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Traditional Pub/Sub

• Many subscribers, each specify some target of interest
– E.g. Company looking for nursing employees, 

where job pays $40-$60/hr and work is 20-30 hrs/week

• Events arrive, each labeled with a number of attributes
– E.g. Job seeker, looking for a nursing job paying $50/hr and 25 

hours/week

• Subscribers notified about every event they target
– E.g. All matching companies notified about job seeker
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Traditional Pub/Sub (Geometric view)

Subscribers specify rectangle
in high-dimensional space

May preprocess
rectangles
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Traditional Pub/Sub (Geometric view)

Subscribers specify rectangle
in high-dimensional space

Event describes a point
in the space

Return every rectangle “stabbed”
by the point
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The same example on the web

• Companies are looking for potential employees
– Specify some target attributes

• Users arrive, looking for jobs
– Specify some attributes

• User is shown companies that match his search

• BUT– only top 5 are shown due to space limitations
• Same space limitations for applications like display 

advertising, load shedding
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Ranked Pub/Sub Problem

• Given a set of subscriptions:
– Each subscription describes a rectangle in high-dim space

• Each attribute corresponds to a dimension

– Each subscription gets a score
• May be static, or function of attribute scores

– Allowed to preprocess

• Events arrive online:
– Each event describes a point in high-dim space
– Each event also associated with a value k

• Return the k highest-scoring subscribers



7

Our focus

• Examine range queries in single dimensional case
– Subscribers specify intervals (and score)
– Events are 1-dim points

• Single dimension is building block for multi-dimensional 
case
– If score is static across attributes, do standard list intersection
– If score function of attribute-scores, apply threshold algorithm
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Our focus

• Examine range queries in single dimensional case
– Subscribers specify intervals (and score)
– Events are 1-dim points

• Single dimension is building block for multi-dimensional case

• Restrict our attention to small memory structures
– i.e. Intervals never broken into pieces (hence, linear space)

• Propose several novel data structures
• Compare these structures with variants of standards

– Show marked improvement for low dimensional problems
– Do well even compared to larger-memory structures



9

Standard structures for pub/sub

• Interval Tree
• R-Tree
• Segment Tree

– Space blow-up is O(log n)
• This is actually an issue– our experiments showed an order of 

magnitude larger memory footprint
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Standard structures for ranked pub/sub

• Interval Tree
– Sort intervals by score, or by interval– not both

• R-Tree
– Scored R-tree
– “Holes” can get you

• Segment Tree
– Space blow-up is O(log n) 

• This is actually an issue– our experiments showed an order of 
magnitude larger memory footprint

– “Gold standard”: Scoring is no problem!
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Our data structures

• IR-tree
– Interval tree with R-tree sitting in each node

• OptR-tree
– R-tree, but with intervals sorted to support scoring in an 

optimized way

• Main insight– R-trees in 1 dimension very fast, except 
for the wasted probes (i.e. “holes”)
– Both data structures use R-trees, with guarantees on number 

of wasted probes
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IR-tree

• Form basic tree as an interval tree

• For each node, index the
intervals with an R-tree
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IR-tree

• Why index by R-trees?
• Key lemma: All intervals at a node overlap, so the R-

tree has no holes!  (i.e. Every probe in the R-tree leads 
to a valid interval)

• R-trees also lightweight, simple,
good in practice

• Each getNext() call takes at most
O( log log n + height(R-tree))
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Opt-R-Trees

• Data structure is a R-tree
• However, we can sort the intervals more intelligently
• Key insight: If two intervals do not overlap, then can 

interchange order
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Opt-R-Trees

• Intervals induce a topological graph 
– (Edge from i1 to i2 if score(i1) > score(i2) AND i1, i2 overlap )
– We give a way of constructing taking time O(n log n) by 

ignoring some transitive edges

• Any grouping that respects this graph is okay
– We take left-most interval with indegree 0 at each step

• Key lemma: To get top k intervals, need at most 2k 
probes
– Roughly, there is a hole only when there must be one
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Experiments

• Used synthetic data
• 1M intervals
• Left endpoint and length of interval zipfian distributed

– Vary the skew, zipfian power

• Looked at varying number of dimensions
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Speed vs. overlap (Threshold algorithm 
in 4 dimensions)

Score matters less
(Interval tree)

More holes
(R-tree)

Lots of overlap Little overlap
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Time for getNext()

Opt-R tree great for
small k

Segment trees, IR-trees
must initialize their heap

Interval trees process
all matches
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Dimensionality (Threshold algorithm)

At larger number
of dimensions, all
methods have
similar time

More overhead,
more getNext()
calls
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Experimental summary

• IR-trees, OptR-trees, and segment trees are all 
comparable in speed
– Segment trees require too much memory
– Only IR-trees are easy to update intervals online

• Standard structures much slower in general

Space
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Segment
Tree

Interval
Tree

Opt R-Tree
IR-Tree

R-Tree
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Conclusions

• Propose a new problem: Ranked Pub/Sub
• Give a novel solution for one dimension

– Yields solutions for small dimensionality

• Data structure are lightweight, easy to implement, give 
good results
– IR-trees: easy to maintain 

• Open problems: 
– How do we extend this to larger dimensionality?
– More expressive subscriptions, events
– Score updates
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