
1

Scalable Ranked Publish/Subscribe

Ashwin Machanavajjhala,

Erik Vee
Minos Garofalakis,

Jayavel Shanmugasundaram

2

Traditional Pub/Sub

• Many subscribers, each specify some target of interest
– E.g. Company looking for nursing employees,

where job pays $40-$60/hr and work is 20-30 hrs/week

• Events arrive, each labeled with a number of attributes
– E.g. Job seeker, looking for a nursing job paying $50/hr and 25

hours/week

• Subscribers notified about every event they target
– E.g. All matching companies notified about job seeker

3

Traditional Pub/Sub (Geometric view)

Subscribers specify rectangle
in high-dimensional space

May preprocess
rectangles

4

Traditional Pub/Sub (Geometric view)

Subscribers specify rectangle
in high-dimensional space

Event describes a point
in the space

Return every rectangle “stabbed”
by the point

5

The same example on the web

• Companies are looking for potential employees
– Specify some target attributes

• Users arrive, looking for jobs
– Specify some attributes

• User is shown companies that match his search

• BUT– only top 5 are shown due to space limitations
• Same space limitations for applications like display

advertising, load shedding

6

Ranked Pub/Sub Problem

• Given a set of subscriptions:
– Each subscription describes a rectangle in high-dim space

• Each attribute corresponds to a dimension

– Each subscription gets a score
• May be static, or function of attribute scores

– Allowed to preprocess

• Events arrive online:
– Each event describes a point in high-dim space
– Each event also associated with a value k

• Return the k highest-scoring subscribers

7

Our focus

• Examine range queries in single dimensional case
– Subscribers specify intervals (and score)
– Events are 1-dim points

• Single dimension is building block for multi-dimensional
case
– If score is static across attributes, do standard list intersection
– If score function of attribute-scores, apply threshold algorithm

8

Our focus

• Examine range queries in single dimensional case
– Subscribers specify intervals (and score)
– Events are 1-dim points

• Single dimension is building block for multi-dimensional case

• Restrict our attention to small memory structures
– i.e. Intervals never broken into pieces (hence, linear space)

• Propose several novel data structures
• Compare these structures with variants of standards

– Show marked improvement for low dimensional problems
– Do well even compared to larger-memory structures

9

Standard structures for pub/sub

• Interval Tree
• R-Tree
• Segment Tree

– Space blow-up is O(log n)
• This is actually an issue– our experiments showed an order of

magnitude larger memory footprint

10

Reminder…

10

2

Interval Trees

5
6

9

1
3

4
7

8

0 100

Intervals
higher = higher score

11

Reminder…

10

2

Interval Trees

5
6

9

1
3

4
7

8

0 100

Intervals
higher = higher score Pick a stabbing line

1, 3, 10

All stabbed intervals
go into one node

Left intervals Right intervals

stab: 50

12

Reminder…

10

2

Interval Trees

5
6

9

1
3

4
7

8

Stabbing points

1, 3, 10

2,4,7,85,6,9

0 100

Intervals
higher = higher score Pick a stabbing line

All stabbed intervals
go into one node

Repeat on left and right
intervals

stab: 50

stab: 25 stab: 75

13

Reminder…

10

2

Interval Trees

5
6

9

1
3

4
7

8

Stabbing points

1, 3, 10

2,4,7,85,6,9

0 100

Intervals
higher = higher score Pick a stabbing line

All stabbed intervals
go into one node

Repeat on left and right
intervals

For each node, store intervals sorted by left endpoint
and sorted by right endpoint

stab: 50

stab: 25 stab: 75

14

5
6

9

1
3

10

2

4
7

8

R-Trees

Intervals
higher = higher score

15

5
6

9

1
3

10

2

4
7

8

1 2 3

branching factor = 3

Score sorted R-Trees

Intervals
higher = higher score

Group intervals by scoreEach node stores
containing interval

30 1000

[30,100]

[30,100]

16

5
6

9

1
3

10

2

4
7

8

1 2 3

[30,100] [0,100] [10,100]

4 5 6

branching factor = 3

Score sorted R-Trees

Intervals
higher = higher score

Group intervals by scoreEach node stores
containing interval

30 1000

7 8 9

[0,100]

10

10

17

5
6

9

1
3

10

2

4
7

8

1 2 3

[30,100] [0,100] [0,100]

4 5 6

branching factor = 3

Score sorted R-Trees

Intervals
higher = higher score

Group intervals by scoreEach node stores
containing interval

30 1000

7 8 9

[0,100] | [0,100]

[0,100]

10

18

5
6

9

1
3

10

2

4
7

8

1 2 3

[30,100] [0,100] [0,100]

4 5 6

branching factor = 3

Score sorted R-Trees

Intervals
higher = higher score

Group intervals by scoreEach node stores
containing interval

30 1000

7 8 9

[0,100] | [0,100]

[0,100]

10

stabbing point

For a query, output
first k hits

19

5
6

9

1
3

10

2

4
7

8

1 2 3

[30,100] [0,100] [0,100]

4 5 6

branching factor = 3

Score sorted R-Trees

Intervals
higher = higher score

Group intervals by scoreEach node stores
containing interval

30 1000

7 8 9

[0,100] | [0,100]

[0,100]

10

stabbing point

May have many “holes”
= wasted probes

20

0 10 30 45 55 65 75 90 100

Segment trees

All intervals broken into
segments, based on
set of endpoints

21

10

6

5,9

1

39

2,7

4,8

8

0 10 30 45 55 65 75 90 100

93

Segment trees

All intervals broken into
segments, based on
set of endpoints

Form tree on segments

Each node records
segment: [a, b]

[0,100]

[0,30]

[10,30]
7

[0,55]

22

10

6

5,9

1

39

2,7

4,8

8

0 10 30 45 55 65 75 90 100

93

Segment trees

All intervals broken into
segments, based on
set of endpoints

Form tree on segments

Each node records
segment: [a, b]

[0,100]

[0,30]

[10,30]
7

[0,55]

Advantage: if interval
stored at node,
then interval
contains all of [a,b]

So each node stores
intervals in score-
sorted order!

23

Standard structures for ranked pub/sub

• Interval Tree
– Sort intervals by score, or by interval– not both

• R-Tree
– Scored R-tree
– “Holes” can get you

• Segment Tree
– Space blow-up is O(log n)

• This is actually an issue– our experiments showed an order of
magnitude larger memory footprint

– “Gold standard”: Scoring is no problem!

24

Our data structures

• IR-tree
– Interval tree with R-tree sitting in each node

• OptR-tree
– R-tree, but with intervals sorted to support scoring in an

optimized way

• Main insight– R-trees in 1 dimension very fast, except
for the wasted probes (i.e. “holes”)
– Both data structures use R-trees, with guarantees on number

of wasted probes

25

IR-tree

• Form basic tree as an interval tree

• For each node, index the
intervals with an R-tree

10

2

5
6

9

1
3

4
7

8

Stabbing points

1, 3, 10

2,4,7,85,6,9

0 100

stab: 50

stab: 25 stab: 75

26

IR-tree

• Why index by R-trees?
• Key lemma: All intervals at a node overlap, so the R-

tree has no holes! (i.e. Every probe in the R-tree leads
to a valid interval)

• R-trees also lightweight, simple,
good in practice

• Each getNext() call takes at most
O(log log n + height(R-tree))

10

2

5
6

9

1
3

4
7

8

0 100

27

Opt-R-Trees

• Data structure is a R-tree
• However, we can sort the intervals more intelligently
• Key insight: If two intervals do not overlap, then can

interchange order

5
6

9
10

1
3

2

4
7

8

0 100

equivalent to

5
6

9

10

1
3

2
4

7
8

0 100

28

Opt-R-Trees

• Intervals induce a topological graph
– (Edge from i1 to i2 if score(i1) > score(i2) AND i1, i2 overlap)
– We give a way of constructing taking time O(n log n) by

ignoring some transitive edges

• Any grouping that respects this graph is okay
– We take left-most interval with indegree 0 at each step

• Key lemma: To get top k intervals, need at most 2k
probes
– Roughly, there is a hole only when there must be one

29

Experiments

• Used synthetic data
• 1M intervals
• Left endpoint and length of interval zipfian distributed

– Vary the skew, zipfian power

• Looked at varying number of dimensions

30

Speed vs. overlap (Threshold algorithm
in 4 dimensions)

Score matters less
(Interval tree)

More holes
(R-tree)

Lots of overlap Little overlap

31

Time for getNext()

Opt-R tree great for
small k

Segment trees, IR-trees
must initialize their heap

Interval trees process
all matches

32

Dimensionality (Threshold algorithm)

At larger number
of dimensions, all
methods have
similar time

More overhead,
more getNext()
calls

33

Experimental summary

• IR-trees, OptR-trees, and segment trees are all
comparable in speed
– Segment trees require too much memory
– Only IR-trees are easy to update intervals online

• Standard structures much slower in general

Space

Ti
m

e

Segment
Tree

Interval
Tree

Opt R-Tree
IR-Tree

R-Tree

34

Conclusions

• Propose a new problem: Ranked Pub/Sub
• Give a novel solution for one dimension

– Yields solutions for small dimensionality

• Data structure are lightweight, easy to implement, give
good results
– IR-trees: easy to maintain

• Open problems:
– How do we extend this to larger dimensionality?
– More expressive subscriptions, events
– Score updates

35

36

37

	Slide Number 1
	Traditional Pub/Sub
	Traditional Pub/Sub (Geometric view)
	Traditional Pub/Sub (Geometric view)
	The same example on the web
	Ranked Pub/Sub Problem
	Our focus
	Our focus
	Standard structures for pub/sub
	�Reminder…
	�Reminder…
	�Reminder…
	�Reminder…
	R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Score sorted R-Trees
	Segment trees
	Segment trees
	Segment trees
	Standard structures for ranked pub/sub
	Our data structures
	IR-tree
	IR-tree
	Opt-R-Trees
	Opt-R-Trees
	Experiments
	Speed vs. overlap (Threshold algorithm in 4 dimensions)
	Time for getNext()
	Dimensionality (Threshold algorithm)
	Experimental summary
	Conclusions
	Slide Number 35
	Slide Number 36
	Slide Number 37

