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Information Extraction (IE)

Extracting structured entities and relationships from
unstructured text

m “We are pleased that today's agreement guarantees our
corporation will maintain a significant and long term presence
In the Big Apple," McGraw-Hill president Harold McGraw Il
said in a statement.

--- From New York Times April 24, 1997
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Information Extraction (IE)

“We are pleased that today's agreement guarantees our

corpﬁamtam a significant and long term presence
In the Big Apple," McGraw-Hill president Harold McGraw |l
said in ent.

(prob=0.8)

--- From New York Times April 24, 1997

Labels:
Person Company Location Other
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Information Extraction (IE)

m “We are pleased that today's agreement guarantees our

corporati Ul maintain a significant and long term presence
In the Big Apple," McGraw-Hill president Harold McGraw llI
said In ent.
(prob=0.75)
--- From New York Times April 24, 1997

Labels:
Person Company Location Other




Standard Uncertain Data Analysis Loop

SELECT *
FROM RNAIDATIES :ZI\IILPS .
— 1
-~ Data Cleaning,
Raw Data Tables Filtering, Learning

time id temp >
10am 1 20f [ime id temp
10am 2 21f feam 1 20
. . 0am 2 21
10am 7 29 - -
10am 7 29

_ Inference, Aggregation,
Analytics Result | |Classification, ...

o 3 -

' %es / o
Uncertain Data Relational DBMS Statistical ML Packages
Sources l

OUTPUT FILE
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What’s wrong with this picture...??

m All interesting data processing done outside the database!

m Lose all key benefits of a database system (30+ years of
R&D)

— Declarative guerying, Persistence, Indexing, Caching,
Parallelization, Automatic optimization, ...

— Poor performance, poor scalability

m No sharing of data’/knowledge/abstractions, duplication of
effort

m Information loss

-~ Focus on top-few results, rather than possible-world
semantics
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Early Work on Probabilistic DBs (PDBs)

Simplistic uncertainty models that easily map to existing DB
architectures
- Independent tuple-level confidences and attribute-value
options (OR-tuples)

SP T"
s m 1 08 t1 1 P 06
s2 N 1 0.5
MystiQ (UW) [VLDBO04]

(Amy,Honda):0.5 || (Amy, Toyota):0.3 ||
(Amy,Mazda):0.2

(Betty,Acura):0.6 ?
Trio (Stanford) [VLDBOG]
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More Recent Work on PDBs...

m MayBMS (Cornell): Model correlations through factored
relational table representations

m PrDB (UMD): Capture correlations using propositional/
grounded (per-tuple) Bayesian nets

m HeisenData (Berkeley, now at TUC): Scalable, integrated
data-management & probabilistic-reasoning platform

— (First-Order (FO)) statistical models and reasoning as “first-
class” citizens in the DBMS

— Query processing = relational ops + statistical inference
m ‘Possible worlds” semantics (data + stat model)
— Application domains: Sensors, IE
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HeisenDafa - Architecture

Query

Constraints \’ aNooA
A /K

iiiiiii

. Relational

Pr[Entities] Graphical
Model + Infer.

HeisenData.  Engine

Pr[Answer]

Jncertain Bata  prototypes built on top of PostgreSQL 8.4

Sources
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Key HeisenDafa Challenges

m What are the right language, physical/logical algebra, user
Interface?

— Completeness, soundness
— EXpressiveness & ease of use
- Extensibility (stat models, inference techniques, ...)

m Query Processing & Optimization
— Probabilistic queries with relational and inference operators!
— Optimization & Approximation — Statistics for probabilistic data?
— Inference is expensive!

m EXploit massive parallelism (e.g., Hadoop) and/or
approximation?

— Physical DB design (indexes, access structs, views, ...)?
— Concrete Application Domains: Information Extraction
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Talk Outline

m Introduction, Motivation, Challenges

m Example Data Model and Relational Query Processing
[VLDBOS8]

m Managing Inference for Information Extraction

[ICDE10,VLDB10,SIGMOD11]
m Statistics for Probabilistic Data [ICDE09,VLDBO09]

m Conclusions & Future Work
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HeisenData Example [VLDB08]

11

12
13

t4
15
t6

Data Model

1. Incomplete Relation — RP

2. Distribution over Possible Worlds — F

Incomplete Relation of

Sensorl1P
T ||R [[|Skd || TP LiPp

LN PRk

L[ %9 [l
L [P

5 | ft
5 [l [HRk

5 B3

Probabilistic Distribution of
SensorlP

F=Pr[X, ... %]

N: number of missing values
|X|: size of the domain

IFl = O(X|N)
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Probabilistic Graphical Models (PGMs)

m PGM can compactly represent a joint PDF over large numbers
of random variables (RVs) with complex correlation patterns

- Take advantage of conditional independences
m Specified by: (1) Set of RVs, and (2) Set of factors over RVs
m Joint PDF = take product of all factors and normalize

X2 X4
X1 < ‘ Joint = (1/2) f(X1,X2,X3) f(X2,X4) f(X5)
X3 X5

m Inference tasks
m Find mode or top-k joint distribution points
m Find marginal PDF on subset of RVs
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First-Order (FO) PGMs

m Define factors/correlation patterns over FO families of RVs
- RVs sharing the same correlation pattern

- [VLDBO08] RV stripes : defined using SQL queries over the
Incomplete relation schema

m  Much more concise representation of joint PDF

For all sensor in all rooms at all timestamps, Light and
Temperature readings are correlated




HeisenData Data Model =T ==

Evidence
10am 1 20 25 Table(s)

10am 2 21 XXX

Pr'Ob = 0. 4 m;\m 7 26 2.8

time id temp volt

1 20 25

2 21 2.7

il A PAN s T
+ Prob=0.3[ =TT+ =

time id temp volt

f

FO Graphical Model
(factors stored as
relational tables)

1 20 25

2 21 2.7

PrOb — 0_ 3 10.‘5.\m 7 26 2.8
“"Possible Worlds”

m (Evidence + Model) define a probability distribution over “possible worlds”

= Complete data model ProbMo de/( World | Evidence)
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Possible World Query Semantics

Resulting
<Relations, PGM>

<Relations, PGM>

Possible Possible
Worlds(DP) ¥ Worlds(g(DP))

Probabilistic Queri
Corono ™ .
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Possible World Query Semantics

- Resulting
<Relations, PGM> <Relations, PGM>

Probabilistic Queries @
>

Wd(DP) pwd(q(DF))

Probabilistic Queri
Coron o o
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HeisenDafta Relational Query Processing

[VLDBOS8]

m Processing general Select-Project-Join (SPJ) queries directly
over <lncomplete Tables, FO Model>

m Exploit SPJ query constraints to appropriately modify and/or
shrink the model and uncertain data

m Tools such as the Bayes Ball algorithm, Model-based
filtering,...

m Did not really address probabilistic inference, other than simple
optimizations
m Exploit FO Inference in this setting...???




o
Talk Outline

m Introduction, Motivation, Challenges

m Example Data Model and Relational Query Processing

[VLDBO0S]

m Managing Inference for Information Extraction

[ICDE10,VLDB10,SIGMOD11]
m Statistics for Probabilistic Data [ICDE09,VLDBO09]

m Conclusions & Future Work
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Conditional Random Fields (CRFs) for IE

Text (address string):
E.Jg., “2181 Shattuck North Berkeley CA USA”

CRF Model:

2181 Shattuck North Berkeley CA USA
X=tokens
Y=labels

Possible Extraction Worlds:

X 2181 Shattuck North Berkeley CA USA
yl apt. num street name city city state country (0.6)
y2 apt. num street name street name city state country (0.1)

{h 3
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HeisenDafta Data Model for IE

2181 Shattuck North
Berkeley CA USA

e

oo~ W N | O
vy
q)
-
3

TokenTableP

-

Shattuck

Shattuck

Berkeley

Berkeley

Street
num

Street
num

street
nName

Street
name

Street
name

Street
num

Street
nName

city

FactorTable

22

10
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Relational and Inference Queries

Relational Operators

Select, Project, Join 1 0 2181
Aggregation 1 1 Shattuck
Inference Operators 1 2 North
Top-k Inference 1 3 Berkeley
Marginal Inference 1 4 CA
1 5 USA

TokenTableP

SELECT pos, token, top-k(LabelF)
FROM TokenTableP
WHERE docID <= 10
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Top-k Probabilistic Join

SELECT Top-k join extractions

FROM EmailsP D1, EmailsF D2

WHERE Dl.docID !'=D2.doclID
and D1.Label®? = D2.Labelf = ‘company’
and D1.token = D2.token and prob > T

Top-1 Join /\ q\\
Result ] &

X
g

Probabilistic Join X A
4N
extraction A /\/\
distributions /| 7\ b

nnnnnnnnn
HHHHHH
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Top-k Probabilistic Join

SELECT Top-k join extractions

FROM EmailsP D1, EmailsF D2

WHERE Dl.docID !'=D2.doclID
and D1.Label®? = D2.Labelf = ‘company’
and D1.token = D2.token and prob > T

Starting point: Viterbi Dynamic Programing (Top-1 Extraction)

- |Incremental Viterbl = Ranked List of Extractions

- Probabilistic Rank-Join = Top-k Join Result




Viterbi DP for Max-Likelihood Extraction

Viterbi DP Algorithm:

V(Ly) =1

0, if i =—1.

2181
Shattuck
North
Berkeley
CA

USA

0
1
2
3
4
5

12
21
29
39

215

24
32
40
47

21

s 32

38
46

( K
maxy (V (i —1 y') + > A fce F(y, ¥, %)), ifi>0
k=1

18
30

242

46

17
26
35
250
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Incremental Viterbi [VLDB10]

m Novel variant of Viterbi-based CRF inference
m [nput: States and Top-1 Extraction from Viterbi

m Algorithm: Incrementally computes the next highest
probability extraction

— Clever book-keeping and incremental evaluation
m Result: List of extractions ranked by probability

a Complexity: O(T(Y]+K)log(|Y|+k)) <O(T|Y[")
when k is small, T (number of tokens),
Y| (number of labels), k (extraction depth)

m [SIGMOD11] deals with alternative inference tools
(e.g., MC sampling)
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Talk Outline

m Introduction, Motivation, Challenges

m Example Data Model and Relational Query Processing

[VLDBO0S]

m Managing Inference for Information Extraction

[ICDE10,VLDB10,SIGMOD11]
m Statistics for Probabilistic Data [ICDE09,VLDBO09]

m Conclusions & Future Work
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Probabilistic Data Reduction

m Probabilistic data can be difficult to work with
-~ Even simple queries can be #P hard [Dalvi,Suciu’04]

- joins and projections between (statistically) independent
probabillistic relations

- need to track the history of generated tuples
- Want to avoid materializing all possible worlds

m Our Goal: Seek compact representations of probabilistic
data

— Data synopses which capture key properties and possible
world semantics

— Can perform expensive operations on compact summaries
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Traditional Histograms

m Compact, piecewise-constant approximations of large
PDFs

— Domain is split in B buckets
-~ Each bucket approximated by a single value

m Typically, the average probability mass / count in the
bucket

— Approximation using O(B) space

A

Count in
bucket

v

4 56 789 1112 19 20 Domain values
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Probabilistic Histograms [VLDB09]

m A powerful approximate representation of uncertain data

m Represent each bucket with a PDF
— Capture prob. of each item appearing i times

b, b,
A L | L

s 1 %

m Complete representation

m Target several metrics
- EMD, Kullback-Leibler divergence, Hellinger Distance

— Max Error, Variation Distance (L1), Sum Squared Error
etc
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Probabilistic Data Model

m Ordered universe U of data items (i.e., {1, 2, ..., N})
m Each item in ¥ obtains values from a value domain ¢/
— Each with different probability = each item described by PDF

m Example:
— PDF of item i describes prob. that i appears 0O, 1, 2, ... times
— PDF of item i describes prob. that i measured value V,, V, etc

m Can capture popular “independent tuple” models (Trio,
Mystiq, ...)
- Handling correlations is an open problem...




Bucket Representation Start: s
m Goal: Partition universe U into buckets of bucket
= Within each bucket b = (s,e) \

— Approximate (e-s+1) pdfs/\vvith a b, b,
piecewise constant PDF X(b) m — | m H —L

- \ [ -
- X(1) L X(Q)

m Error of above approximation
— Let d() denote a distance function of PDFs

Typically, summation

Err(b) = @d()’f(b),Xi) < or MAX

m Given a space bound (no. of piecewise constant terms),
we need to determine

— number of buckets
— terms (i.e., pdf complexity) in each bucket
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Target Error Metrics

Variation Distance (L1) | ¢XY)=[X=Yli= ;{lpf[X =v]—Prly =]

ve ¥
Max Error (L) d(X.Y) = [[X. Y|l = max |PriX = v] = Prly =v]]
. . .l . PX:%_P}/:,—EE
(Squaégdt) Hellinger dXY) = HX.Y)= ¥ (Pr[X =v] § [y =v]?7) Common
istance 5 2 Prob.
Kullback-Leibler . | prpx =y | |TECS
Divergence (relative dX.Y)=KLX,Y)= 1; X =vlbe o= |

entropy)

Earth Mover’s Distance | Distance between probabilities at the value
(EMD) domain 3
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General DP Scheme: Inter-Bucket

m Let B-OPTP[w,T] represent error of approximating up to
we ¥ first values-of bucket b using T terms
' 1" [l

N b
Error approximating first _ I
w values of PDFS Using T terms M T
m Let H-OPT[m, T] represent error of first m items in U

within bucket b for bucket b W y
when using T terms

k=

/

H-OpT[m,T| = min [H-OPT[k,T —1] +B-OpT" 1MV 1 4]

| <k<<m—1,1<r<T—1

~Check all start Use T-t terms for  Where the last Approximate all V+1
positions of last bucket, the first k items bucket starts frequency values [n ;

S
XPONIA e

terms to assign using t terms iU KS4

HHHHHH
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General DP Scheme: Intra-Bucket

» Compute efficiently per metric
» Utilize pre-computations

m Each bucket b=(s,e) summarizes PDFs of items?,...,e
— Using from 1 to V=|7/| terms
m Let VALERR(b,u,v) denote minimum possible grror of

1-term approximating the frequency values in/[u,v] of
bucket b. Then:

B—OPT°[w,T] :Lminl{B—OPTb[u,T —1]+VALERR (b,u +@

Use T-1 terms for the first u Where the last term starts
frequency values of bucket
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Efficient Probabilistic Histograms [VLDB09]

m Several optimizations for efficient DP computation under
different error metrics

— Efficient computation of VALERR() exploiting pre-
computation

m Show how “possible worlds” queries can be handled
using probabilistic histograms

m Have recently given more efficient approximate versions
of the DP

— Guaranteed ¢-approximate probabilistic histograms
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Conclusions

m HeisenData = Scalable data-management & probabilistic
reasoning system

— Integrate state-of-the-art DB and ML technology

— Issues in data model, query processing, managing
Inference and IE, database statistics

- Many-many more remain open...

Very exciting field of research!!
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Future Work

m Many directions we currently pursue / want to pursue

— Integrating the Entity Resolution step for IE

— Exploiting modern cloud platforms and parallelism for
Inference

- Managing and querying data lineage
— Integrating FO inference techniques and ideas
— Statistics in the presence of models and correlations

— ... and, designing physical algebras, costing operators,
query optimization, ....
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Thank you!

http://neisendata.softnet.tuc.gr/
http://www.softnet.tuc.gr/~minos/

minos@softnet.tuc.gr
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-Sum Squared Error &
s 1) Helli Dic

m Simpler cases (solved similarly). Assume bucket b=(s,e)
and wanting to compute VALERR(b,v,w)

m (Squared) Hellinger Distance (SSE is similar)
-~ Represent bucket [s,e]x[v,w] by single value p, where




Variation Distance

Interesting case, several variations
Best representative within a bucket = median P value

(&

VALERR(b,v.w) =} z Pr(X; = j] —2I(i, j)Pr[X; = /]

i=s j=v

I(i,7)is Lif Pr[X; = j] < pea, and O otherwise

NeEd to VUIvUItALLY OUlll VI vuUaiiIuuo Juliluyvy IIIL:UIMI‘] : tWO-

dimensional range-sum median problem

Optimal PDF generated is NOT normalized

Normalized PDF produced by scaling = factor of 2 from
optimal

Extensions for g-error (normalized) approximation

43
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Other Distance Metrics

m Max-Error can be minimized efficiently using sophisticated
pre-computations

— No Intra-Bucket DP needed
— Complexity lower than all other metrics: O(TVN?)

m EMD case is more difficult (and costly) to handle
m Details in the paper...

44
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Handling Selections and Joins

m Simple statistics such as expectation are simple
m Selections on item domain are straightforward
— Discard irrelevant buckets - Result is itself a prob. histogram

m Selections on the value domain are more challenging

— Correspond to extracting the distribution conditioned on
selection criteria

m Range predicates are clean: result is a probabilistic
histogram of approximately same size

Pr

1/2
Pr[X=x| X2 3] 1/3

) s

1 2 3 45 1 2 3 45
45

Pr




I
Handling Joins and Aggregabtes

Pr

m Result of joining two probabilistic
relations can be represented by
joining their histograms

— Assume pdfs of each relation are
iIndependent

— EX: equijoin on 7: Form join by taking
product of pdfs for each pair of bucket
Intersections

— If input histograms have B1, B2 buckets
respectively, the result has at most
B1+B2-1 buckets

. Each bucket has at most: T1+T2-1 terms

Product

m Aggregate queries also supported
— l.e., count(#tuples) in result

— Detaills in the paper... 46
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Experimental Study

m Evaluated on two probabilistic data sets
— Real data from Mystig Project (127k tuples, 27,700 items)
— Synthetic data from MayBMS generator (30K items)
m Competitive technique considered: IDEAL-1TERM
— One bucket per EACH item (i.e., no space bound)
— A single term per bucket

m Investigated:
— Scalability of PHist for each metric
— Error compared to IDEAL-1TERM

47




Quality of Probabilistic Histograms

Max Error. 10000 items

Variation Distance, 1000 Items

1000
900
800

c—o PHist
700

— IDEAL-1TERM

600
500

Variation Distance

0.5
&—= PHist
. IDEAL-1TERM
5114- —
f
o
s o0000
— ~al oo _|
= oD &)
o oo
> Bg oo0
02k 9
1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
0 100 200 300 400 500 600 700 S00 900 1000

Terms
(b) Max-Error statistic

400

L

100

e
ancN
i ) 19'9-6—-4;_

=

—a Ty
Al = SV S WPEY —
":"'&"“\""9—{}—@ e -6 .

L

-
Sy
= oSl

L
0 100 200

300 400 500 600 700 800 900 1000

Terms
(d) Sum Variation Distance

m Clear benefit when compared to IDEAL-1TERM
— PHist able to approximate full distribution

48




Scalability

Scalability varying number of items, T = 1000

1 T T T T
a0 | .
n | _ .
Z 300k ~—-=- Wariation Distance _
= - Max Error
= ' |---- Sum Squared Error
— i |—— Hellinger Distance
¥ 200~ ; = .
100 e
{:' 'I.I L_.+—I-I'"_1_‘M_Id-rl-rrr‘__l-.‘_l_.rl I 1 1 I 1
0 2000 4000 6000 28000

Number of Items
(a) Time as the number of items N varies

10000

Scalability vs number of terms, 10000 1tems

5':::":} T T T T T T T T T
400 -
—_ : The line for Vanation Distance
a - corresponds to 1000 items .
S 300 —--- Variation Distance |
= - Max Error
E -—— Sum Squared Error|
L 200(- —— Hellinger Distance | ]
= . Knee at V buckets
b i 1
100} o mmm=====
0 ] | | | |
0 200 400 600 800 1000
Terms

(b) Time as T varies

— Time cost is linear in T, quadratic in N
. Variation Distance (almost cubic complexity in N) scales

poorly

— Observe “knee” in right figure. Cost of buckets with >V terms is

same as with EXACTLY V terms => INNER DP uses already 5y

R Y

S N\
TOAYTEXNEIO LL&iildty
{PHTHZ
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Concluding Remarks

m Presented techniques for building probabilistic histograms
over probabilistic data

— Capture full distribution of data items, not just expectations
— Support several minimization metrics
— Resulting histograms can handle selection, join,
aggregation queries
m Future Work

— Current model assumes independence of items. How to
deal with item correlations...?

— Running time improvements

.- (1+¢)-approximate solutions [Guha, Koudas, Shim: ACM
TODS 2006]

- Prune search space (i.e., very large buckets) using Iower

bounds for bucket costs
50
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Probabilistic Data Analysis

Information Extraction Systems Sensor Networks

--/

Extracted entities (e.g. names, | [ Sensor readings (e.g. light,
locations) are probabilistic temperature) are probabilistic

Which NYTimes articles What's the Gaussian
mention ‘Apple’ as a company | |distribution of average
with top-k highest probability? | |temperature of the area?




biher Ongoing/Future Work:
Probabilistic Data Management
m Managing uncertain data

&

SELECT * INPUT FILE

FROM RAWDATA

OUTPUT FILE

Sensor/RFID streams Relational DBMS Y 4
(+ metadata, floor plans, ...)

m All interesting data processing done outside the database!

m Lose all key benefits of a DBMS (declarative querying,
persistence, optimization, ...)

m No sharing of data/knowledge/abstractions, duplication of effort ,
52 Streaming in a Networked World — Of1A 2/2010
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Probabilistic Data Management

m EXxisting Probabilistic DBs: Simplistic uncertainty models that easily
map to existing DB architectures

- Independent tuple-level confidences and attribute-value options

(OR-tuples)
Year Value Confidence Owns (owner,car)
1952 55°F 0.7 (Jimmy, Toyota) || (Jimmy, Mazda)
1954 -22°F 0.9 (Billy, Honda) || (Frank, Honda)
(Hank, Honda)

m  The HeisenData Project (originally UC Berkeley, now at TUC)

-~ Scalable, integrated data-management & probabilistic-reasoning
platform

— Statistical models and reasoning as “first-class” citizens in the
DBMS

— Query processing = relational ops + statistical inference

m “Possible worlds” semantics (data + stat model)
53 Streaming in a Networked World — OF1A 2/2010
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HeisenData Challenges

m \What is the right language/algebra/interface?
— Completeness, soundness
— EXpressiveness & ease of use

m Query Processing & Optimization

— Probabilistic queries with relational and inference operators!
[MG+, VLDB’08]

— Inference is expensive!

m Exploit massive parallelism (e.g., Hadoop) and/or
approximation?

— Statistics for probabilistic data? [Cormode, MG,SIGMOD’07]
— Physical DB design (indexes, access structs, views, ...)?

- Extensibility (stat models, inference techniques, ...)
54 Streaming in a Networked World — OF1A 2/2010
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App: Managing Information Extraction

m |E = Extracting structured entities from unstructured text
— Based on sophisticated ML models and tools (e.g., CRFs)

— Lots of data: many data sources, background/domain
knowledge, extracted data (inferences), ...

— Results riddled with uncertainty

m Difficult challenges for Probabilistic DBMS
— Declarative IE: Extraction as PDB query processing!
m |E op algebra, optimizing IE query plans, statistics for IE, ...
- Managing IE state
= Probabilistic query answering over extracted data
= Maintaining/querying provenance of inferences (“explain”)
= Continuous extraction (i.e., monitoring)
m Some initial steps in [MG+, ICDE’10, Unpub’10]

55 Streaming in a Networked World — OF1A 2/2010




I
My View of Modern Data Management

Bioinformatics

Really exciting times for Data-Management Research!!

56 Streaming in a Networked World — OF1A 2/2010
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BayesSfore Model -

=
o
:

T 20 25

Evidence Prob=0.4=1T""T+"T=

10am 1 20 25 Table(s)
10am 2 21 XXX tim id temp it
10am 7 /\ 28 “ z 21 27
+ Prob=0.3| = | + | = | ==

f

Hierarchical
FO Graphical
Model

10am 1 20 25

10am 2 21 2.7

PrOb — 0_ 3 10.‘5.\m 7 26 2.8
“"Possible Worlds”

m (Evidence + Model) define a probability distribution over “possible worlds”

= Complete data model ProbMO de/( World | Evidence)

57 Streaming in a Networked World — OF1A 2/2010
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BayesSfore [MG+,VLDB'08]

Data Model
1. Incomplete Relation -- RP
2. Distribution over Possible Worlds — F

Incomplete Relation of Probabilistic Distribution of
SensorlP SensorlP

TR [lsfid [[#p®  ||ue F=Pr[X, ..., 4]
1l O
12 10 (Y [|HEE N: number of missing values
13 b 1P3 |X|: size of the domain

5 |4 [t

g S . _ O(IXN
5 o FI = ©(IXIM)
16
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The Skyscrapers Example

For all sensor in all rooms at all timestamp, Light and Temperature
readings are correlated.

Temperature

59 Streaming in a Networked World — OF1A 2/2010
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Definitions

Stripe: A family of random variables from the
same probabilistic attribute.

First-order Factor: A family of local models,
which share the same structure and
conditional probability table (CPT).

BayesStore Data Type: The input and
output abstract data type of queries in
BayesStore, which consists of data and
model.

Possible Worlds

60 Streaming in a Networked World — OF1A 2/2010




F as a First-Order Bayesian Network

Sensorl1P Stripe (FO Variable) Definitions
T |R |Sid |TpP LP
— All Tp values in Sensor1P
L E E R LT \"_ @ with Sid=1
y2 |1 |1 |2 Cold | Drk -7
1 |1
t3 >
112 |1 - Brt
4 11 ]2 |2 HF
t5 |1 (2 |3
16 [2 (1 |1 Hot
43}';"
t7 |2 |1 |2 cWy | Drk
t8 |2 |1 |3
19 [2]2 |1 Brt
1102 |2 |2 o
t12 —
61 Streaming in a Networked World — OF1A 2/2010




F as a First-Order Bayesian Network

SensorlP

T|R |Sid |TpP |LP
t1 |11 |2 r@ &
y2 |11 |2 (s Drigy_
+3 1 |1 3 @ @_

102 |1 @ Bri . |
4 [1 ]2 |2 L @_
t5 |1 |2 |3 @ L
16 |2 |1 |1 r@ & |
7 |2 |1 |2 q@ ol |
18 [2 |1 |3 L § & |
19 12 ]2 |1 9 |
1102 [2 |2 r@ &
Y PR PE ¥ & ]
‘I‘1262 ‘

@treamh@n a Networl

Stripe (FO Variable) Definitions

[ Al Tp values in SensorlP
with Sid=1

.Lr

All Tp values in Sensorl1P
‘ with Sid=2

All Tp values in SensorlP
with Sid =2

9
1

All Tp values in SensorlP

All L values in Sensorl1P
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N
F as a First-order Bayesian Model

First-order Factor Definitions

All Tp values All L values — .
; - Cold Brt 0.1
> Hot Brt 0.9
Hot Drk 0.1
h Cold Drk 0.9
All Tp values All Tp values
with Sid=1 with Sid=2
- Tpl Tp2 p
Cold Cold 0.1
> Cold Hot 0.9
Hot Hot 0.1
‘ Hot Cold 0.9
All Tp values
with Sid =2
Tp p
Cold 0.6
Hot 0.4
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Query Semantics

<R Fropn> Relational and Rss‘ﬁtmg
. < >
‘ Inference Queries ‘ ,FFOBN
0
@zg’(l) (in & .
Represent Represent

. (V) o
- Relational and Bz o

Inference Queries oy

s .
y \
’:é?" A

-

Resulting
Possible Worlds
And Distribution

Possible V! orﬁs”
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