g m"

Scalable Ranked Publish/Subscribe

Ashwin Machanavajjhala,

Erik Vee

Minos Garofalakis,

Jayavel Shanmugasundaram

9 ’ Traditional Pub/Sub
-

 Many subscribers, each specify some target of interest

— E.g. Company looking for nursing employees,
where job pays $40-$60/hr and work is 20-30 hrs/week

 Events arrive, each labeled with a number of attributes

— E.g. Job seeker, looking for a nursing job paying $50/hr and 25
hours/week

« Subscribers notified about every event they target

— E.g. All matching companies notified about job seeker

9’ Traditional Pub/Sub (Geometric view)
-

Subscribers specify rectangle
in high-dimensional space

May preprocess
rectangles

9’ Traditional Pub/Sub (Geometric view)
-

Subscribers specify rectangle
in high-dimensional space

Event describes a point
in the space

Return every rectangle “stabbed”
by the point

9’ The same example on the web
-

 Companies are looking for potential employees

— Specify some target attributes

« Users arrive, looking for jobs

— Specify some attributes

e User is shown companies that match his search

« BUT-only top 5 are shown due to space limitations

e Same space limitations for applications like display
advertising, load shedding

9’ Ranked Pub/Sub Problem
-

e Given a set of subscriptions:

— Each subscription describes a rectangle in high-dim space
« Each attribute corresponds to a dimension

— Each subscription gets a score
* May be static, or function of attribute scores

— Allowed to preprocess

 Events arrive online:
— Each event describes a point in high-dim space
— Each event also associated with a value k

 Return the k highest-scoring subscribers

9’ Our focus
-

 Examine range queries in single dimensional case

— Subscribers specify intervals (and score) ! —

— Events are 1-dim points 1

e Single dimension is building block for multi-dimensional
case

— If score Is static across attributes, do standard list intersection
— If score function of attribute-scores, apply threshold algorithm

9’ Our focus
-

Examine range queries in single dimensional case

— Subscribers specify intervals (and score)
— Events are 1-dim points

« Single dimension is building block for multi-dimensional case

« Restrict our attention to small memory structures

— I.e. Intervals never broken into pieces (hence, linear space)
 Propose several novel data structures
 Compare these structures with variants of standards

— Show marked improvement for low dimensional problems
— Do well even compared to larger-memory structures

9’ Standard structures for pub/sub
-

 Interval Tree
e R-Tree

e Segment Tree
— Space blow-up is O(log n)

* This is actually an issue— our experiments showed an order of
magnitude larger memory footprint

Reminder...

Interval Trees

Intervals
higher = higher score

Reminder...

Interval Trees

. stab: 50

Intervals
higher = higher score I Pick a stabbing line
I)
1 — —) All _stabbed intervals
] [go into one node
r— I
6 9_ I —87 \

Left intervals ! w0 Right intervals

o

100

Reminder...

Interval Trees

- stab: 50

SN

stab: 75

stab: 25
Intervals . .
: : Stabbing points : . :
higher = higher score I I Pick a stabbing line
I | .
| L — 2 All stabbed intervals
| > 4 go into one node
A
6 * I 87
S E— Repeat on left and right
| 10 intervals

0 100

Reminder...

Interval Trees

. stab: 50

SN

stab: 75

stab: 25

Intervals

_ _ Stabbing points
higher = higher score

I Pick a stabbing line
I

L 2 All _stabbed Intervals
I | 4 go into one node
6 _|_5 | 7
9 | 8 :
I — 0 Repeat on left and right
! intervals

0 100

For each node, store intervals sorted by left endpoint
and sorted by right endpoint

R-Trees

Intervals
higher = higher score

Score sorted R-Trees

Each node stores
containing interval

[30,100]

branching factor =3 /

1(2]3

Intervals

higher = higher score

Group intervals by score

Score sorted R-Trees

Each node stores
containing interval

Group intervals by score

[30,100]

[0,100]

[10,100]

[0,100]

branching factor =3 /

1(2]3

Intervals

higher = higher score

|

\

\

4(5]|6

78

10

Score sorted R-Trees

Each node stores [0.100] | [0.100] .
. Group intervals by score
containing interval /
[30,100] [0,100] [0,100] [0,100]
branching factor =3 / j \ \
112(3 4156 71819 10
Intervals

higher = higher score

Score sorted R-Trees

Each node stores [0.100] | 0,100 .
. Group intervals by score
containing interval /
[30,100] [0,100] [0,100] [0,100]
branching factor = 3 / j \ \ For a query, output
first k hits
112]3 4156 718(9 10
Intervals
higher = higher score
1 2
3
5 — —4
O T——— [—
0 m—— 8
10
4 T 4

stabbing point 100

Score sorted R-Trees

Each node stores [0.100] | [0.100] .
L. Group intervals by score
containing interval /
[30,100] [0,100] [0,100] [0,100]
branching factor = 3 / j \ \
112]3 4156 718(9 10
Intervals
higher = higher score May have many “holes”
== = wasted probes

stabbing point 100

9’ Segment trees
i

All intervals broken into

segments, based on I_H : I_I :

set of endpoints | & I
P]
| =T 1 1| ||
T T T 1T T

4J !5 !5 !5 90I 1(1)

o9
e}
o

w
o—

9’ Segment trees
i

10 [0,100] —
0.5 NG Form tree on segments
/\ Each node records
[0.30] g 1 segment: [a, b]
/\ I .1\
9 3 48 7
[1030]
| I I B |
| | [T O I (R B
All intervals broken into
segments, based on I—H : I—I :
set of endpoints
P i — |

9’ Segment trees
i

10 10,100] -
0.5 NG Form tree on segments
/\ Each node records
[0.30] g 1 segment: [a, b]
/\ N .l\
9.3 48 7 | Advantage: if interval
[10 30]
| | RN stored at node,
| | | 11 11 11 |theninterval
All intervals broken into contains all of [a,b]
segments, based on I_II=II : I—I :
set of endpoints | b | | M= | | SO each node stores
e | [_| === |intervals in score-
| T 1 | | | | |sorted order!

9’ Standard structures for ranked pub/sub
-

e Interval Tree

— Sort intervals by score, or by interval— not both
e R-Tree

— Scored R-tree
— “Holes” can get you

e Segment Tree
— Space blow-up is O(log n)

* This is actually an issue— our experiments showed an order of
magnitude larger memory footprint

— “Gold standard”: Scoring is no problem!

9 ’ Our data structures
-

 [R-tree
— Interval tree with R-tree sitting in each node
 OptR-tree

— R-tree, but with intervals sorted to support scoring in an
optimized way

e Main insight— R-trees in 1 dimension very fast, except
for the wasted probes (i.e. “holes”)

— Both data structures use R-trees, with guarantees on number
of wasted probes

9 ’ IR-tree
o

e Form basic tree as an interval tree

. stab: 50

SN

. 2,4,7,8

 For each node, index the stab: 25
Intervals with an R-tree
Stabbing points
| |
| |
11 ?
I I +4
) O M | |
PR I ——
*
10

I
I
| 2

@ L]
0 100

9 ’ IR-tree
o

 Why index by R-trees?

« Key lemma: All intervals at a node overlap, so the R-
tree has no holes! (i.e. Every probe in the R-tree leads
to a valid interval)

* R-trees also lightweight, simple, : :
|

good Iin practice et 2
=T

—I_ | 5

« Each getNext() call takes at most _I_10
O(log log n + height(R-tree)) .

100

9 ’ Opt-R-Trees
i

 Data structure is a R-tree

 However, we can sort the intervals more intelligently

« Key insight: If two intervals do not overlap, then can
Interchange order

L

1
3

5 —

O ——

(o]

|

— equivalent to

9 ’ Opt-R-Trees
i

 Intervals induce a topological graph
— (Edge from il toi2 if score(il) > score(i2) AND i1, i2 overlap)

— We give a way of constructing taking time O(n log n) by
ignoring some transitive edges

* Any grouping that respects this graph is okay

— We take left-most interval with indegree O at each step

 Keylemma: To get top k intervals, need at most 2k
probes

— Roughly, there is a hole only when there must be one

9’ Experiments
-

e Used synthetic data

e 1M intervals
e Left endpoint and length of interval zipfian distributed

— Vary the skew, zipfian power

« Looked at varying number of dimensions

Speed vs. overlap (Threshold algorithm

9-" In 4 dimensions)

Lots of overlap Little overlap

60
— More holes
E 55 | (R-tree)
- I
¢ 50
o Score matters less
S 45 | (Interval tree)
—
@
< 40 o
|_
()]
E 35 _
= ' '

30 | i | | |

0.0625 0.125 0.25 05 1 2 4

skew-length
Interval ——F— S K- OptR - -A -

9’ Time for getNext()
-

Interval trees process

4
| !llnterulal. —Il,—I , | . | | _I__p—l———% all matches
2 N R, ___><___ — | T |
S ¥
— B |H =
° 1 OPTR -4 - A
o -
3 i)
E’ 0.5 » X jﬂ
e 0.25 |- #7
E ,,r”’f ﬁ
€ 0.125 | X o 1 | Opt-R tree great for
= 0.0625 %~ B o -
. i
0.03125 = =arm= =5 1 | Segment trees, IR-trees
0.015625 R RN S N SR R — must initialize their heap

1 2 4 8 16 32 64 128 256 512
Number of getNext() calls (logScale)

9’ Dimensionality (Threshold algorithm)
-

16 ! ! | I I |
Interval —+—

At larger number
of dimensions, all
methods have
similar time

Time relative to OPT-R tree

More overhead,
more getNext()
calls

numDimensions

9 ’ Experimental summary
-

* |IR-trees, OptR-trees, and segment trees are all
comparable in speed

— Segment trees require too much memory

— Only IR-trees are easy to update intervals online

e Standard structures much slower in general

O

Interval
Tree

fo
£
-

R-Tree

O

IR-Tree Segment
O Opt R-Tree Tree

9’ Conclusions
-

 Propose a new problem: Ranked Pub/Sub

* Give a novel solution for one dimension
— Yields solutions for small dimensionality

e Data structure are lightweight, easy to implement, give
good results

— |IR-trees: easy to maintain

e Open problems:
— How do we extend this to larger dimensionality?
— More expressive subscriptions, events
— Score updates

	Slide Number 1
	Traditional Pub/Sub
	Traditional Pub/Sub (Geometric view)
	Traditional Pub/Sub (Geometric view)
	The same example on the web
	Ranked Pub/Sub Problem
	Our focus
	Our focus
	Standard structures for pub/sub
	�Reminder…
	�Reminder…
	�Reminder…
	�Reminder…
	R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Segment trees
	Segment trees
	Segment trees
	Standard structures for ranked pub/sub
	Our data structures
	IR-tree
	IR-tree
	Opt-R-Trees
	Opt-R-Trees
	Experiments
	Speed vs. overlap (Threshold algorithm in 4 dimensions)
	Time for getNext()
	Dimensionality (Threshold algorithm)
	Experimental summary
	Conclusions
	Slide Number 35
	Slide Number 36
	Slide Number 37

