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9 ’ Traditional Pub/Sub
-

 Many subscribers, each specify some target of interest

— E.g. Company looking for nursing employees,
where job pays $40-$60/hr and work is 20-30 hrs/week

 Events arrive, each labeled with a number of attributes

— E.g. Job seeker, looking for a nursing job paying $50/hr and 25
hours/week

« Subscribers notified about every event they target

— E.g. All matching companies notified about job seeker



9’ Traditional Pub/Sub (Geometric view)
-

Subscribers specify rectangle
in high-dimensional space

May preprocess
rectangles




9’ Traditional Pub/Sub (Geometric view)
-

Subscribers specify rectangle
in high-dimensional space

Event describes a point
in the space

Return every rectangle “stabbed”
by the point




9’ The same example on the web
-

 Companies are looking for potential employees

— Specify some target attributes

« Users arrive, looking for jobs

— Specify some attributes

e User is shown companies that match his search

« BUT-only top 5 are shown due to space limitations

e Same space limitations for applications like display
advertising, load shedding



9’ Ranked Pub/Sub Problem
-

e Given a set of subscriptions:

— Each subscription describes a rectangle in high-dim space
« Each attribute corresponds to a dimension

— Each subscription gets a score
* May be static, or function of attribute scores

— Allowed to preprocess

 Events arrive online:
— Each event describes a point in high-dim space
— Each event also associated with a value k

 Return the k highest-scoring subscribers



9’ Our focus
-

 Examine range queries in single dimensional case

— Subscribers specify intervals (and score) ! —

— Events are 1-dim points 1

e Single dimension is building block for multi-dimensional
case

— If score Is static across attributes, do standard list intersection
— If score function of attribute-scores, apply threshold algorithm



9’ Our focus
-

Examine range queries in single dimensional case

— Subscribers specify intervals (and score)
— Events are 1-dim points

« Single dimension is building block for multi-dimensional case

« Restrict our attention to small memory structures

— I.e. Intervals never broken into pieces (hence, linear space)
 Propose several novel data structures
 Compare these structures with variants of standards

— Show marked improvement for low dimensional problems
— Do well even compared to larger-memory structures



9’ Standard structures for pub/sub
-

 Interval Tree
e R-Tree

e Segment Tree
— Space blow-up is O(log n)

* This is actually an issue— our experiments showed an order of
magnitude larger memory footprint



Reminder...

Interval Trees

Intervals
higher = higher score
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Reminder...

Interval Trees

. stab: 50

SN

stab: 75

stab: 25

Intervals

_ _ Stabbing points
higher = higher score

I Pick a stabbing line
I

L 2 All _stabbed Intervals
I | 4 go into one node
6 _|_5 | 7
9 | 8 :
I — 0 Repeat on left and right
! intervals

0 100

For each node, store intervals sorted by left endpoint
and sorted by right endpoint




R-Trees

Intervals
higher = higher score




Score sorted R-Trees
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containing interval
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Score sorted R-Trees
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Score sorted R-Trees

Each node stores [0.100] | 0,100 .
. Group intervals by score
containing interval /
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Score sorted R-Trees

Each node stores [0.100] | [0.100] .
L. Group intervals by score
containing interval /
[30,100] [0,100] [0,100] [0,100]
branching factor = 3 / j \ \
112]3 4156 718(9 10
Intervals
higher = higher score May have many “holes”
== = wasted probes

stabbing point 100



9’ Segment trees
i
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9’ Segment trees
i
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9’ Segment trees
i
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/\ Each node records
[0.30] g 1 segment: [a, b]
/\ N .l\
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e | [_| === |intervals in score-
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9’ Standard structures for ranked pub/sub
-

e Interval Tree

— Sort intervals by score, or by interval— not both
e R-Tree

— Scored R-tree
— “Holes” can get you

e Segment Tree
— Space blow-up is O(log n)

* This is actually an issue— our experiments showed an order of
magnitude larger memory footprint

— “Gold standard”: Scoring is no problem!



9 ’ Our data structures
-

 [R-tree
— Interval tree with R-tree sitting in each node
 OptR-tree

— R-tree, but with intervals sorted to support scoring in an
optimized way

e Main insight— R-trees in 1 dimension very fast, except
for the wasted probes (i.e. “holes”)

— Both data structures use R-trees, with guarantees on number
of wasted probes



9 ’ IR-tree
o

e Form basic tree as an interval tree
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9 ’ IR-tree
o

 Why index by R-trees?

« Key lemma: All intervals at a node overlap, so the R-
tree has no holes! (i.e. Every probe in the R-tree leads
to a valid interval)

* R-trees also lightweight, simple, : :
|

good Iin practice et 2
=T

—I_ | 5

« Each getNext() call takes at most _I_10
O(log log n + height(R-tree)) .

100



9 ’ Opt-R-Trees
i

 Data structure is a R-tree

 However, we can sort the intervals more intelligently

« Key insight: If two intervals do not overlap, then can
Interchange order
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9 ’ Opt-R-Trees
i

 Intervals induce a topological graph
— (Edge from il toi2 if score(il) > score(i2) AND i1, i2 overlap )

— We give a way of constructing taking time O(n log n) by
ignoring some transitive edges

* Any grouping that respects this graph is okay

— We take left-most interval with indegree O at each step

 Keylemma: To get top k intervals, need at most 2k
probes

— Roughly, there is a hole only when there must be one



9’ Experiments
-

e Used synthetic data

e 1M intervals
e Left endpoint and length of interval zipfian distributed

— Vary the skew, zipfian power

« Looked at varying number of dimensions



Speed vs. overlap (Threshold algorithm

9-" In 4 dimensions)
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9’ Time for getNext()
-

Interval trees process
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9’ Dimensionality (Threshold algorithm)
-

16 ! ! | I I |
Interval —+—

At larger number
of dimensions, all
methods have
similar time

Time relative to OPT-R tree

More overhead,
more getNext()
calls

numDimensions



9 ’ Experimental summary
-

* |IR-trees, OptR-trees, and segment trees are all
comparable in speed

— Segment trees require too much memory

— Only IR-trees are easy to update intervals online

e Standard structures much slower in general

O

Interval
Tree

fo
£
-

R-Tree

O

IR-Tree Segment
O Opt R-Tree Tree




9’ Conclusions
-

 Propose a new problem: Ranked Pub/Sub

* Give a novel solution for one dimension
— Yields solutions for small dimensionality

e Data structure are lightweight, easy to implement, give
good results

— |IR-trees: easy to maintain

e Open problems:
— How do we extend this to larger dimensionality?
— More expressive subscriptions, events
— Score updates
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