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Talk Outline

¢ The need for probabilistic histograms
= Sources and hardness of probabilistic data
= Problem definition, interesting metrics

¢ Proposed Solution

¢ Query Processing Using Probabilistic Histograms
— Selections, Joins, Aggregation etc

¢ Experimental study
¢ Conclusions and Future Directions



Sources of Probabilistic Data

¢ Increasingly data is uncertain and imprecise
— Data collected from sensors has errors and imprecisions
— Record linkage has confidence of matches
— Learning yields probabilistic rules

¢ Recent efforts to build uncertainty into the DBMS
= Mystiqg, Orion, Trio, MCDB and MayBMS projects
— Model uncertainty and correlations within tuples

e Attribute values using probabilistic distribution over mutually
exclusive alternatives

* Assume independence across tuples

- Aim to allow general purpose queries over uncertain data

* Selections, Joins, Aggregations etc



Probabilistic Data Reduction

¢ Probabilistic data can be difficult to work with
— Even simple queries can be #P hard [Dalvi, Suciu '04]

 joins and projections between (statistically) independent
probabilistic relations

* need to track the history of generated tuples

— Want to avoid materializing all possible worlds

¢ Seek compact representations of probabilistic data
— Data synopses which capture key properties
= Can perform expensive operations on compact summaries



Shortcomings of Prior Approaches

¢ [CG’09] builds histograms that minimize the
expectation of a given error metric

— Domain split in buckets
— Each bucket approximated by a single value

¢ Too much information lost in this process

- Expected frequency of an item tells us little about its
probability that it will appear i times

 How to do joins, or selections based on frequency?

¢ Not a complete representation scheme

= Given maximum space, input representation cannot be
fully captured



Our Contribution

¢ A more powerful representation of uncertain data
¢ Represent each bucket with a PDF

— Capture prob. of each item appearing i times
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¢ Complete representation

¢ Target several metrics

— EMD, Kullback-Leibler divergence, Hellinger Distance
= Max Error, Variation Distance (L1), Sum Squared Error etc
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Probabilistic Data Model

¢ Ordered domain U of data items (i.e., {1, 2, ..., N})

¢ Each item in U obtains values from a value domain ¢/
= Each with different frequency = each item described by PDF

¢ Example:

— PDF of item i describes prob. that i appears 0, 1, 2, ... times
— PDF of item i describes prob. that i measured value V,, V, etc



Used Representation Start: s

End: e
¢ Goal: Participate U domain into buckets 21k
¢ Within each bucket b = (s,e) \

b, b,
~ Approximate (e-s+1) pdfs with a m N m H _L
piece-wise constant PDF )\((b) a

¢ Error of above approximation | ko) [_ ()

- Let d() denote a distance function of PDFs
e
A Typically,
El’l"(b) — @ d(X(b),Xl) < summation or MAX
[=S$

¢ Given a space bound, we need to determine
= number of buckets

= terms (i.e., pdf complexity) in each bucket



Targeted Error Metrics

Variation Distance (L1) d(X,Y) = [IX =Yl —1; | PriX = v] = Prly = ]|
Sum Squared Error dX.Y)=|X-Y|3= 1; (Pr[X = v] —Pr[Y =])*
Max Error (Loo) dX,Y) = |[X.Y]leo = max [PriX =v] = Pr[¥ =v]
(Squared) Hellinger Distance | d(X.Y)=H*(X.Y) :1.-;‘f (PriX = V]% ;Pr[}( - 1']_; )’
KuIIback-Lt?ibIer Divergence | v yy_kr(x.y)= Y PrIX = ]log, P':[X = V|
(relative entropy) s Y =v]

Earth Mover’s Distance
(EMD)

Distance between probabilities at the value
domain

Common
Prob.

__metrics
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General DP Scheme: Inter-Bucket

¢ Let B-OPTP[w,T] represent error of approximating up towe v/
first values/of bugket b using T terms

Error approximating first _ bl
w values of PDFS Using T terms

r

1" [

within bucket b for bucket b

¢ Let H-OPT[m, T] represent error of first m items in U when

using T terms

H-OpT|m,T| = min {H-OPT[k, T

| <k<m—1,1<t<T—1

/

\A/
VvV

positions of last bucket, the first kitems  bucket starts

terms to assign

—t]+B-OptMHMy L

/

Check all start Use T-t terms for Where the last

Approximate all V+1

frequency values
using t terms
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General DP Scheme: Intra-Bucket

» Compute efficiently per metric
» Utilize pre-computations

¢ Each bucket b=(s,e) summarizes PDFs of items s, ...,e
— Using from 1 to V=| 1| terms

¢ Let VALERR(b,u,v) denotes minimum possible erroy of
approximating the frequency values in [u,v] of bufket b. Then:

B—OPT°[w,T]= min {B-OPT"[u,T -1]

I<usw-1

Use T-1 terms for the first u Where the last term starts
frequency values of bucket

¢ Intra-Bucket DP not needed for MAX Error (Loo) distance
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Sum Squared Error &
(Squared) Hellinger Distance

¢ Simpler cases (solved similarly). Assume bucket
b=(s,e) and wanting to compute VALERR(b,v,w)

¢ (Squared) Hellinger Distance (SSE is similar)

- Represent bucket [s,e]x[v,w] by single value p, where

e (B VP = )

_?

e, W] iz\/PrX,—; Ble,w| ZEEPI
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Variation Distance

¢ Interesting case, several variations

¢ Best reoresentajclve within a bucket = median P value
¢ VALERR(b,v.w) =Y Y Pr[X;= j]—2I(i, j)Pr[X; = ]

i=s j=v

¢ , Where I(i,7)is Lif Pr[X; = j] < pea, and O otherwise

¢ Need to calculate sum of values below median =
two-dimensional range-sum median problem

¢ Optimal PDF generated is NOT normalized

¢ Normalized PDF produced by scaling = factor of 2
from optimal

¢ Extensions for e-error (normalized) approximation
14



Other Distance Metrics

¢ Max-Error can be minimized efficiently using
sophisticated pre-computations

= No Intra-Bucket DP needed
- Complexity lower than all other metrics: O(TVN?)

¢ EMD case is more difficult (and costly) to handle
¢ Details in the paper...
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Handling Selections and Joins

¢ Simple statistics such as expectation are simple

¢ Selections on item domain are straightforward

= Discard irrelevant buckets - Result is itself a prob. histogram

¢ Selections on the value domain are more challenging

— Correspond to extracting the distribution conditioned on

selection criteria

¢ Range predicates are clean: result is a probabilistic
histogram of approximately same size
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Handling Joins and Aggregates

boundaries
Pra .

¢ Result of joining two probabilistic
relations can be represented by joining
their histograms -
— Assume pdfs of each relation are independent
= Ex: equijoin on 7: Form join by taking product |
of pdfs for each pair of bucket intersections

= If input histograms have B1, B2 buckets

respectively, the result has at most B1+B2-1
buckets

e Each bucket has at most: T1+T2-1 terms

¢ Aggregate queries also supported
= l.e., count(#tuples) in result

Product 0

— Details in the paper...




Experimental Study

¢ Evaluated on two probabilistic data sets
- Real data from Mystiq Project (127k tuples, 27,700 items)
- Synthetic data from MayBMS generator (30K items)

¢ Competitive technique considered: IDEAL-1TERM

= One bucket per EACH item (i.e., no space bound)
— Asingle term per bucket

¢ Investigated:

— Scalability of PHist for each metric
— Error compared to IDEAL-1TERM
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Max Error
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(d) Sum Variation Distance

¢ Clear benefit when compared to IDEAL-1TERM

— PHist able to approximate full distribution
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Scalability
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(b) Time as T varies

— Time cost is linear in T, quadraticin N

* Variation Distance (almost cubic complexity in N) scales poorly
= Observe “knee” in right figure. Cost of buckets with >V terms is

same as with EXACTLY V terms => INNER DP uses already

computed costs
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Concluding Remarks

¢ Presented techniques for building probabilistic
histograms over probabilistic data
— Capture full distribution of data items, not just expectations
— Support several minimization metrics
— Resulting histograms can handle selection, join, aggregation
queries
¢ Future Work

= Current model assumes independence of items. Seek
extensions where this assumption does not hold

= Running time improvements
e (1+€)-approximate solutions [Guha, Koudas, Shim: ACM TODS 2006]

* Prune search space (i.e., very large buckets) using lower bounds for
bucket costs 21



