rely on schema information
in the definition of blocking criteria.

5It is worth noting at this point, though, that a single constraint
function fcond = f 1

cond = f 2
cond = ... is often sufficient for expressing

the blocking criterion.

Definition 5. If a blocking criterion bc is applied to a data set
D, it creates a set B of blocks. A block bi ∈ B is a maximal subset
of the profiles PD of the considered data set D that is defined by the
blocking criterion, i.e., by a transformation function and one of the
constraint functions f i

cond:

bi ⊆ PD ∧ ∀p1, p2 ∈ PD : f i
cond(ft(p1), ft(p2)) = true⇒ p1, p2 ∈ bi

For the case we are considering (i.e., resolution of two duplicate-
free data sets), the blocking criterion is applied to the union of the
data sets D1 and D2: D = D1 ∪ D2. Thus, each block bi can be
divided into two parts, bi,1 and bi,2, which we call inner blocks:

Definition 6. For a block bi that is defined on the union of two
data sets D = D1 ∪ D2, the inner block bi,1 (bi,2) is the subset
of elements in bi that originate from the data set D1 (D2): bi,k ={
e ∈ bi : e ∈ PDk

}
for k = 1,2.

The gist of blocking techniques is that it suffices to consider
pair-wise comparisons solely between profiles contained within the
same block. They reduce, therefore, the number of required com-
parisons from k · n to

∑
compi, where compi is the number of com-

parisons in block bi, equal to |bi,1| · |bi,2| for the inner blocks bi,k for
k = 1, 2 of the considered block bi.

According to [18], a blocking technique should balance the trade-
off between the following two competing quality targets:

• Target 1: Matches should share at least one block, otherwise
they cannot be detected (i.e., minimize false negatives). This
requirement determines the effectiveness of the blocking ap-
proach.

• Target 2: Each block should contain as few irrelevant (non-
matching) entities as possible (i.e., minimize false positives).
In other words, the goal is to reduce the number of unneces-
sary pair-wise comparisons, thus enhancing the efficiency of
the blocking approach.

As a result, the ideal blocking is achieved by those criteria that
group only matches into a block, while each entity is contained in
no more than one block. However, in the context of noisy data sets,
several approaches, such as [4, 11, 22], allow profiles to be associ-
ated with multiple blocks, that are thus overlapping. In this way, re-
dundancy is introduced so as to avoid missing matches. Practically,
this can be achieved through the combination of several blocking
criteria into a blocking schema [18].

Given that we deal with heterogeneous, noisy data sets and that
we cannot rely on a strong schema binding, we need a robust block-
ing technique for ensuring the effectiveness of blocking. This will
introduce a considerable amount of redundancy that increases the
number of required comparisons at the expense of the efficiency of
the approach. In short, the following problems have to be solved:

• Problem 1: Find a blocking criterion bc defined by functions
ft and f i

cond that is robust enough to produce a set of blocks
B of high quality in the context of heterogeneous and noisy
data sets.

• Problem 2: Find an efficient and scalable mechanism of block
processing that effectively reduces the number of required
pair-wise comparisons.

4. ATTRIBUTE-AGNOSTIC BLOCKING
For dealing with the problems identified above, we introduce an

attribute-agnostic blocking approach. Its core idea is that the pro-
files of two matching entities have at least one value in common —

independently of the associated attribute names (attribute-agnostic
blocking criterion). Hence, entities are grouped into blocks consid-
ering only the values of their profiles. Though effective and robust,
this liberal blocking criterion associates each entity with multiple
blocks, resulting in overlapping blocks and high redundancy. The
increased number of comparisons that this redundancy brings about
is reduced by a set of block processing techniques that complement
our approach. In more detail, our approach consists of the fol-
lowing steps that deal with the problems identified in the previous
section:

1. Block Building produces a set of blocks B with the necessary
robustness for the data sets we are considering (Problem 1),

2. Block Scheduling defines a block sorting strategy based on
probability theory (contributing to Problem 2), and

3. Block Processing processes efficiently the ordered set of blocks
through propagation of the identified duplicates and pruning
of blocks with low utility (contributing to Problem 2).

These steps are outlined in Algorithm 1 and further explicated in
the following sections.

4.1 Block Building
To address Problem 1, we introduce a blocking criterion that

places two entities in the same block on the attribute-agnostic con-
dition that they share a token in their profiles. More formally,
our blocking criterion employs a transformation function ft that is
based on a tokenization function, tokenize. This function is ap-
plied to all values of the entity profiles in the data sets D1 and D2,
transforming them into sets of tokens:

ft(p) =
{
ti : ∃ni, vi : 〈ni, vi〉 ∈ Ap ∧ ti ∈ tokenize(vi)

}
Thus, it defines two sets TOKENS (D1) and TOKENS (D2), com-
prising all the distinct tokens in the values of the profiles in D1 and
D2, respectively.

Constraint functions fcond are then defined individually on these
value tokens ti. In fact, it suffices to consider only the intersec-
tion of the token sets of D1 and D2 (i.e., ti ∈ TOKENS (D1) ∩
TOKENS (D2)), since both data sets are duplicate-free. More for-
mally, the constraint function is defined as:

f ti
cond(p, q) = ((ti ∈ ft(p)) ∧ (ti ∈ ft(q)))

The blocking criterion that results from the combination of the
transformation function ft with all constraint functions f ti

cond creates
a set of blocks that follow Definition 5 of the previous section. In-
tuitively, each block bi corresponds to a token ti ∈ TOKENS (D1)∩
TOKENS (D2) and consists of all the entities containing this token
in their profile values.

This blocking criterion has two major advantages: first, it can
be efficiently implemented employing the well-established IR tech-
nique of posting lists, i.e., an inverted index. Second, it is very
robust to noise and heterogeneity, because the likelihood of two
duplicates with no common block at all is quite low. Indeed, this
would mean that the corresponding profiles do not share a single
token, which is very unlikely for two profiles describing the same
real-world entity.

Revisiting the blocking targets defined in Section 3, our blocking
criterion improves on Target 1, keeping the likelihood of missed
matches low. However, it introduces redundancy at the expense of
Target 2, since the resulting blocks are overlapping, and partially
large in size. To improve on Target 2, the following two steps of
our approach aim at cutting down the number of potential pair-wise
comparisons, without any impact on effectiveness.

4.2 Block Scheduling
The block scheduling step aims at sorting all elements of the set

of blocks, B, into a processing order that allows for a significant re-
duction in the overall number of comparisons during the next step
(Section 4.3). It assigns a utility value to each bi ∈ B by compar-
ing the cost for processing it (number of comparisons) against the
corresponding gain (comparisons spared in the other blocks due to
effective propagation). More formally, the utility ui of a block bi ∈

B is defined as follows:

ui =
gaini

costi
, where (1)

• gaini expresses the expected benefit of processing bi, and

• costi denotes the cost of processing it.

Both are measured in terms of number of comparisons. We chose
this definition over the alternative form of ui = gaini − costi, as it is
more appropriate for expressing the gain per unit of cost. By order-
ing blocks in this way, we can maximize the gain that is achieved
until the processing is stopped during the block pruning phase (pre-
sented in Section 4.3.3).

Blocks are then sorted according to a ranking function r : B 7→
< that defines a partial order on the blocks B based on the utility
ui of a block bi ∈ B. This function sorts the elements of B in de-
scending order according to the following implication: ui ≤ u j ⇒

r(bi) ≥ r(b j) (see lines 11 and 13 in Algorithm 1). In summary, we
employ the following definitions of block utility for ranking the set
of blocks B:

ui ≈
1

max(|bi,1|, |bi,2|)
(2)

ui ≈
avg j,k(min(| ft(p j)|, | ft(qk)|) − 1))

max(|bi,1|, |bi,2|)
(3)

We call Formula 2 plain probabilistic scheduling method, and
Formula 3 enhanced probabilistic scheduling method. The latter
provides a more precise estimation of utility, at the expense of
a higher computational cost. In our experiments, we investigate
whether this cost is justified by a significantly higher performance
in comparison with Formula 2.

4.2.1 Derivation of the formulas
In the following we present the probabilistic analysis that leads to

the above formulas. More specifically, costi in Formula 1 is equal to
the number of comparisons required for processing a block bi with
inner blocks bi,1 and bi,2 from datasets D1 and D2, respectively:

costi = |bi,1| · |bi,2|

In Formula 1, gaini denotes the number of comparisons poten-
tially spared after block bi has been examined. A comparison is
spared if two entities in a block match, and their profiles are con-
tained in subsequently processed blocks. Hence, it actually de-
pends on two factors:

1. the expected number of matches in a block, and

2. the expected number of blocks affected by a match.

Note, that sparing comparisons requires that information on the re-
sults of comparisons is propagated during block processing.

Expected number of matches in a block. To estimate the num-
ber of duplicates in a block bi, we need to estimate the probability
P(M|ti = ti)6 of a match given that the corresponding entities share
6ti = ti is a shorthand notation for the event two profiles share the
token ti.

the token ti in their profiles. According to the Bayes theorem, this
probability can be estimated as:

P(M|ti = ti) =
P(M) · P(ti = ti|M)

P(ti = ti)
, where

- P(M) represents the prior probability that we have a match in the
dataset. This is equal to P(M) = m/(|D1| · |D2|), where m is the
number of all duplicate pairs in the data set (i.e., the ratio of all
possible entity pairs that are actually duplicates).
- P(ti = ti|M) is the probability that, given a match M, the matching
profiles share the token ti. It is, thus, equal to P(ti = ti|M) = mi/m,
where mi is the number of matches that share the token ti, and m, as
above, is the total number of matches in the given data set. We as-
sume here, that tokens that are frequent (rare) in both data sets are
also frequent (rare) in matches. Therefore, the number of elements
in the smaller inner block7 of the block bi that is associated with ti

is a good proportional measure for mi: mi ≈ min(|bi,1|, |bi,2)|.
- P(ti = ti) = (|bi,1| · |bi,2|)/(|D1| · |D2|) as it expresses the number
of pairs that agree on a particular token ti with frequencies |bi,1| and
|bi,2| among all possible pairs.

Plugging all these together gives us:

P(M|ti = ti) ≈
m

|D1| · |D2|
·

min(|bi,1|, |bi,2|)
m

|D1| · |D2|

|bi,1| · |bi,2|

=
1

max(|bi,1|, |bi,2|)

The expected number of duplicates in block bi is equal to |bi,1| ·

|bi,2| · P(M|ti = ti). Assuming that every match in bi spares on
average compi comparisons, the corresponding expected gain is:

gaini ≈ compi · |bi,1| · |bi,2| · P(M|ti = ti)
= compi · min(|bi,1|, |bi,2|)

This results in the following formula for the expected utility of
processing block bi:

ui ≈
m · compi · min(|bi,1|, |bi,2|)

min(|D1|, |D2|)
·

1
|bi,1| · |bi,2|

=
compi

max(|bi,1|, |bi,2|)
(4)

For the number of comparisons spared by a match, compi, we
investigate two options in our approach:

1. We assume that, for the utility-based ranking of the blocks,
this number can be approximated by a block-independent
number C, that can be omitted. In this case we arrive at For-
mula 2.

2. We estimate compi in a block-dependent way, as described
below.

Expected number of blocks affected by a match. If two match-
ing profiles are found in a block, these profiles do not have to be
compared again in the blocks they occur in, due to additional com-
mon tokens. Hence, to estimate the number of comparisons compi

spared by processing block bi, we need to know the size of the
bag cbi of other blocks, where the matching profiles of block bi

co-occur. However, computing the cardinality of cbi is infeasible
without knowing all matching profile pairs in advance.

Therefore, we approximate compi with the average number of
blocks shared between all pairs of profiles, p j ∈ PD1 and qk ∈ PD2 ,
in block bi. Instead of measuring the precise number of common
7We use the size of the smaller inner block, since a token might be
frequent in one of the data sets and rare in the other.

Algorithm 1: Outline of Attribute-agnostic Blocking
Input: (a) data set D1, (b) data set D2, (c) ρ
Output: A set of matches {(pi≡p j)}

1 I1 ← TOKENS(D1);
2 I2 ← TOKENS(D2);
3 m← min(I1.size(),I2.size());
4 common_blocks← {};
5 foreach token ∈ I1 do
6 if I2.contains(token) then
7 c1 ← I1.entitiesWithToken(token);
8 c2 ← I2.entitiesWithToken(token);
9 if min (c1, c2)<ρ × m then

10 bi ← new Block(token);
11 bi.setUtility(1/max(c1, c2));
12 common_blocks← common_blocks ∪ {bi};

13 common_blocks← sort(common_blocks);
14 dhmax ← getMaxDuplicateOverhead(common_blocks);
15 matches← {};
16 comp← 0;
17 foreach bi ∈ common_blocks do
18 matchesi ← bi.deduplicateBlock(matches);
19 comp += bi.noOfComparisons();
20 if matchesi , {} then
21 matches← matches ∪ matchesi ;
22 if dhmax <

compk
matchesi .size() then

23 break;
24 else
25 comp← 0;

26 return matches;

blocks for each such pairs, we estimate it as the minimum size of
their tokenized profiles, minus the current block, bi

8:

compi ≈ avg j,k(min(| ft(p j)|, | ft(qk)|) − 1)
∀ p j ∈ PD1 , qk ∈ PD2

Replacing compi in Formula 4 with the above estimation and
ignoring the constant measures (m and min(|D1|, |D2|)), we arrive at
Formula 3.

4.3 Block Processing
During this step, individual blocks are thoroughly examined by

comparing pair-wise the entities within a block that stem from dif-
ferent data sets. To minimize the number of required comparisons,
this step encompasses three techniques that ensure the efficiency
of the whole resolution procedure, based on the ordering of blocks
produced by block scheduling:

1. Block Purging, which cuts off the oversized blocks that do
not contribute significantly to the effectiveness of the method.

2. Duplicate Propagation, which saves comparisons by distribut-
ing the already identified matches to the subsequently pro-
cessed blocks.

3. Block Pruning, which terminates the resolution process as
soon as the estimated cost of detecting the remaining dupli-
cates exceeds an upper bound.

In the following paragraphs, we elaborate on each one of these
techniques.

8Note, however, that it is expensive to calculate this average value
over all pairs of profiles.

4.3.1 Block Purging
In the resolution process, it makes sense to compare only enti-

ties that share a token that is not too common (i.e., not a stop word
found in an excessive number of profiles). To this end, this step
aims at cleaning the block processing list from oversized blocks.
These are blocks that correspond to tokens of little discriminative-
ness, thus entailing a large number of comparisons while being un-
likely to contribute non-redundant matches (i.e., duplicates whose
profiles have no other token in common). Hence, they can be safely
excluded from the block processing procedure, enhancing consid-
erably the efficiency without any significant impact on the effec-
tiveness. For instance, one of the data sets we employed in our ex-
perimental study entails in total 40, 825 distinct blocks and contain
22, 387 duplicates. The 395 largest blocks involve 50% of the total
comparisons, while containing just 121 non-redundant matches.

We heuristically identify oversized blocks by estimating an up-
per limit on the number of matches a block is expected to contain.
More specifically, we derive the purging threshold as follows: the
maximum possible number of matches among two data sets, D1

and D2, is mmax = min(|D1|, |D2|). We define the maximum num-
ber of matches mmaxi that we expect to find inside a block bi as a
percentage of mmax, namely ρ ·mmax. Given that each block bi con-
tains two inner blocks bi, j for j= 1, 2, it has to satisfy the following
condition for being considered in the processing list:

mmaxi = min(|bi,1|, |bi,2|) < ρ · mmax,where ρ ∈ [0, 1] (5)

The purging conditions, therefore, sets an upper bound on the size
of the smallest inner block. The actual value of ρ is determined
experimentally, by targeting an increase in efficiency with limited
impact on effectiveness. As depicted in the lines 9 to 12 of Al-
gorithm 1, this step is integrated with block scheduling for effi-
ciency reasons. Before estimating the utility of each block, we
check whether it satisfies the above condition, so as to avoid un-
necessary utility computations and to reduce the number of blocks
considered in the subsequent steps.

4.3.2 Duplicate Propagation
As mentioned above, the set of blocks, B, contains overlapping

blocks, and the same entities - without further action - are com-
pared more than once. This situation is alleviated by propagating
the identified matches to the subsequently processed blocks, as it
is done in the approach described in [22]. To incorporate this idea
into our approach, we employ a central data structure (a hash table)
containing at any time all the matches that have been detected so
far (line 15 of Algorithm 1). Before comparing a pair of entities,
we check whether either of them is already involved in one of the
identified pairs of duplicates. If this is true for at least one of them,
we skip the comparison (line 18 of Algorithm 1).

As in [22], we do not maintain a similar data structure with all
profile pairs that have been examined but are not matching. There
are two arguments against managing and propagating this informa-
tion:

1. The number of possible pairs is so large that managing all
compared pairs becomes quickly inefficient, and

2. The probability of actually using this information is much
lower than using it for matching pairs; in contrast to match-
ing pairs, non-matching ones are unlikely to share additional
tokens and to co-occur in more than one block.

4.3.3 Block Pruning
As explained in Section 4.2, block scheduling promotes blocks

that combine high expected gain (i.e., a high number of duplicates)

with a low cost (i.e., a low number of comparisons) in high ranking
positions (earlier processing). Moving towards lower ranking posi-
tions, we find blocks with fewer duplicates and a higher comparison
cost. Duplicate propagation further reduces the number of dupli-
cates to be detected in such blocks, since identified matches are not
re-considered in subsequently processed blocks. We can conclude
that the lower the position of a block, the lower its probability to
contain new, yet unidentified duplicates. This suggests a break-
even point where the possibility of finding additional matches is no
longer worth the cost.

Block pruning aims at identifying the blocks lying after this point
in order to remove them from the processing list. In this way, the
efficiency of our approach is further enhanced, at the expense of
a negligible number of missed matches. For detecting this break-
even point, block pruning keeps track of the duplicate overhead,
denoted as dh, which expresses the average number of comparisons
performed for detecting the latest matches. The ER process termi-
nates when dh reaches a maximum duplicate overhead, denoted as
dhmax: this indicates that the expected remaining number of dupli-
cates is considered small compared to the high processing cost of
the required comparisons.

As shown in lines 19 to 25 of Algorithm 1, the value of the du-
plicate overhead dhk after processing the k-th block containing du-
plicates (i.e., blocks with nmk ≥ 1) is computed as follows:

dhk =
compk

nmk
, where

• compk denotes the number of comparisons performed after
processing the k − 1-th block, and

• nmk stands for the number of new matches identified within
the current block that contains duplicates.

Dhmax is computed relative to the overall size of the considered
data set. More precisely, it is computed as follows:

dhmax = 10
log(n)

2 , (6)

where n is the number of all possible comparisons after the block
purging step. The intuition behind this formula is that the number
of comparisons required for detecting a match is considered too
large, when it reaches half the order of magnitude of all possible
comparisons in the considered blocks.

5. EXPERIMENTAL EVALUATION
In this section we present a series of experiments that investigate

the performance and the scalability of our method on real-world,
large, heterogeneous, and noisy data sets. Our approach was fully
implemented in Java 1.6, employing the Lucene search engine li-
brary9 for the underlying inverted index functionality. All experi-
ments were performed on a server with Intel Xeon 3.0GHz, running
Linux with kernel version 2.6.18.

Data Sets. We employed two data sets with the technical char-
acteristics summarized in Table 1. Dmovies is a collection of movies
shared among IMDB and DBPedia. For deriving the ground-truth,
we relied on the “imdbid” attribute in the profiles of the DBPedia
movies.

The Din f oboxes data set consists of two different versions of the
DBPedia Infobox Data Set10. They have been collected by ex-
tracting all name-value pairs from the infoboxes of the articles in
Wikipedia’s english version. DBPedia1 is a snapshot of Wikipedia

9http://lucene.apache.org
10http://wiki.dbpedia.org/Datasets

Dmovies Din f oboxes
DBPedia IMDB DBPedia1 DBPedia2

Entities 27,615 23,182 1,190,734 2,164,058
Name-Value Pairs 186,013 816,012 17,453,516 36,653,387
Avg. Profile Size 6.74 35.20 14.66 16.94
Attribute Names 7 5 30,757 52,554
Common Attr. 1 24,606
Duplicates 22,405 892,586
Comparisons 6.40·108 2.58·1012

Table 1: Overview of the data sets used in the experiments.

Infoboxes in October 2007, whereas DBPedia2 dates from Octo-
ber 2009, so DBPedia1 is older than DBPedia2. Although it may
seem simple to resolve two versions of the same data set, this is
not the case. During the two years that intervene between these
two versions, Wikipedia Infoboxes were so heavily modified that
there is only a small overlap between their profiles, even for du-
plicate entities. As shown in Table 2, just 40% of all name-value
pairs and 50% of the attribute names are shared among the entities
common in both versions. Regarding the ground-truth, we consid-
ered as matches those entities that had exactly the same URL. As
a result, a small part of the actual matches has been ignored; these
are actually the entities that had their URL changed (e.g., due to
disambiguation reasons).

Attribute Names Name-Value Pairs
DBPedia1 26,386 14,244,816
DBPedia2 34,977 17,406,650
Common 20,838 9,255,218
Distinct 40,525 22,396,248

Table 2: Overlap in the profiles of duplicates in Din f oboxes.

Evaluation Metrics. To measure the performance of our method,
we follow [2, 4, 18] and consider the following, established metrics
for blocking techniques:

• Pair Completeness (PC) expresses the ratio between the matches
identified by our method and the matches existing in the data
set. It is computed by the following formula: PC = dm/gm,
where dm denotes the number of detected matches, and gm
represents the number of matches in the ground-truth. PC
is comparable to the Recall metric of Information Retrieval
and takes values in the interval [0, 1]. Higher values indicate
higher effectiveness of the blocking method.

• Reduction Ratio (RR) expresses the reduction in the number
of pair-wise comparisons required by our method with re-
spect to the baseline one. In our case, we evaluate the RR
of each step with respect to the comparisons of the previous
one. It is defined as follows: RR = 1 − mc/bc, where mc
stands for the number of comparisons entailed by the consid-
ered method, and bc expresses the number of comparisons
entailed by the baseline method. RR takes values in the inter-
val [0, 1] (for mc ≤ bc), with higher values denoting higher
efficiency.

Similar to [2, 4, 18], we do not report any numbers on Precision,
since our method focuses at improving the efficiency of the reso-
lution process, while maintaining its effectiveness at high levels.
The high values of PC that our method exhibits (Tables 3 and 4)
actually imply that the Precision of the ER process depends solely
on the entity matching method that performs the detailed profile
comparisons. Our framework is intended to incorporate any such
method.

Compar. Duplicates PC RR
Block Building 3.05·108 22,387 99.92% -
Block Purging 2.67·107 22,268 99.39% 91.23%
Sched.-Propag. 9.75·106 22,268 99.39% 63.50%
Block Pruning 1.03·106 22,268 99.39% 89.39%
Brute Force 6.40·108 22,405 100.00% -

Table 3: Performance overview of each step on Dmovies.
Compar. Duplicates PC RR

Block Building 5.72·1020 892,560 99.99% -
Block Purging 3.98·1010 891,599 99.89% 99.99%
Sched.-Propag. 7.42·109 891,599 99.89% 81.36%
Block Pruning 1.12·108 838,760 93.97% 98.49%
Brute Force 2.58·1012 892,586 100.00% -
StateOTArtNAME 1.33·106 380,673 42.65% 99.99%
StateOTArtWEBS 1.62·106 400,538 44.87% 99.99%

Table 4: Performance overview of each step on Din f oboxes, and
with two state-of-the-art blocking approaches.

5.1 Overall Performance Analysis and
Comparison to Brute Force Approach

To investigate the performance of our method, we first used Dmovies

as a test bed for identifying the optimal parameter values for each
step of our approach. We then applied the resulting configuration
on Din f oboxes to verify the generality of the method. This process
resulted in the following configuration:

1. Block scheduling with the plain probabilistic method (Sec. 4.2),

2. Block purging with ρ = 0.005 (Formula 5 in Sec. 4.3.1), and

3. Block pruning with dhmax = 10
log(n)

2 (Formula 6 in Sec. 4.3.3).

The performance of each step on Dmovies and Din f oboxes is sum-
marized in Tables 3 and 4, respectively. The table also reports the
Brute Force approach (BFA), which compares each entity of one
subset with all entities of the other. The RR value is computed with
respect to the number of comparisons of the previous step, i.e., pre-
vious row in the tables.

Regarding Dmovies, our method reduced the required number of
comparisons from 6.40·108 to 1.03·106 (overall RR = 99.84%),
while maintaining a PC of 99.39%. Excluding the time required
for comparing entity profiles, it took 15 seconds to create and store
the indices on the hard disk, and another 62 seconds to apply all its
steps. The size of the indices were 6MB and 22MB for the DBPedia
and the IMDB movies respectively, whereas their actual sizes are
13.08MB and 31.72MB.

As far as Din f oboxes is concerned, the required number of com-
parisons was restricted to 1.12·108 from 2.58· 1012 (overall RR =

99.99%), with a PC of 93.97%. It required 12 minutes for build-
ing and storing the indices of both subsets, while the processing of
the resulting set of blocks required 145 minutes. The size of the
DBPedia1 index was 715MB, while that of DBPedia2 amounted to
1.4GB (their actual sizes are 1.16GB and 2.43GB respectively).

Comparing Tables 3 and and 4 we can see that the performance
of each step is quite similar on both data sets. It is worth comment-
ing, though, the difference between the two data sets in the perfor-
mance of block building. For Dmovies it entails less than half of the
comparisons of BFA, whereas for Din f oboxes the number of compar-
isons resulting after blocking exceeds the number of all possible
pair combinations. This discrepancy is caused by the redundancy
our method introduces in order to deal with noise and heterogeneity
(Section 4.1); each entity is placed in multiple, overlapping blocks

and the larger its profile, the higher the number of blocks associated
with it. The effect of redundancy is restricted in the case of Dmovies,
since it encompasses fewer entities of smaller profiles (Table 1),
leading to a low number of predominantly small blocks (Table 5).
In contrast, Din f oboxes entails a million of much larger blocks as a
result of both the higher number of entities and their larger profiles.
This inevitably results in a considerable increase in the number of
possible comparisons, which is however substantially reduced by
the following steps of our method.

5.2 Comparison to State-of-the-Art
We could not compare directly our methodology against existing

schema-based blocking techniques, since they require an a priori
known, homogeneous schema. However, this is not the case with
heterogeneous data sets. The schema space of Din f oboxes, for in-
stance, contains more than 57, 000 distinct attributes, out of which
just 24, 000 (a mere 42%) appears in both versions of DBPedia
(Table 1). Nevertheless, to get a feeling of the potential perfor-
mance of state-of-the-art approaches in this area, we introduced
the StateOTArtNAME and StateOTArtWEBS methods that operate on
the most discriminative attributes, similar to schema-based block-
ing techniques [4, 19].

In more detail, we first evaluated the StateOTArtNAME , which
considers the attribute “name” that is the most discriminative one
in both data sets (covering 40.56% of the DBPedia1 and 44.87% of
the DBPedia2 entities). RR was computed with respect to the Brute
Force approach. As shown in Table 4, blocks with entities having
exactly the same value on this attribute result in very high RR, but
cover less than half of the existing matches (i.e., very low PC).

To improve it, we tested the StateOTArtWEBS that, in addition
to “name”, considers the attribute “website”, the second most dis-
criminative attribute in both data sets. Together, they cover 42.36%
and 47.07% of the entities in DBPedia1 and DBPedia2, respec-
tively. The number of comparisons involved in the resulting blocks
was increased by 20%, maintaining though a very high RR, but PC
improved only by 2%.

In general, the less discriminative an attribute is, the larger the
blocks that are created, and the more are the comparisons it in-
volves, without necessarily increasing PC. Thus, the more attributes
we consider in the context of a schema-based blocking scheme, the
higher the impact on RR, and the lower the increase in PC. For this
reason, such techniques are not applicable in the settings we are
considering.

5.3 Performance Analysis for each step
In this section we analyze the procedure we followed for tuning

the performance of each step in order to identify its optimal config-
uration.

Block Building. No configuration is required for our attribute-
agnostic blocking technique. However, it is interesting to examine
its behavior through some relevant statistics that are presented in
Table 5. As expected, it achieves a quite high PC for both data
sets: 99.92% for Dmovies and 99.99% for Din f oboxes. We manually
checked all 34 missed pairs of duplicates and found out that at least

Dmovies Din f oboxes

Blocks 40,825 1,210,838
Average Block Size 42.67 81.49
Duplicates 22,387 892,560
Comparisons 3.04·108 5.72·1020

PC 99.92% 99.99%
RR 49.67% -
Table 5: Performance of the block building step.

50

60

70

80

90

100
rc
e
n
ta
ge
 (
%
)

Pair Completeness

Reduction Ratio
40

50

60

70

80

90

100

0.001 0.003 0.005 0.007 0.009 0.020

P
e
rc
e
n
ta
ge
 (
%
)

selected values of ρ

Pair Completeness

Reduction Ratio

Figure 2: Performance of block purging for several values of ρ.

20

40

60

80

100

P
e
rc
en

ta
ge
 (
%
)

Pair Completeness

Reduction Ratio
0

20

40

60

80

100

10 15 25 56 215 3.2E+03 1.0E+07

P
e
rc
en

ta
ge
 (
%
)

selected values of dhmax

Pair Completeness

Reduction Ratio

Figure 3: Performance of block pruning for several values of dhmax.

one of their profiles contained a rather rudimentary and noisy de-
scription of the corresponding entity. In other words, these prob-
lematic profiles consisted of insufficient or incorrect information
that shared no tokens, and thus no blocks, with their matching pro-
file. Regarding the RR, it has a fairly good value for Dmovies but it
cannot be computed for Din f oboxes due to the effect of redundancy,
as explained above.

Block Purging. To examine the effect of block purging we con-
sidered numerous values of the parameter ρ (Formula 5 in Sec-
tion 4.3.1). Among them, we selected and present in Figure 2 the
most meaningful ones: all values in the interval [0.001, 0.010] with
a step of 0.001. We also consider the values 0.020 and 0.050 that
are indicative of the performance for higher values. The outcomes
suggest that the lower the value of ρ, the higher the RR and the
lower the PC. For choosing the value of ρ, we opt for a conserva-
tive purging: ρ = 0.005 that has RR = 91.23% and PC = 99.39%.
In this way, we enhance efficiency to the extent that effectiveness
is affected the least. Indeed, lower thresholds convey higher RR
combined with more missed matches, whereas higher thresholds
involve a negligibly higher PC coupled with a significant decrease
in RR.

Block Scheduling & Duplicate Propagation. To investigate
the effect of block scheduling on the efficiency of our method, we
employed four different scheduling approaches in conjunction with
duplicate propagation:

1. Random scheduling,

2. Plain probabilistic scheduling, i.e., Formula 2 in Section 4.2,

3. Enhanced probabilistic scheduling, i.e., Formula 3 in Sec-
tion 4.2, and

4. Supervised scheduling, i.e., a method that orders blocks know-
ing exactly how many matches they contain and how many
comparisons can be spared after they are identified.

The last two methods provide the lower and the upper bound on
RR respectively (PC apparently takes the same value for all sort-
ing methods). The outcomes are presented in Table 6. We can see
that the enhanced probabilistic method outperforms the plain prob-
abilistic one only to a negligible extent. Most importantly, though,
both have a performance very close to the supervised scheduling.
Thus, the plain probabilistic method constitutes the best choice for
block scheduling, since it provides a good approximation to the op-
timal block ordering and does not entail the high computational of
the enhanced probabilistic method.

The contribution of duplicate propagation to the efficiency of our
method is reflected in the performance of random scheduling: its
RR is just 9, 78% lower than that of the other scheduling techniques.
This indicates that duplicate propagation enhances efficiency sig-
nificantly, even when blocks are not ordered in a meaningful way
(as was proven in [22]).

Plain Enhanced
Random Probab. Probab. Supervised

Duplicates 22,268 22,268 22,268 22,268
Comparisons 12,366,025 9,755,009 9,754,829 9,753,081
PC 99.39% 99.39% 99.39% 99.39%
RR 53.72% 63.49% 63.50% 63.50%

Table 6: Performance of several block scheduling methods.

Block Pruning. To identify the optimal threshold for duplicate
overhead, we examined the performance of our method for several
values of dhmax. More specifically, we considered the following
formula: dhmax = 10

log(n)
i , where n is the number of required pair-

wise comparisons resulting from the block purging step, and i is a
real number taking values in the interval [1, n].

In our experiments, we had n = 7 and i ∈ [1, 7] with a step
of 0, 5, which results in dhmax values that span several orders of
magnitude. As depicted in Figure 3, this quite divergent set of val-
ues clearly illustrates the trade-off between RR and PC: for small
dhmax (i ≥ 3.0), we have RR values well over 99.00%, whereas
PC remains low (between 41% and 78%). For higher dhmax (lower
i), PC gets higher values, while RR becomes substantially lower.
The best balance for this trade-off is apparently achieved for i =

2.0 ⇒ dhmax = 3.2·103, since it corresponds to RR = 89.39% and
PC = 95.34%. In this way, we arrive at Formula 6 in Section 4.3.3.

5.4 Scalability Analysis
To evaluate the scalability of our method, we employed random

samples of DBPedia1 and DBPedia2. We considered all sample
sizes that are multiples of 10%, and for each of them, we generated
10 different random samples of both data sets to ensure the gener-
ality of the outcomes. Note that the size of a sample is defined with
respect to the number of entities and not the number of matches.
That is to say each sample of DBPedia1 of size x, contains x% of
its entities, and, when resolving it with a sample of DBPedia2 of the
same size (x% of the entities in DBPedia2), the number of matches
is not fixed. Therefore, another pair of samples of DBPedia1 and
DBPedia2 of equal size will probably contain a different number of
matches.

We then applied the aforementioned optimal configuration of our
method on the resulting data sets, and estimated the following met-
rics for each sample size:

• average PC, and

• average comparisons per entity (CPE), which is defined as
follows:

CPE =
compav

|DBPedia1,i| + |DBPedia2,i|
, where

– compav is the average number of required comparisons
over all 10 random samples of size i, and

– |DBPedia1,i| is the number of profiles contained in the

70

75

80

85

90

95

100

[119,010; 216,209] [476,042; 864,839] [833,074; 1,513,468] [1,190,734; 2,164,058]

A
ve

ra
ge

 P
C

 (
p

e
rc

e
n

ta
ge

)

size of sample data sets [DBPedia1; DBPedia2]

Figure 4: Average PC for subsets of Din f oboxes with increasing sizes.

1

10

100

1000

10000

100000

1000000

10000000

[119,010; 216,209] [476,042; 864,839] [833,074; 1,513,468] [1,190,734; 2,164,058]

A
ve

ra
ge

 C
o

m
p

ar
is

o
n

s
(l

o
g

sc
al

e
)

size of sample data sets [DBPedia1; DBPedia2]

Our Approach
Brute Force Approach

Figure 5: Average CPE for subsets of Din f oboxes with increasing sizes.

subset of DBPedia1 of size i% (|DBPedia2,i| is simi-
larly defined).

In Figure 4, we see that PC remains at high levels (≥ 94%)
throughout all sample sizes, thus verifying the effectiveness of our
method under different settings. Most importantly, though, we see
in Figure 5 that CPE remains almost constant and low (below 100
on average) for all size samples. This verifies the scalability of
our method, since the number of required pair-wise comparisons
increases linearly with the total number of entities involved in the
resolution process.

5.5 Summary
The results of our thorough experimental study verify the viabil-

ity of the attribute-agnostic blocking approach with respect to both
effectiveness and efficiency. For the former, we can see that only
a negligible amount of pairs of duplicates (<< 1%) do not have
any block in common after block building. The latter is demon-
strated by the overall reduction in the number of comparisons with
respect to those required by the brute force approach (i.e., com-
paring each entity with all the others): it amounts to 2.8 and 4.4
orders of magnitude for Dmovies and Din f oboxes respectively. Most
importantly, though, this efficiency is achieved with only a minor
loss in effectiveness, as PC remains high (≥ 94%) in all experi-
ments. Scalability is also proven experimentally, since the number
of comparisons required per entity is constant on average (< 100),
even if the data sets under consideration grow by orders of mag-
nitude. The experimental methodology we followed, employing a
training and a testing data set, also ensures the general applicability
of our approach.

6. CONCLUSIONS
In this paper we introduce the attribute-agnostic blocking method-

ology as an effective approach to entity resolution in the context
of voluminous, highly heterogeneous, and loosely structured infor-
mation spaces. In contrast to existing blocking approaches, our
method makes no use of schema information in the blocking step
of ER, thus being applicable in heterogeneous settings with loose
schema binding. The robustness of our method introduces redun-
dancy through overlapping blocks, increasing the required number
of comparisons. This is, however, reduced by ordering blocks ac-
cording to their utility (based on an analysis of matching probabil-
ities), effectively propagating identified matches, and avoiding the
processing of unpromising blocks. Our thorough experimental
evaluation verified the effectiveness, as well as the efficiency of our
method on real-world data sets.

In the future, we plan to extend our approach in several ways.
First, we intend to modify the probabilistic foundation of block
scheduling so that it applies to data sets with duplicates in them.
Moreover, we will examine possible partial uses of attribute names
for achieving higher efficiency. For example, this could involve
special treatment of attributes with high discriminativeness. Fi-
nally, we will try to integrate parallelization techniques into our
approach, in order to further enhance efficiency.

Acknowledgments. This work is partly funded by the European
Commission under Glocal (248984) and ARCOMEM (270239).

References
[1] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for

multi-source information integration. In WIRI, 2005.
[2] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learn-

ing to scale up record linkage. In ICDM, pages 87–96, 2006.
[3] W. W. Cohen, P. D. Ravikumar, and S. E. Fienberg. A comparison of

string distance metrics for name-matching tasks. In IIWeb, 2003.
[4] T. de Vries, H. Ke, S. Chawla, and P. Christen. Robust record linkage

blocking using suffix arrays. In CIKM, pages 305–314, 2009.
[5] A. Doan and A. Y. Halevy. Semantic integration research in the

database community: A brief survey. AI Magazine, 2005.
[6] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in

complex information spaces. In SIGMOD, 2005.
[7] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate

record detection: A survey. IEEE Trans. Knowl. Data Eng., 2007.
[8] L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Explo-

rations, 2005.
[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukr-

ishnan, and D. Srivastava. Approximate string joins in a database
(almost) for free. In VLDB, pages 491–500, 2001.

[10] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles of dataspace
systems. In PODS, pages 1–9, 2006.

[11] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. In SIGMOD Conference, pages 127–138, 1995.

[12] E. Ioannou, C. Niederée, and W. Nejdl. Probabilistic entity linkage for
heterogeneous information spaces. In CAiSE, pages 556–570, 2008.

[13] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large data
sets. In DASFAA, 2003.

[14] D. V. Kalashnikov and S. Mehrotra. Domain-independent data clean-
ing via analysis of entity-relationship graph. TODS, 2006.

[15] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: similarity
measures and algorithms. In SIGMOD, 2006.

[16] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-scale data integration: You can afford to pay as you
go. In CIDR, pages 342–350, 2007.

[17] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In
KDD, pages 169–178, 2000.

[18] M. Michelson and C. A. Knoblock. Learning blocking schemes for
record linkage. In AAAI, 2006.

[19] H. B. Newcombe and J. M. Kennedy. Record linkage: making max-
imum use of the discriminating power of identifying information.
Commun. ACM, 5(11):563–566, 1962.

[20] B.-W. On, N. Koudas, D. Lee, and D. Srivastava. Group linkage. In
ICDE, 2007.

[21] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-
independent string transformation weights for high accuracy object
identification. In KDD, 2002.

[22] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking. In SIG-
MOD Conference, pages 219–232, 2009.

[23] W. Winkler. Overview of record linkage and current research direc-
tions. Technical report, Statistical Research Division, U.S. Bureau of
the Census, 2006.

[24] M. Zhong, M. Liu, and Q. Chen. Modeling heterogeneous data in
dataspace. In IRI, pages 404–409, 2008.

