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Sources of Probabilistic Data

 Increasingly data is uncertain and imprecise

- Data collected from sensors has errors and imprecisions

- Record linkage has confidence of matches

- Learning yields probabilistic rules

 Recent efforts to build uncertainty into the DBMS

- Mystiq, Orion, Trio, MCDB and MayBMS projects

- Model uncertainty and correlations within tuples 
• Attribute values using probabilistic distribution over mutually 

exclusive alternatives

• Assume independence across tuples

- Aim to allow general purpose queries over uncertain data
• Selections, Joins, Aggregations etc
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Probabilistic Data Reduction

 Probabilistic data can be difficult to work with

- Even simple queries can be #P hard *Dalvi, Suciu ’04+
• joins and projections between (statistically) independent 

probabilistic relations

• need to track the history of generated tuples

- Want to avoid materializing all possible worlds

 Seek compact representations of probabilistic data

- Data synopses which capture key properties

- Can perform expensive operations on compact summaries
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Shortcomings of Prior Approaches

 *CG’09+ builds histograms that minimize the 
expectation of a given error metric

- Domain split in buckets

- Each bucket approximated by a single value

 Too much information lost in this process

- Expected frequency of an item tells us little about its 
probability that it will appear i times

• How to do joins, or selections based on frequency?

 Not a complete representation scheme

- Given maximum space, input representation cannot be 
fully captured
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Our Contribution

 A more powerful representation of uncertain data

 Represent each bucket with a PDF

- Capture prob. of each item appearing i times 

 Complete representation

 Target several metrics

- EMD, Kullback-Leibler divergence, Hellinger Distance

- Max Error, Variation Distance (L1), Sum Squared Error etc
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Probabilistic Data Model

 Ordered domain U of data items (i.e., ,1, 2, …, N-)

 Each item in U obtains values from a value domain V

- Each with different frequency  each item described by PDF

 Example:

- PDF of item i describes prob. that i appears 0, 1, 2, … times

- PDF of item i describes prob. that i measured value V1, V2 etc
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Used Representation

 Goal: Participate U  domain into buckets

 Within each bucket b = (s,e) 

- Approximate (e-s+1) pdfs with a 

piece-wise constant PDF X(b)

 Error of above approximation

- Let d() denote a distance function of PDFs

 Given a space bound, we need to determine

- number of buckets

- terms (i.e., pdf complexity) in each bucket

Start:   s

End:    e

of bucket

Typically, 

summation or MAX
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Targeted Error Metrics

Variation Distance (L1)

Sum Squared Error

Max Error (L)

(Squared) Hellinger Distance

Kullback-Leibler Divergence 
(relative entropy)

Earth Mover’s Distance 
(EMD)

Distance between probabilities at the value 
domain

Common  

Prob.  

metrics
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General DP Scheme: Inter-Bucket

 Let B-OPTb[w,T] represent error of approximating up to wV

first values of bucket b using T terms

 Let H-OPT[m, T] represent error of first m items in U when 
using T terms

Where the last

bucket starts

Use T-t terms for 

the first k items
Approximate all V+1 

frequency values

using t terms

w

Error approximating first 

w values of PDFS

within bucket b

Using T terms

for bucket b

Check all start 

positions of last bucket,

terms to assign
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General DP Scheme: Intra-Bucket

 Each bucket b=(s,e) summarizes PDFs of items s,…,e
- Using from 1 to V=|V | terms 

 Let VALERR(b,u,v) denotes minimum possible error of 
approximating the frequency values in [u,v] of bucket b. Then:

 Intra-Bucket DP not needed for MAX Error (L) distance

 Compute efficiently per metric

 Utilize pre-computations

)},1,(]1,[{min],[
11

wubVALERRTuOPTBTwOPTB b

wu

b 


Where the last term startsUse T-1 terms for the first u

frequency values of bucket
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Sum Squared Error & 

(Squared) Hellinger Distance

 Simpler cases (solved similarly). Assume bucket 
b=(s,e) and wanting to compute VALERR(b,v,w)

 (Squared) Hellinger Distance (SSE is similar)

- Represent bucket [s,e]x[v,w] by single value p, where

- VALERR(b,v,w) = 

- VALERR computed in constant time using O(UV) pre-
computed values, given

Computed by 

4 A[ ] entries
Computed by 

4 B[ ] entries



 Interesting case, several variations

 Best representative within a bucket = median P value



 , where

 Need to calculate sum of values below median 
two-dimensional range-sum median problem

 Optimal PDF generated is NOT normalized

 Normalized PDF produced by scaling = factor of 2 
from optimal

 Extensions for ε-error (normalized) approximation 
14

Variation Distance
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Other Distance Metrics

 Max-Error can be minimized efficiently using 
sophisticated pre-computations

- No Intra-Bucket DP needed

- Complexity lower than all other metrics: O(TVN2)

 EMD case is more difficult (and costly) to handle

 Details in the paper…
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Handling Selections and Joins

 Simple statistics such as expectation are simple

 Selections on item domain are straightforward

- Discard irrelevant buckets - Result is itself a prob. histogram

 Selections on the value domain are more challenging

- Correspond to extracting the distribution conditioned on 
selection criteria

 Range predicates are clean: result is a probabilistic 
histogram of approximately same size

1   2   3  4   5      
X

Pr

0.3

0.2

0.1

Pr[X=x | X ≥ 3]

1   2   3  4   5      
X

Pr

1/2

1/3

1/6
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Handling Joins and Aggregates
 Result of joining two probabilistic 

relations can be represented by joining 
their histograms
- Assume pdfs of each relation are independent

- Ex: equijoin on V : Form join by taking product 
of pdfs for each pair of bucket intersections

- If input histograms have B1, B2 buckets 
respectively, the result has at most B1+B2-1 
buckets

• Each bucket has at most: T1+T2-1 terms

 Aggregate queries also supported
- I.e., count(#tuples) in result

- Details in the paper…

X

Pr

X

Pr Join on V

boundaries

X

Pr

Product of
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Experimental Study

 Evaluated on two probabilistic data sets

- Real data from Mystiq Project (127k tuples, 27,700 items)

- Synthetic data from MayBMS generator (30K items)

 Competitive technique considered: IDEAL-1TERM

- One bucket per EACH item (i.e., no space bound)

- A single term per bucket

 Investigated: 

- Scalability of PHist for each metric

- Error compared to IDEAL-1TERM
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Quality of Probabilistic Histograms

 Clear benefit when compared to IDEAL-1TERM

- PHist able to approximate full distribution
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Scalability

- Time cost is linear in T, quadratic in N

• Variation Distance (almost cubic complexity in N) scales poorly

- Observe “knee” in right figure. Cost of buckets with > V terms is 
same as with EXACTLY V terms => INNER DP uses already 
computed costs
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Concluding Remarks

 Presented techniques for building probabilistic 
histograms over probabilistic data

- Capture full distribution of data items, not just expectations

- Support several minimization metrics

- Resulting histograms can handle selection, join, aggregation 
queries

 Future Work

- Current model assumes independence of items. Seek 
extensions where this assumption does not hold

- Running time improvements
• (1+ε)-approximate solutions [Guha, Koudas, Shim: ACM TODS 2006]

• Prune search space (i.e., very large buckets) using lower bounds for 
bucket costs


