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Abstract—Open Shortest Path First (OSP# a popular protocol
for routing within an autonomous system (AS) domain. In order
to scale for large networks containing hundreds and thousands of
subnets, OSPF supports a two-level hierarchical routing scheme
through the use of OSPF areas Subnet addresses within an area
are aggregated, and this aggregation is a crucial requirement for
scaling OSPF to large AS domains, as it results in significant re-
ductions in routing table sizes, smaller link-state databases, and
less network traffic to synchronize the router link-state databases.
On the other hand, address aggregation also implies loss of infor-
mation about the length of the shortest path to each subnet, which
in turn, can lead to suboptimalrouting.

In this paper, we address the important practical problem of
configuring OSPF aggregates to minimize the error in OSPF
shortest-path computations due to subnet aggregation. We first
develop an optimal dynamic programming algorithm that, given
an upper bound k on the number of aggregates to be advertised
and a weight assignment function for the aggregates, computes
the k aggregates that result in the minimum cumulative error in
the shortest-path computations for all source—destination subnet
pairs. Subsequently, we tackle the problem of assigning weights to
OSPF aggregates such that the cumulative error in the computed
shortest paths is minimized. We demonstrate that, while for
certain special cases (e.g., unweighted cumulative error) efficient
optimal algorithms for the weight assignment problem can be
devised, the general problem itself is NP-hard. Consequently, we
have to rely on search heuristics to solve the weight assignment
problem. To the best of our knowledge, our work is the first to ad-
dress the algorithmic issues underlying the configuration of OSPF
aggregates and to propose efficient configuration algorithms that
are provably optimalfor many practical scenarios.

Index Terms—Area border routers, dynamic programming, IP
address aggregation, optimal routing, Open Shortest Path First
(OSPF), OSPF advertisements, OSPF weights.

I. INTRODUCTION

PEN Shortest Path First (OSPF) is a widely used protocol

for routing within an autonomous system (AS) domain i

today'’s Internet [1]-[3]. To scale for large AS networks, OSPF
implements a two-level hierarchical routing scheme through t

deployment ofOSPF areasEach OSPF area comprises a co
lection of subnets interconnected by routers. Detailed infor
tion about links and subnets within an OSPF area is flood

throughout the elements connected to the area. As aresult, eyer

router knows the exact topology of its enclosing OSPF area; tt%avertises to the rest of the network. This weight is critical

includes the subnets and the links connecting routers within
area. On the other hand, details of an area’s topology are
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advertised beyond the area’s borders and are, thus, hidden from
other areas in the same AS. Instead, subnet addresses within
each area are grouped ir#ggregatesind only these aggregates
are flooded into the rest of the network (thus, making an area’s
subnets reachable from the remainder of the AS network). This
task of advertising aggregate information about subnets in an
area s carried out bgrea border router¢ABRS), that is, routers
attached to two or more areas.

OSPF areas and address aggregation are crucial in enabling
OSPF to scale for AS domains comprising hundreds or thou-
sands of subnets; specifically, they play an important role in op-
timizing router and network resource consumption, as explained
below.

1) Router Memory: For OSPF areasotdirectly connected

to a router in the AS, the router’s routing tables only
need to contain entries corresponding to subnet aggre-
gates rather than individual subnet addresses. In other
words, a router stores individual subnet addresses in its
routing table only for the OSPF areas that are directly con-
nected to it. This obviously leads to smaller routing table
sizes and, thus, lower memory requirements at routers.
Router Processing CyclesT he link-state database main-
tained at each router is much smaller, since it only needs
to include summary information for subnets belonging to
OSPF areas not directly connected to the router. Conse-
quently, the computational cost of the shortest-path cal-
culation decreases substantially.

Network Bandwidth: For subnets within each OSPF
area, only aggregate address information (rather than
individual subnet addresses) is flooded into the rest of the
AS network. As a result, the volume of OSPF flooding
traffic necessary to synchronize the link-state databases
of the AS routers is significantly reduced.

Nevertheless, despite its obvious benefits, OSPF address
ggregation involves important practical tradeoffs. This is
écause address aggregation typically results in loss of in-

formation which, in turn, can lead tsuboptimal routing

ths. To see this, we need to delve in more depth into how
PF routing works in the presence of address aggregation.

|¥:fly, each ABR attaches weightto each aggregate that it

2)

3)

n

ma-

|n§tdetermining the path used by a router external to the area
{8 reach subnets covered by the aggregate. More specifically,

among all the ABRs advertising the aggregate (with possibly
A¥fferent weights), an external router chooses the ABR (say,
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the border routeb and 2) the weight advertised lyfor the
aggregate. Once such an ABRs chosen, IP packets from the
external router to every subnet covered by the aggregate are
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Further, note that considering different weight assignments
for the aggregates does not alleviate the problem. The root of
the problem is that a single border router is selected;bipr
reaching all subnets in 10.1.4.0/22blfis chosen instead &,
then the paths fromh; to subnets 10.1.4.0/24 and 10.1.5.0/24
Area0.00.0 200 throughb, become much longer (their length280 + 1250 =
100 100 1450) compared to the shortest paths to the subnets that pass
throughbs (whose length i400 + 50 = 150). O

The primary reason for suboptimal paths being selected when
© 10.1.2024 ea 0.0.03 subnets are aggregated is that a single weight is used by each

-I_ 200 ABR for all the subnets covered by the aggregate; obviously, a

.16.0/24

bl

200

b3 1| b4

10.1.5.0/24 016024  Single weight may be incapable of accurately capturing the dis-
1000 50 tance of the border router to every covered subnet. This problem
—I— is exacerbated when the aggregated subnets are spread across
the area with some subnets being in close proximity to dis-
tinct border routers in the area. This was precisely the case
Fig. 1. Example of suboptimal routing due to address aggregation. in Example 1, where aggregate 10.1.4.0/22 spans two subnets:
10.1.5.0/24 (close tbs) and 10.1.6.0/24 (close ta), the dis-
forwarded along the shortest path from the external routér tdance between which is greater than 1000. The end result is that
and, subsequently, along the shortest path fbdmthe subnet. the single weight advertised for aggregate 10.1.4.0/22 is not rep-
However, for certain subnet(s) covered by the aggregate, thisentative of the true distance between any border router (either
path may be significantly suboptimal, since there can be a mughor b,) and the two subnets in 10.1.4.0/22.
shorter path from the external router to the subnet through aOne possible way to reduce the error in suboptimal OSPF
different ABR. This is illustrated in the following example.  routing paths in the presence of aggregation is to avoid aggre-
Example 1: Consider the AS network consisting of the fougating distant subnets that are close to multiple border routers.
areas 0.0.0.0, 0.0.0.1, 0.0.0.2, and 0.0.0.3 shown in Fig.Thus, in Example 1, instead of advertising the single aggre-
(Area 0.0.0.0 corresponds to the A®sckbone areathat gate 10.1.4.0/22, one can choose to advertise two aggregates
interconnects the ABRs of the different OSPF areas in t1i€.1.4.0/23 (with weights 50 and 125(Ga&ndb,, respectively)
AS.) The boxes in the figure are routers, while the thin blacnd 10.1.6.0/23 (with weights 1100 and 206sndb,, respec-
rectangles denote subnets. The figure also illustrates the varitiusly). This clearly reduces the errorin the selected pathsto zero,
subnet addresses and the weight of each link connecting a gaice the assigned weights capture the ABRs’ distances to the
of routers. ABRb; belongs to area 0.0.0.4; to area 0.0.0.2, aggregated subnet¢xactly Thus, there is an important tradeoff
and b3 and b, to area 0.0.0.3. The subnet addresses in areatweenthe number of aggregates advertised (and, consequently,
0.0.0.3 can be aggregated to different degrees. For instartbe,size of the routing tables) and the error in the selected shortest
the aggregate 10.1.0.0/21 covers all the subnets in the aregodths. This tradeoff is further complicated by the fact that the
contrast, 10.1.4.0/22 covers subnets 10.1.4.0/24, 10.1.5.0/&2ggregates advertised by OSPF border routers do not have to be
10.1.6.0/24 and 10.1.7.0/24, while 10.1.2.0/23 covers subndisjoint—itis entirely possible for one advertised aggregate to be
10.1.2.0/24 and 10.1.3.0/24. completely containenh another. In such a scenario, tloegest
Suppose one of the aggregate addresses advertised bynth&ch propertyf IP routing causes the more specific aggregate
ABRs of area 0.0.0.3 is 10.1.4.0/22. Suppose further that edohtake precedence for route computation to subnets within the
ABR assigns aweight to the aggregate that equals the distancagdregate. Also, configuring theeight assignmentased by
the furthest component subnet in the aggregate from the roud8Rs for address aggregates is another important mechanism
(as suggested, for example, by Moy [3]). Thus, rodterad- for controlling the quality of the OSPF routing paths in the
vertises 10.1.4.0/22 with a weight of 1100 (distance of subnatesence of aggregation. In the following example, we illustrate
10.1.6.0/24 fronbs), while router, advertises 10.1.4.0/22 with how, by carefully selecting the address aggregates as well as the
aweight of 1250 (distance of subnet 10.1.4.0/24 figinThus, associated weights, all the subnets in area 0.0.0.3 (Fig. 1) can
external routeb; belonging to area 0.0.0.1 forward all packetbe advertised using only two (overlapping) aggregates while
to subnets in 10.1.4.0/22 through border routgr since the incurring zero error in shortest-path computations.
shortest path to the aggregate throdgthas a length of00 + Example 2: Consider the AS depicted in Fig. 1. One way to
1100 = 1200, while the shortest path through has length ensure that the error in the selected paths to area 0.0.0.3’s sub-
200 + 1250 = 1450. Note, however, that the path froba to netsis zero is to have the ABRs advertise the following three ag-
subnets 10.1.6.0/24 and 10.1.7.0/24 passing through rbytegregates: 10.1.4.0/23, 10.1.2.0/23, and 10.1.6.0/23. The reason
has length 1200 and is suboptimal since the shortest path frianthis is that it is possible to choose weights for each aggre-
b1 to both subnets is through border roubgrand its length is gate at each ABR such that the weight equals the exact distance
only 400. Thus, even in this simple scenario, address aggregatween the border router and every subnet covered by the ag-
tion results in an error of200 — 400 = 800 in the optimal gregate. Forinstance, for aggregate 10.1.2.0/23, weights of 1050
route (i.e., shortest-path) computation betwéemand each of and 250 at ABR$3; andb,, respectively, reflect the exact dis-
the subnets 10.1.6.0/24 and 10.1.7.0/24. tances of the border routers to subnets in it.

10.1.4.0/24 10.1.3.0724 10.1.7.0/24
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Achieving zero error with only two aggregates is moraumber of aggregates to be advertised by the ABRs and a weight
challenging. Note that all the subnets in area 0.0.0.3 can &g&signment function for the aggregates, computes thggre-
covered by the single aggregate 10.1.0.0/21; however, th@tes that result in the minimum cumulative/maximum error in
aggregate by itself cannot result in zero error. Another pode OSPF shortest-path computations for all source—destination
sibility is to consider the two disjoint aggregates 10.1.4.0/Ztbnet pairs. This problem is obviously relevant when there is a
and 10.1.2.0/23, which cover all the subnets. However, as \Wait on the number of aggregates that can be advertised within
saw earlier, since subnets 10.1.4.0/23 and 10.1.6.0/23 coveaddAS in order to bound the routing table sizes, number of en-
by 10.1.4.0/22 are closer to different routers (and distant frdifies in the link-state database, or the amount of network traffic
each other), this cannot result in zero error, either. Thus, tlee to OSPF advertisements. The objective then is to choose the
key to optimizing the error is to bundle 10.1.4.0/23 into onkaggregates to advertise such that the selected paths are as close
aggregate, and 10.1.2.0/23 and 10.1.6.0/23 into the otherloithe shortest paths as possible (where “closeness” is measured
turns out that this can be achieved by advertising the followin@terms of either the total or the maximum over all source—desti-
two aggregates: 10.1.0.0/21 and 10.1.4.0/23. The longest mdi@fon subnet pairs in the AS). Furthermore, our proposed algo-
characteristic of IP routing causes the latter aggregate to 'H8m can be easily extended to optimally solve the dual OSPF
used for routing to subnets in 10.1.4.0/23 and the former to p@nfiguration problem, where the goal is to compute the min-
used to route to subnets in 10.1.2.0/23 and 10.1.6.0/23.  imum number of aggregates so that the (cumulative or max-

One question still remains: what weights should assigngﬂum) errorin selected paths is less than a certain user-specified
to each aggregate? While this is straightforward for the afreshold.
gregate 10.1.4.0/23 (since the two subnets 10.1.4.0/24 andVe then address our second subproblem of selecting weights
10.1.5.0/24 covered by it are at the same distance from &y OSPF aggregates at each ABR such that the deviation of se-
given border router), it is somewhat less obvious for trjected paths from the sho_rtest paths is mlnlmlzed. More specifi-
aggregate 10.1.0.0/21. Simply setting the weight equal ¢glly, we attack the following problem: Given an address aggre-

the distance of the ABR to the most distant covered subrfi@tez, determine an assignment of weightsitat each ABR

(see, e.g., [3]) may not result in the least error. To see thig,its area such that the (cumulative or maximum) error in the

supposeb; and by advertise 10.1.0.0/21 with weights 1100se_lected paths between source—_destination_ subne_t pairs is mini-
and 1250, respectively (i.e., the maximum distance to a subH@Fed_' We demonstrate that, while for certain restrl_cted (but in-
contained in the aggregate). This causesto selectbs for tgrestlng) cases the above _problt_am can be solved in polynomial
subnets in 10.1.0.0/21, and the resulting cumulative error 47°€: the general problem ',ts‘?'f is NP-hard. Consequently, we
the selected paths frory to all subnets in area 0.0.0.3 iShave to rely on search heuristics to sQIve the weight assignment
24 (150 — 150) + 2% (1150 — 450) + 2+ (1200 — 400) = 3000. problem. We also propose a randomized search strategy for the

. . neral case of weighted cumulative error, and an optimal pseu-
On the other hand, a lower cumulative error can be achievedft S ghtec ! P P
dopolynomial time algorithm for the maximum error case.

bs andb, advertise 10.1.0.0/21 with weights 730 and 570, re h d subproblem involvi iaht selection for OSPE
spectively (i.e., the average distance to the subnets contained jjhe second subproblem involving weight selection for

the aggregate). In this cage,selects border routéy; to access agg_regatef, IS cIr;arIy |mpotrtanttsmc:|,3;s shown r']r: ExarT;t)Ietﬁ '
subnets in 10.1.0.0/21, resulting in a lower cumulative error gpsigning to each aggregate (at an ). aweight equal to the

24 (1450 — 150) + 2 % (450 — 450) + 2 % (400 — 400) = 2600 maximum distance from the ABR of subnets covered by the ag-

(assuming again that only 10.1.0.0/21 is advertised for ar%raegate (as sgggested, forexamplg, by qu [31), may not mini-
0.0.0.3) mize error. This is because the maximum distance may, at times,
R o : be a poor estimate of the distance between subnets of the ag-
Further, configuring border routebg andb, to advertise ag- . o
: : gregate and the ABR. A better alternative that has the ability to
gregates 10.1.0.0/21 and 10.1.4.0/23with weights 730 and : .
50. andb, with weights 570 and 1250, causes the cumulati\ﬁ%pture the distance between an aggregate and an ABR fairly ac-
' 4 - ’ ClUrately, is the average distance between the aggregate’s subnets
error forb; to reduce to zero. This is becauseselects ABR); Y g ggreg

) o and the ABR. In fact, in this paper, we show that choosing the
for subnetsin 10.1.4.0/23 and ABRfor the remaining subnets average distance as the weight for an aggregate minimizes the

(thatis, subnetsin 10.1.0.0/21 but not cpntalngd in 10.1.4.0/2§Ql.mula,[ive error for a single advertised aggregate and is, thus, in
Thus, the selected paths aftgraggregatlon are indeed the sho respects, more representative of the distance between an
paths fromb, to the subnets in area 0.0.0.3. U aggregate and an ABR than maximum distance. Consequently,
o ) itis important to consider alternative weight assignments for ag-
A. Contributions of This Paper gregates at ABRs, besides the maximum distance advocated by
In this paper, we address the important practical problem [@—essentially, depending on the error metric we wish to opti-
configuring OSPF aggregates to minimize the error in OSPHRize, one set of weights may be more representative than others
shortest-path computations due to address aggregation. Fafrdistances between aggregates and ABRs, and may ultimately
our discussion above, we can see that OSPF aggregate coréigd to the selection of a better set of aggregates (solution to the
uration involves two key subproblems: 1) selecting the aggrérst subproblem).
gates to advertise at each ABR and 2) assigning weights to eac&ombining our algorithmic results for the two subproblems
advertised aggregate at each ABR. We address each of thesides us with an effective integrated solution for configuring
two problems separately. We first develop@ptimaldynamic (in many cases, optimally) OSPF aggregates in an AS domain.
programming algorithm that, given an upper boundn the The idea is to first apply our weight assignment algorithms to
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determine “good” weights for all candidate aggregates at each TABLE |
ABR, and then employ our dynamic programming algorithm NOTATION USED IN THE PAPER
to select the optimal subset of aggregates to advertise (give Symbol Description
these weight assignments). To the best of our knowledge, ou s, Source, destination subnets
work is the first to address the algorithmic issues underlying R Set of OSPF arcas

. . 2 R; Generic term for OSPF area
the configuration of OSPF aggregates and to propose efficien 3 Set of all subnets in aufonomous system domam
configuration algorithms that angrovably optimalfor many S Set of subnets in area R;
practical scenarios. One point to note, however, is that we B Set of all ABRs
solve the aggregate-selection and weight assignment subprol f - an:i‘:?eﬁseg’;::z ﬁ"ﬁR
lems separately. Although they can be combined into a single A Set of aggregates eligible for advertising
problem, we believe the joint problem to be intractable. The A; éet of.agﬁeﬁwegliﬁigrlc foradventlsmngi
only solution we know of has exponential complexity and is, ;:yy e e ofidv;ﬁsssaz(ghng‘;;egam
thus, impractical. D(s,t) Degree of importance of the source-destination

Finally, we must point out that the problem of selecting ag- | subnet pair (s, t) i .
gregates is considerably simplified if networks and areas are de ls;‘(’;f o) y;g i??ﬁé?ﬁ?ﬁf&ﬁﬁifﬁfﬁ?ﬁff
signed carefully, and IP addresses are assigned to subnets withTsp(s, £, X, Wx) | Length of shortest path between subnets s and ¢
areas in a systematic manner. For example, one possible strate when aggregates in X are advertised with
weights in Wx

is to segment an area infosmaller regions such that routers

within each region are close to each other. Then, it is possible to

achieve good aggregation by assigning consecutive IP addredsemreaR; if it is directly connected to a subnet #}. A router

to subnets within a region, and defining a single aggregate fikat is attached to two or more areas s called an ABR. We denote

region. The above-mentioned approach, however, may not wénk 5; the set of ABRs attached to aréq. In addition to area

in practice since networks are seldom static and tend to contidti-(and possibly other areas), every ABRM is also attached

ously evolve due to the addition of new network elements, sue-a speciabackbonerea. The backbone area serves to connect

nets, and links. For instance, addition of new routers may requif& subnets in the various other areas. We denotepy, ¢) the

new IP aggregates to be allocated to a region. Similarly, deletitggth of the shortest path betweeandt, wheres andt can be

or failure of an existing link within a region, or addition of a newsubnets orrouters withinthe AS. Note thas,@ndt belong to the

link between regions, may cause distances between router§agie are;, then the shortest path betweeandt is defined to

be substantially altered, thus, rendering the previously selecR&PVer linksinare®;. If, instead s andt belongto distinctareas

aggregates suboptimal. Our algorithms allow OSPF aggregd@®y. i and R;, respectively), then the shortest path between

to be optimally configured in such continuously changing dy2nd? involves two ABRs) € B; andc € B; and consists of

namic networks, and also to work on-line: emergence of spiifée path segments: the first is the shortest path betwead

rious subnets (through external advertisements), link failurddnvolving links in ;, the second is the shortest path betwieen

and topology changes would trigger the computation of chan C over links inthe backbone area, and Fheflnal segmentis the

to the optimal set of advertised aggregates/weights. This Coﬁ;p_ortest path betweef! and?f all O_f whqse_ links bglon_g t_o area

putation can also be carried out incrementally and efficiently.Rj' Note thailsp can be defined in a similar fashion if either of

the subnets andt above are replaced by routers.
In OSPF, information relating to links and subnets in an area

Il. SYSTEM MODEL AND PROBLEM FORMULATION are flooded throughout the area. Consequently, routers attached

A. System Model and Notation to areal?; have detailed knowledge dt;’s topology. As a re-

) . sult, IP packets originating in any subnebelonging to area
We model the network as an undirected graph. Nodes in the gestined to a subnétin the same area are forwarded along

graph correspond _to either routers or subnets. Edges in the I shortest path betweerandt. However, in order to ensure
connect routers with other routers or subnets. A link exists bémajler routing table sizes and reduce network traffic overhead,
tween two routers if the two routers can directly exchange Wtailed information about individual subnets within an area are
packets without going through an intermediate router (that igpically not advertised beyond the area’s borders. Instead, area
the two routers are either connected to the same subnet or gres ABRs will typically be configured to advertise a set of ag-
connected by a point-to-point link). A link exists between gregatesX that cover subnets if; and a separate weight for
subnetand a router if the subnet is connected to the router. Eaglah aggregate it . We denote byWx (z,b), the weight as-
link has an associated weight, which is the OSPF weight asgned to an aggregatec X by ABR b € B;. Each ABR in
signed to the link (that is, the interface to which the link is conB; floods in the entire backbone area, every aggregate X
nected to). For simplicity, we assume that the link is assigned taleng with the weight assigned toby it—this causes ABRs
same weight at both ends—our algorithms, however, are apelonging to every other area to receiveAn ABR ¢ € Bj,
cable even if link weights are not symmetric. Table | describ@s turn, floodsz into areaR; with an adjusted weight equal to
the notation employed in this paper. minge g, {Isp(b, ¢)+Wx (z,b)}. Thus, a subnetin S}, in order

The set of subnetSin the network are partitioned into disjointto reach aggregate that covers subnets if;, selects a path
areas. The set of areas is denoteddgnd the set of subnets inpassing through ABR € B; for whichlsp(s, b) + Wx (z,b) is
areaR; € R is denoted bys;. A router is said to be attachedminimum.
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Due to the longest match property of IP routing, the most Note that in both problem statements above, every source—
specific aggregate covering a subnet determines the pathdé&stination subnet pair is assigned the same degree of impor-
the subnet. We say that an aggregats more specific than tance. In other words, in the final error, the error in the selected
an aggregate if x is contained iny, which we denote by path between every subnet pair is treated equally, that is, given
x € y. Thus, for a subnet in S;, if 2 is the most specific an equal degree of importance. However, this is somewhat re-
aggregate inX that coverst, then a subnet in S;, in order strictive since minimizing the error in the selected paths for cer-
to reacht, selects the path comprising of the shortest pathin source—destination subnets may be more important. This
from s to b and then fromb to ¢, whereb € B; is the ABR may happen, for instance, for subnet pairs between which there
for which lsp(s,b) + Wx(z,b) is minimum. We denote the is a disproportionately high volume of traffic, or subnet pairs
length of this selected path frosto ¢ for the set of advertised carrying high-priority or delay-sensitive traffic such as voice.
aggregateX’ and weight assignmef¥’x by lsp(s,¢, X, Wx). Thus, we can considerdegree of importanciinction D which
Thus, lsp(s,t, X, Wx) = lIsp(s,b) + lsp(b,t), and the error for a pair of subnets, ¢ returns a real valu®(s, t) that reflects
in the selected path is simplisp(s,t, X, Wx) — Isp(s,t). the importance of minimizing the error in the selected path be-
When s and ¢ belong to the same area, we definéween subnets and¢. Note thatD(s,t) can be any arbitrary
Isp(s,t,X,Wx) to be equal to Isp(s,t). Note that function of the volume/priority of traffic flowing between sub-
Isp(s,t, X, Wx) = o0 if X does not contain an aggregate thatetss andt¢. Subnet pairs for which the error in the selected path

coverst (the implication here is thatis unreachable fronj. does not matter (either due to very low traffic volume or due to
low-priority data traffic) can be assigned low values Iofs, t)
B. Problem Statement or even zero. The generalized aggregate and weight selection

We address the problem of computing the set of aggregagil(?)blesms incorporating the degrees of importance are then as

X advertised across all the areas in an AS and the weight

signment functio¥y such that the error in the selected paths 1) Generalized Aggregate Selection ProblemGiven ak

is minimized. Clearly, we need to impose certain restrictions  and a weight assignment functiéti 4, compute a com-
on X and Wy in order to ensure the reachability of remote  Plete setX’ C A containing at most aggregates such that

subnets in a different area. First, we require thabe com- Y ares D(st) * (Isp (s, X, Wa) — Isp(s, t)) is min-
plete that is, every subnet i& be covered by some aggre- imum.

gate inX. The next two restrictions serve to ensure that an 2) Generalized Weight Selection Problemfor an aggre-
ABR cannot advertise an aggregate covering a subngt im- gater € A;, compute aweightassignment functian.,,
less it belongs ta3;. We say that an aggregaieis eligible such thaty " s, D(s,t) = (Isp(s,t, {z}, Wi,y) —
if all the subnets inS covered by it belong to a single area. Isp(s,t)) is minimum.

Thus, in the network of Fig. 1, aggregate 10.1.0.0/21 is eli- |n all the problems outlined above, our goal is to minimize
gible, since it only covers subnets in Area 0.0.0.3; however, agre (weighted) cumulative error across all source—destination
gregate 10.1.0.0/20 is not, since it covers subnets 10180%net pairs‘ An alternative statement of the OSPF Configura_
and 10.1.4.0/24, which belong to different areas. dedenote tjon problem aims to minimize thenaximumerror across all

the set of all eligible aggregates such that every aggregade ifhe source—destination subnets. The corresponding aggregate
covers at least one subnetéh Note thatS C A. Further, let a4 weight selection problems can be formulated in a similar

A7 cA denote_: the set of eligible aggrggates that cover SUan&%hion, except that instead of minimizifg, , (), the objec-
in S;. We require that the set of a_dvertlsed _aggregéﬁe(j A. _tive is to minimizemax, yes(). ’
We also require that only ABRs iB; advertise aggregates in
A;. One way to model this is by requiring th8itx (z,b) =
o if z € A; andb ¢ B;.

We are now in a position to state the two basic problems ad-In this section, we present a dynamic programming algorithm
dressed in the remainder of this paper. for the generalized aggregate selection problem. Our algorithm

1) Aggregate Selection ProblemGiven ak and a weight €Xploits the fact that the containment structure of aggregates in
assignment functionW4, compute a complete setA is a set of trees (termeapgregate tregs We define the no-
X C A containing at most: aggregates such thattion of error for each aggregate tree when certain aggregates in
> ses (Isp (5,1, X, W4) — Isp(s, t)) is minimum. it are selected, and demonstrate that the cumulative error in the
2) Weight Selection Problem:For an aggregate € A;, shortest-path computation when a subsedf aggregates is ad-
compute a weight assignment functidi,, such that vertised is equal to the sum of the corresponding aggregate-tree
Y etes.teaIsP(5, T, {x}, Wigy)—Isp(s,t)) is minimum.  errors whenX is selected. We present our dynamic program-
The rationale for our objective function which aims to miniming algorithm for selecting aggregates in a single aggregate
mize the cumulative routing-path lengths is as follows. A link’#ee that minimize the tree’s error in Section l11-B. Section Ill-C
weight typically is a measure of its desirability for routinghen presents the algorithm for combining the results for the col-
(Cisco recommends setting weights inversely proportionigiction of aggregate trees to derive the fikahggregates that
to link capacities). Thus, paths with small weights are mosgeld the minimum overall error. Finally, in Section Ill-E, we
desirable, and our problem formulation minimizes the sum show how our algorithms can be extended for minimizing the
all routing-path weights. maximum error in the OSPF routing paths.

I1l. GENERALIZED AGGREGATESELECTION PROBLEM
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10.1.0021 gates such that the sum of the errors of all the trees is minimum.
We break this into two subproblems which we address in Sec-
10.1.4.0/22 10.1.0.0/22 tions 1lI-B and IlI-C. First, we present our dynamic program-
ming algorithm to compute the optimal subset of aggregates for
10140723 10.1.6.0/23 10.1.2.0/23 a single aggregate tree. Then, we show how to select a combi-
/\ /\ nation of aggregates from different trees (i.e., OSPF areas) that
. 015024 1016024  1017.024 1012024 10.13.024 :n|n|m|ze the overall error for the entire collection of aggregate
rees.

Fig. 2. Aggregate tree for eligible aggregates covering subnets in area 0.0.0.3. . . .
B. Computing Optimal Aggregates for a Single Tree

A. Aggregate Trees We begin by presenting below a set of recursive equations for
computing a tight lower bound on the error of a tree assuming
E‘ﬁ%\t at mostt arbitrary aggregates in the tree can be selected.
The equations form the basis of our dynamic programming al-
gorithm and can be used to compute théest aggregates to
for the eliaibl h b select in order to minimize the error of the tree. Supposesthat
Zggreg%t%t:;e? or tF.e el'g' O%aggregﬁtes .tn:t Cover su net?s'gn aggregate in the trdé&andy is the most specific aggregate

rea 0.0.0.3 (from Fig. 1). Observe that sindecontains a9 in the tree covering that has already been selected. Then, the
gregates 10.1.4.0/22, 10.1.6.0/23, and 10.1.7.0/24, there 'i{'{ﬂimum errominE(z, y, k, W 4) of the subtree rooted at if

The containment relationship among the eligible aggregal
in A naturally form a set of trees. For aggregateg € A, an
edge fromz to y exists if z coversy and every other aggre-
gatez € A that coversy also coverse. Fig. 2 illustrates the

edge from 10.1.6.0/23 to 10.1.7.0/24; however, there isno e . :
from 10.1.4.0/22 to 10.1.7.0/24 in the tree. Also, the intern Sf?)rlﬁ)\?vllsowed to choose at mdsaggregates in the subtree, is

nodes in the aggregate tree have either one or two children, %ut .

no more than two children. For instance, in Fig. 2, 10.1.0.0/22 ° If k = 0: minE = E(xjy’@’ Wf“)'

has only one child since 10.1.0.0/23 does belongl ttsubnet * If & > 0 andz has a single chila:

10.1.1.0/24 does not exist in the network). Note that each leafinE = min{minE(u, y, k, Wa), minE(u, z, k — 1, W)}
of an aggregate tree is a subnetdnFurther, the root(7") of

treeT is basically an aggregate that is not covered by any other * If £ > 0 andz has children, v: minEis the minimum of

eligible aggreggte. min {minE(u,y,i, W4) + minE(v,y,k — i, W4)}
We next define the error of a tréB when a set of aggre- 0<i<k
gates in it have been selected. Suppoesis an aggregate in mjnk{lninE(u,y,i,WA) + minE(v,y,k — i, Wy)}.

the treeT’, y is the most specific selected aggregate covering "~ —
x in the tree, andX is the set of selected aggregates. Then * If £ > 0 andz is aleafmink = E(z,y, {z}, Wa).
the errorE(z,y, X, W 4) of the subtree rooted at is recur- The intuition underlying the above set of equations is that if
sively defined as given in the equation at the bottom of the pade—= 0, then since no aggregates in the subtree can be selected,
The error for an entire tre@& with the set of selected aggre-the minimum error is simply the error of the subtree when no
gatesX is then simplyE(r(T), e, X, W 4) (e denotes the empty aggregates in it are chosen. In cdse- 0 andz has children,
aggregate that does not cover any other aggregate). Note #rad if X is the set of aggregates in the subtree rootedthat if
each recursive invocation @ on z’'s children propagates as selected result in the minimum error, then the following hold for
the most specific selected aggregate iE X. Consequently, X:1)eitherz € X orz ¢ X and 2) of the remaining aggregates
wheneverE is invoked for the subtree rooted at an aggregabe X, ; are in the subtree rooted at its left child and the remaining
x, y IS always the most specific selected aggregate coverihg-i or k —i — 1 aggregates (depending on whethef X) are
z. As a result, the error of a tree is simply the sum of the ein the subtree rooted at its right child. Thus, since the error of
rors of all the leaf subnets in it, where the error of a subngt the subtree with: as root is simply the sum of the errors of its
Yoses D(s,t)x(Isp (s,t,{y}, Wa) —Isp(s, 1)), wherey is the left and right subtrees, we can compute the minimum error for
most specific aggregate i that coverst. Thus, since every (the subtree rooted at) by first computing the minimum error
subnet inS is contained in one of the trees, the sum of erroi its left and right subtrees fdr < i < k selected aggregates
of all the trees is essentially the cumulative error in the selectadd for the cases whenis either selected or not selected, and
paths, which is the metric we are interested in minimizing. then choosing the combination with the smallest error. Finally, if
Thus, we have reduced the aggregate selection problemkts 0 andz is a leaf, then there are only two possible alternatives
the problem of computing a s&f containing at mosk aggre- for selecting aggregates iris subtree: either to selegtor not

2@ uwer E(u,y, X, Wa), if - has children and ¢ X
Y@ wer Blu, 2, X, Wa), if z has children and € X
S ocs D(s,x) * (Isp(s, 2, {y}, Wa) — Isp(s, z)), if = is a leaf andr ¢ X
Yoses D(s,x) * (Isp(s, z, {z}, Wa) = Isp(s, z)), if zis aleafandr € X



RASTOGI et al: OPTIMAL CONFIGURATION OF OSPF AGGREGATES 187

to selectz. The minimum error for these two cases then yields ll’m‘}:d;'[’e CO;"]“’(‘:JTE:"“NE(’”’?/’ b

. .. . . ifsT[z, y,l].C = true
the de'sweq minimum error. In the following, we formally prove ' ™" /10 (6T(z, y, 11E, sTiz, v, 1].A]
thatminE is indeed the minimum error of the subtree rooted at 3. minE := minEl = minE2 = oo

x if at mostk aggregates can be selected in it. 4. ifzisaleaf {

Theorem 1:minE(z, y, k, w.) is equal to the minimum of 2- f‘f‘il“il;fzaes D(s,z) * (Isp(s, , {y}, Wa) — lsp(s, z))
. . .. . 1
E(z,y, X, WA_), wherez is any arbitrary set containing at most 7 minE2=Y"_ _D(s,a)*(sp(s,, {x}, W.A) ~lsp(s,7))
k aggregates in the subtree rooted:at 8 ifminEl < iE>
Proof: The proof is by induction on the number of aggre- 9. [sT(z, y, I].E, sT[x, y, {].A] := [minE1, 0]

i 10. else
gates !n.the subtree rootedae_alt _ - Tz, y. 1L, sT[z. g, [ A] = [minE2, {z}]
Basis:Suppose that there is only one aggregate in the subtree |, }
rooted atr, that is,z is a leaf. In casé = 0, then the minimum 13. if z has a single child u {
error of the subtree is simpli (z, y, ), W) since none of the ~ 14.  [minEl, Al]:= COMPUTEMINE(u,y, ])

aggregates in the subtree can be selected. On the other hand, }Z: i”[;ﬁgm A2] == COMPUTEMINE(u, z, I — 1)

k > 0, then the two possibilities are that eithee X orz ¢ X 17.  if minEl < minE2
and the minimum error is the minimum of the error for these 18. [sT[z, y, l).E, sT[z, y, l].A] := [minEl, Al]
two cases 19. else .
' 20. [sT[z, y, [].E, sT[z, y, [].A] := [minE2, A2 U {z}]

Induction StepSuppose thak is the set containing at most  21. }
k aggregates in the subtree rooted @hat minimizes the error ~ 22. if z has children w and v {
of the subtree. We show thatinE(x,y, k, W.) is equal to 23: f°'[:n’i:E?’tZi]{:= COMPUTEMINE(u, 3, 9)
E(z,y, X,W,) for one case (other cases can be handled in a 2s. [minE2, A2] := COMPUTEMINE(v,y, | — %)
similar fashion). The case we consider is whea X and has 26. if minEl + minE2 < minE
two childrenu andv with U and V denoting the aggregates 27 minE := minE1 + minE2
selected in the subtrees rooteduatind v, respectively. Note 29,

}
that if |U| = 4, then|V| < k — i — 1. From the definition 30. fori:=0tol—1{

A=Al1UA2

ofertor Bz, y. X, W) = E(w.a,U W) £ Bloa V.Wa). 3 [mELANZ Commmuneturnd
Thus, sinceX minimizes the error of the subtree rooted:at/ 33 if minE1 + minE2 < minE o

andV must be the sets containing at mestndk — 7 — 1 ag- 34. minE := minE1 + minE2

gregates, respectively, and that minimizes the error of subtrees 35- A=AlUA2U{z}

rooted al/ andV/, respectively. Due to the induction hypothesis, 3, %s.l.[z’ v, 1L.E, sT[z, v, [].A] := [minE, A]
minE(u,z,4, Wy) = E(u,z, U, W4) andminE(v, z, k — i — 38. }

1,W4) = E(v,2,V,W4). Thus, sincaninE(z, y, k, W4) < 39. sT[z, y, l].C = true

minE(u, z, 4, W4 )4+minE(v, 2,k — i — 1,W_4), we can con- 40. return [sT(z, y, [.E, sT[z, y, [].A]

Cll_Jde thatminE(:m Yk, WA) < E(x’ Y, X, WA)' Note _that Fig. 3. Dynamic programming algorithm for computing the aggregates that
minE(z, y, k, W4) cannot be less thafi(x,y, X, W4), since minimize tree error.
this would lead to a contradiction becaukewould not mini-

mize the error of the subtree rootediat Ul is derived by taking the union of the optimal aggregates for the
From Theorem 1, it follows thatinE(r(T), ¢, k, W.4) re-  subtrees rooted at its children, and adding to it if selectingz

turns the minimum possible error for a trfEhen at mosk ag-  is required for minimizing the error (Steps 11, 20, and 35). Note
gregates in the tree can be selected. ProcedaneGTEMINE  also that in order to improve computational efficiency, the op-
in Fig. 3 uses dynamic programming to compute thaggre- timal aggregates and the minimum error for the subtree rooted
gates that result in the minimum possible error for the subtrge; with y as the most specific aggregate and at nheslected
rooted atr andy is the most specific aggregate coverinthat aggregates are storedsf' [z, y,!].A andsT[z, y,].E, respec-

has already been selected. The procedure is invoked with argvely. The first invocation of ©MPUTEMINE(z, , 1) causes the
ments that include the root aggregate of the i), e andk. body of the procedure to be executed, but subsequent invoca-

The key ideas are similar to those described earlier for the cofions simply return the previously computed and stored values.
putation ofminE, the minimum error for the tree. For instance,

if an aggregate: has children, then procedureo@PuTEMINE C. Combining the Aggregates for Set of Trees
recursively invokes itself for each of its children for the cases Suppose there are aggregate tre€k;, Tv, . . ., Th,. Further,

whenz is selected and Wh_enis not selected. Furth_ermore, i”letﬂ[j].[E, A] denote the minimum error and the set of at most
the case that has two children, the procedure is invoked fof agqregates iff; responsible for minimizing’s error. Then,
each child for all the possibilities for the number of aggregatg;si[j].[E! AJ, the minimum error for the set of tre@, ..., T;

in each child subtree. . N o and thej aggregates that minimize their cumulative error can be
The only difference is that in addition to the minimum ermolgomputed using the result of the following theorem.

the procedure also computes the aggregates that are responsibi§ieorem 2: For the set of tree® . .. . , T,

for minimizing the tree error. Thus, every invocation of pro- o

cedure @VPUTEMINE, in addition to returning the minimum X;[j].E

error for the subtree rooted af also returns the set of aggre- [ T;[j].E, ifi=1
gates in the subtree that cause the error to be minimum. This sét{ ming<;<;{X;_1[l].E + T;[j — I].E} otherwise .

7
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procedure COMBINEMINE() Further, the body of GMPUTEMINE is executed at most once for
é: f°"f:r=j Lt%’t"o K { each combination af, y, andl. For a specifie:, there are at most
3. T;[§1.[E, A] := COMPUTEMINE(K(T;), €, ) dk different possibilities foy and! for which the body of the pro-
4. X;[51[E, A] := [00, 0] cedure is executed. This is becaydes to be an ancestor.ofn

5. . ’ thetree and < k. Each execution of the body ofSMPUTEMINE

6. forj=0tok ) :

7. XilME Al := Ti[5).[E. Al makes at most/ + 1 recursive calls, and thus, since there Are
8. fori=2tom possible aggregates, the total number of timesm@UTEMINE

9. forj=0tok is invoked isO(Ndk?). As a result, the time complexity of
1(1): fori:(j(?_t?[g].s+nu —I]E < X;[51E) { procedure ©MPUTEMINE is O(n® + Ndk?). Further, the
12. Xi[j1E=X;-1[lJE+Ti[j — I1.E space complexity of the procedure(®n? + Ndk), O(n?) to

ii. Xi[jlA=X;1[llAUT;[j — l]A store the shortest path and error information for subnets, and

O(Ndk) to store the error and aggregate values for each of the
Ndk possible combinations of values fory and!.
It is fairly straightforward to observe that the thréer
Proof: The proof is by induction o loops spanning Steps 8-14 of procedur®eMBINEMINE
: ) 9 ) .
Basis:Wheni = 1, the statement of the theorem clearly holdgxecuteO(mk ) steps. T*},“S' the ;’Vera” gme complexity
sinceX1[j.E = T1[j].E of the procedure is i(n®> + Ndk* + mk*), where the
Inducltioﬁ StepSlupboée for the tre& . . ... T, the cumula- first two terms are the time complexity of computing the

. o . aggregates that minimize the error for thetrees. Note that
tive error is minimum forj aggregates whdraggregates are se- . .
lected fromT’ T._, and the remaining— [ aggregates are even though OMBINEMINE makes independent successive
1yeeeydLi—1 - . . . .
selected fron?}. Note thatX,[j].E < X;_1[l|.E+T;[j —I].E invocations to OMPUTEMINE(r(T3), ¢, j) for j = 0, ..., k, the
Thus. since duLé to the induzctidn kﬁ/poitﬁeéié ] JZE is eciuél results computed in subTree during an invocation are shared
’ 1 .

. ) between the invocations. The space complexity of procedure
to the minimum error for the first— 1 trees wher aggregates COMBINEMINE is simplyO(mik) to store theX; andT; arrays
are selected from them, it follows that;[j].E is less than or ply&tm ! ¢ ys.

equal to the minimum error for the firgttrees whery aggre-
gates are selected. In fact, sin€¢[;]. £ is set to the minimum ; S )
of X;_1[l].E + T,[j — [].E for 0 < [ < j, due to the induction ~ NOte that instead of minimizing the cumulative error over

hypothesis, it must be equal to the minimum error for the firsSOUrce destination subnet pairs, our algorithms can be adapted to
trees whery aggregates are selected. ] Mminimize the maximum error over source destination pairs. In

Procedure OMBINEMINE in Fig. 4 computes itX,,[k].[F,A] orderto QOthis, we simply need to redefiqe the errorofatreetobe
the minimum cumulative error and tieaggregates that min- the maximum error of the leaf subnets in it (instead of the sum of
imize the error for the tree®,, ..., T,,. After computing the errors). Thu_s, the recursive definition of t'he error of the subtree
error and aggregates for each individual tree in Steps 1-5@pted at given thaty is the most specific selected aggregate
each iteration of Steps 8-14, th&[j]s are computed for in- COVeringz in the tree andX is the set of selected aggregates,
creasing values af based on the individual tree errors and thi @S given in the equation shown at the bottom of the page.
X,_1[j]s computed in the previous iteration (as stated in The- Further, the minimum error of the subtree rooted:at at
orem 2). For eaclX;[;], the aggregates are computed by taking:OStk aggregates in the subtree can be chosen (giverytisat
the union of the aggregates for the_,[I] and7;[j — {] thatre- e most specific aggregate in the tree coverirand that has

Fig. 4. Combining aggregates for a set of aggregate trees.

E. Minimizing Maximum Error

sult in the minimum error foiX; ;. already been selected), is as follows.
o If k= 0: minE = E(z,y,0, Wy).
D. Time and Space Complexity * If £k > 0 andz has a single child::

Suppose that is the maximum depth of an aggregate tree, the inE = {minE(u,y, k, W), minE(u, 2,k — 1, W4)}
number of aggregates i is N and the number of subnetséh _ . L -
is n. Note that for 32-bit IP addresseb,< 32. Then the time ~ ° T # > 0 andz has childrens, v: minE is the minimum of

complexity of the procedure@PUTEMINE can be shown to be min {max{minE(u, y,7, W),

O(n® 4+ Ndk?). The reason for this is thatp(s, t), the shortest osish . _

path between subnetgndt, needs to be computed for all subnet minE(v,y, k — i, Wa)}}
pairs. The time complexity of this stepd&n?). Also, for each 0<§r££ 1{max{minE(u, z,1, W4),

subnet: and every aggregatecovering it, one can precompute ='= mink( 11— i, Wl
and storey", s D(s,) * (Isp (5,2, {y}, W) — Isp(s,2)), v L WA)s

thus, enabling this information to be accessed in constant time.« If k > 0 andz is a leaf.minE = E(z,y, {z}, W4).

max ;. uyer E(u,y, X, Wa), if z has children and ¢ X
max(, yer Fu, z, X, Wa), if 2 has children and € X
maxgses D(s,x) * (Isp (s, z,{y}, Wa) —Isp(s,z)), ifzisaleafandr ¢ X
maxses D(s,x) * (Isp (s, z,{x}, W4) —Isp(s,x)), ifzisaleafandr € X
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I 10.138.0/24

fea 0.0.0.2

Note that unlike the cumulative error case, where we were it
terested in the distributing the aggregates among the subtree: 1
z rooted at children. andv so that the sum of the errors of the
subtrees was minimized, for the maximum error case, we a*™
interested in minimizing the maximum of the errors of the twc bl 200 b2
subtrees (since the error of the subtree rooted iatthe max- Arc2 0000 200
imum of the errors of its two child subtrees). Thus, the following 100 100
modifications need to be made to procedumMBUTEMINE to
compute thek aggregates that minimize the (maximum) errol
for the tree. rea 0.0.03

1) Replac’, s D(s, z)+(sp (s, . {y}, Wa) ~1sp(s, ))

in Steps 5 and 7 with maxses D(s,2)x
(Isp (5,2, {y}, W) — Isp(s, 2)).
2) ReplaceninE1+ minE2 in Steps 26, 27, 33, and 34 with

max{minEl, minE2}. 10.1.4.0/24 10.1.7.0124

Similarly, the following simple modification to proce- ) i ) )

. o Fig. 5. Example of an AS where choosing maximum-distance weights does
dure MMBINEMINE enables it to compute the miNiIMUMygt minimize the maximum error.
error of a set of trees for the maximum error case:

replace X;_1[l].E + T;[j — I].E in Steps 11 and 12 with

.16.0/24

10.1.5.0/24 10.1.6.0/24

Example 3: Consider the network in Fig. 1. Suppose we are

max{X; 1 [l].E, T;[j — [].E}. interested in computing weights for the aggregate 10.1.0.0/21
that covers all the subnets in Area 0.0.0.3. If each border router
IV. WEIGHT SELECTION PROBLEM chose the maximum distance to a subnet in 10.1.0.0/21 as the

weight for it,b3 would assign 10.1.0.0/21 a weight of 1100 (dis-
In Section I1l, for a given weight assignment functidils, tance ofh; from 10.1.6.0/24) andl, would assign to 10.1.0.0/21
we proposed algorithms for computing the optimal set of aggrg-weight of 1250 (distance betweépand 10.1.6.0/24). Con-
gatesX for which the error in the selected paths is minimizedsequently, both subnets 10.1.16.0/24 and 10.1.8.0/24 select the
However, the final error and set of optimal aggregatesre path through ABR); to access the subnets in 10.1.0.0/21 which
very sensitive to the weight that a border router advertises fgis a cumulative error & 0 + 2 % 700 + 2 % 800 = 3000
each aggregate. Thus, the weight assignment problem is imp@sr 10.1.16.0/24) an@ % 0 + 2 * 900 + 2 * 1000 = 4800
tant for ensuring that selected paths are of high quality, and(fer 10.1.8.0/24). In contrast, assigning weights 1000 and 500 to
the subject of this section. 10.1.0.0/21 at ABR$3 andby, respectively, causes the selected
Recall that the weight assignment problem is to computepaths to be throughy, which results in much smaller cumulative
weight assignment functiol'r,, for a single aggregatec A;  errors 0f2x 1300 + 2% 0 + 2% 0 = 2600 (for 10.1.16.0/24) and
such that the error in the selected paths from all subnets to d2s-1100 + 2 x 0 + 2 * 0 = 2200 (for 10.1.8.0/24). O
tination subnets covered hyis minimized. The weight assign- Example 4:Consider the network in Fig. 5. Suppose
ment functioniV,., assigns a weight to at each ABR) € B;. Wwe are interested in computing weights for the aggregate
Note that we are interested in computing the optimal weight§.1.0.0/21 that covers all the subnets in Area 0.0.0.3. If each
for z under the assumption that no other aggregates coverfyder router chose the maximum distance to a subnet in
subnets in: are concurrently being advertised. Also, since tht0.1.0.0/21 as the weight for it; would assign 10.1.0.0/21
aggregate: for whom we wish to compute weights is fixed, wed Weight of 900 (distance of; from 10.1.6.0/24) andb4
drop the subscripfz} for W—thus, we will usel (b) to de- would assign to 10.1.0.0/21 a weight of 1100 (distance
note the weight assigned ioby ABR b € B;. between by and 10.1.4.0/24). Consequently, both subnets
Intuitively, sinceV () is supposed to represent the distanck?-1.16.0/24 and 10.1.8.0/24 select the path through AB®
betweenb and subnets covered by, two possible logical 2CC€SS the subnets in 10.1.0.0/21 which has a maximum error of
max{0,700} = 700 (for 10.1.16.0/24) anchax{0,900} = 900
1) maxscs {Isp(b,1)}: (for 10.1.8.0/24). In contrast, assigning we_ights 1000 and 500
2) (1/|;?|€)IZ fsb(é N to 10.1.0.0/21 at ABR93; and b4., respectlvgly, causes the
tex A selected paths to be through which results in lower values
The first choice, recommended in [3], is simply the maximuffpr maximum error—max{700,0} = 700 (for 10.1.16.0/24)
distance of a subnet in aggregatdrom the border routeb, andmax{500,0} = 500 (for 10.1.8.0/24).
while the latter is the average distance of subnets from b. ChoosingW (b) = (1/|z]) ¥,c. 1sp(b, t) yields somewhat
Note that since both choices are oblivious of the source subngéster results because intuitively this is more representative of
(not covered byr) and the error to be minimized, as illustratedhe distance betweérand subnets im thanmax; ¢ {Isp(b, t)}.
in the examples below, for most cases, neither choice optimizes a matter of fact, setting/ (b) to be the average distancetof
our objective error function. In the following two examples, weo subnets in: can be shown to minimize the cumulative error
show that choosingV (b) to be max;c,{Isp(b,¢)} minimizes for the weight selection problem. However, it does not minimize
neither the cumulative error nor the maximum error. the maximum error, as illustrated by the example below.

choices forl¥(b) are the following:
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Example 5: Consider the network in Fig. 1. Suppose we are  Proof: Suppose the weight assignment functioi
interested in computing weights for the aggregate 10.1.0.0/@dsigns a weightV(b) = (1/[»]) >_,c, Isp(b,t) to ABR b.
that covers all the subnets in Area 0.0.0.3. If each border roukar each source, lsp(s, B(s,W)) + W(B(s,W)) is less
chose the average distance to a subnet in 10.1.0.0/21 astttzen or equal tolsp(s,b) + W(b) for all ABRs b. Thus,
weight for it, b3 would assign 10.1.0.0/21 a weight of 730 anfirst expanding W and then multiplying by constaniz|
by would assign to 10.1.0.0/21 a weight of 570. Consequentind subtracting constat, ., Isp(s,t) from both sides, we
both subnets 10.1.16.0/24 and 10.1.8.0/24 select the pgét >, . Isp(s, B(s,W)) + Isp(B(s,W),t) — lsp(s,t)<
through ABR b, to access the subnets in 10.1.0.0/21 which’, . Isp(s,b) + Isp(b,t) — lIsp(s,t) for all ABRs b. As a
has a maximum error of 1300 for 10.1.16.0/24 and 1100 feesult, for every source, e(s, B(s, W)) < e(s, b) for all ABRs
10.1.8.0/24. In contrast, assigning weights 500 and 1000 it@nd, thus,) " e(s, B(s, W)) is minimum for the weight
10.1.0.0/21 at ABR$3 andby, respectively, causes the selectedssignmentV. O
paths to be throughs which results in lower values for max-
imum error—700 for 10.1.16.0/24 and 1000 for 10.1.8.0/24. ¢, Generalized Weight Selection Problem (Cumulative Error)

In Sections IV-A-E, we first show that selectin§f(b) = )

(1/]2]) ¥,e. Isp(b, ) results in the minimum cumulative error  ~OF the cumulative error case(s,b) = > ,c, Isp(s,b) +
and is a solution to the weight selection problem. HowevdiP (0 ) —1sp(s, ) is closely related to the criterion for selecting
the generalized weight selection problem that involves mirf! ABRY for s which is thatisp(s, b) + W (b) is minimum (note
mizing the product of the cumulative error of selected paths a2 e, 1sp(s, ) is @ constant). However, for the generalized
their degrees of importance is an NP-hard problem [5]. Con imulative error case(s,b) = > e, D(s, ) * (ls.p(s’ b) +
guently, we present search-based heuristics to solve the ge é’r(-b’ t) ~1sp(s, t)) and, thuse(s, b) can be any arbitrary value

alized weight selection problem and a pseudopolynomial ti sed on the value db(s, £). This fact thaie(s, b) can be any

algorithm to solve the weight selection problem when the Og__rbnrary value _makes the pr_ob_lem of computing a we|_ght as
S L . Signment functioV that minimizesy___s e(s, B(s, W)) in-
jective is to minimize the maximum error. . S€S

tractable, as the following theorem demonstrates. The proof of

the theorem involves a rather complex reduction from 3-SAT

and, in the interest of space, has been omitted from the paper.
In this subsection, we simplify some of the notation anBetails of the proof, however, can be found in [4].

introduce some new terminology that we need in order to Theorem 4:For arbitrary values of(s,b) and constanf,

address the weight selection problem, which is: For an aggretermining if there exists a weight assignment funciidrior

gatex € A;, compute a weight assignment functitn such which)"__e(s, B(s,W)) < E is NP-hard.

that > cs e (Isp (st {z}, W) —Isp(s,t)) is minimum.  Asimple iterative greedy search heuristic can be used to com-

For each source, the selected paths to subnets covered ipute a weight assignmeiit” that results in a low value for the

x is through the ABRb € B; for which Isp(s,b) + W(b) cumulative error. The basic idea is to start with a Bgtof

is minimum (among all the ABRs). We denote the ABRandom weightassignments. Then, in each subsequent iteration,

selected for source by B(s,W). Note that fort € u, for eachW ¢ W, from a number of candidate modifications,

Isp(s,t,{z},W) = Isp(s,B(s,W)) + lsp(B(s,W),t). the one that minimizes the cumulative error is greedily chosen

Further, suppose:(s,b) denotes the error in the selectedtnd applied to/. For aW € W, each candidate modifica-

paths to subnets in if ABR b is selected for source. tion consists of adjusting the weight'(b) for a single ABR

Thus,e(s,b) = X,c, Isp(s, b) + Isp(b,t) — Isp(s, t). Then, b € BL Thus, fpr each weight aSS|gn_meWE, we are inter-

e(s,B(s,W)) = 3 ,c.1sp(s,t, {x},W) — lIsp(s,t), and, gsted in computing the ABR and a_welghtw such that set-

thus, the weight selection problem becomes that of computifigd "V () = w (and leaving the weights for other ABRs un-

a weight assignmentV such thaty" g e(s, B(s,W)) is changed) results in the smallest value for thg cumulative error

minimum. 3 > e(s, B(s,W)). Forn sources anéh ABRs, this can be com-
The above problem formulation is for minimizing the cumuPUted inO(mn(logn +m)) time as follows. First, we compute

lative error. If we wish to minimize the maximum error, thergor, each ABRD the weightw such that settingV’(b) = w min-.
e(5,b) = maxse.{Isp(s,b) + lsp(b, 1) — lsp(s,1)} and the imizes the error. Then, we choose from all the (ABR, weight)
) - tEx 3 5 - 5

weight assignmert” must be such thatax,c. (s, B(s, W) pairs(b, w) the one that resultg in the minimum error.
is minimum. In order to compute the optimal weightfor an ABRb, we
firstcompute for every souregthe ABRcin B;—{b} for which
Isp(s, ¢) + W(c) is minimum (this can be achieved @(mn)
steps). For the souree letv(s) = Isp(s, ¢) + W(c) — Isp(s, b)
For the cumulative error case, it can be shown that choosiagde(s) = e(s, c). Suppose that(s; ), . . . , v(s,, ) are the values
W (b) to be the average distancelotfo subnets in: minimizes for the sources in sorted (increasing) order (sortingithalues
the cumulative error in the selected paths between sources &ikésO(n log n) steps). Also, let(s,, 1) = co. Then, choosing
destination subnets in. avalue fol¥ (b), suchthab(s;_1) < W (b) < v(s;) causesthe
Theorem 3: The weight assignment functio’ which as- cumulative error to b§ 7~ e(s;) + Y1 e(s1,b) (since ABR
signs a weightV (b) = (1/]x]) >_,c, Isp(b,t) to ABRbresults b is selected for sources, . . ., s, WwhenW (b) < v(s;)). Thus,

’ ’

in the minimum value fod__ s e(s, B(s, W)). in a single pass over the sequence, ), . .., v(s,), the optimal

A. Problem Formulation

B. Weight Selection Problem (Cumulative Error)
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procedure COMPUTEWEIGHTSMAX(Q)
1. foreachb € B;,set W,4(b) :=0

2. while (¥, p Wora(h) < (LBil=UBil=Dy o 1p, 1) ¢

3. Let Q' be a new set of inequalities that result when the value W,4(b) is
substituted for each variable W (b) only on the LHS of each inequality in Q

4.  foreach b € B;, set Wiy (b) to the smallest possible value such that each
inequality in Q" is satisfied when Whpew (b) is substituted for variable W (b) in Q'

5. i Whew = Wog

6. return Whyeqp

7 else

g- Wold := Whew

10. return “there does not exist a weight assignment W”

Fig. 6. Algorithm for computing weights for two ABRs.

weightv(s;) for W (b) which minimizes the cumulative errorat mostE is equivalent to solving a set of inequalities involving
Zf;ll e(s1)+ 21— e(s1,b) can be computed. Thus, the optimathe W (b)s as variables. For a souredet R(s) denote the set of
weight for each ABR can be computed®in(logn+m)) steps ABRsb € B; for whiche(s,b) < E—thus, for the remaining
and for all ABRs, inO(mn(logn + m)) time. ABRsb € B; — R(s), e(s,b) > E. Consequently, since the
To recap, the greedy heuristic, in each iteration, modifies eaefror for each source can be at maéstthe computed? must
weight assignmeri’ € WV by settingi¥ (b) = w, where ABR be such that one of the ABRs i(s) is selected fok. For this,
b and weightw result in the minimum error fol” and are com- we requirelV to satisfy the following set of inequalities for all
puted as described above. It terminates the search computatieh B; — R(s):
either after a fixed number of iterations or if the improvement
in cumulative error during an iteration due to modifying every ber(s)1W(b) +1sp(s,b)} < W(c) +1Isp(s,c).
W € W drops below an error threshotd
Thus, for each source we obtain the set of inequalities de-
D. Generalized Weight Selection Problem (Maximum Error) scribed abovéNote that thél’s in the equations are variables
Recall that if we are interested in minimizing the max@nd thelsp's are constants. Also, for each ABRIV also needs
imum error, thene(s,b) = maxse,{lsp(s,b) + lsp(b,¢) — tosatisfythe constraitt< W (b). Suppose) denotes the set of
1sp(s,t)} and the weight assignmeit’ must be such that inequalities over all the sources and ABRs. It is straightforward
max,cs e(s, B(s,W)) is minimum. Thus, we can employ 0 observe that for & the maximum error i if and only if W
an algorithm similar to the greedy search heuristic describi& solution for the set of equatiofs Thus, we simply need to
earlier to compute a weight assignment function that minimiz&cus on computing & that satisfies the inequalities ép. Ob-
the maximum error (instead of the cumulative error). serve that if for a source the setfz(s) is empty, then there does
However, if we assume that weight assignmeltsand hot exist alW for which the set of inequalitie® is satisfiable.
shortest path distancés to be nonnegative integers, then wd he reason for this is that for the source, we obtain inequalities
can devise a more efficient pseudopolynomial time algorithaf the formmin{} < W (c) + Isp(s, ¢) which cannot be satis-
for computing the weight assignment that minimizes thfged sincemin{} = oo. Also, no equations are generated for a
maximum error. Suppose we could devise a procedutbat sources if R(s) = B; (that is, the error for the sourceis at
computes a weight assignmeWt (if there exists one) such mostF irrespective of the chosen ABR).
thatmax,cs e(s, B(s,W)) < E for some constank. Then,  Procedure GMPUTEWEIGHTSMAX in Fig. 6 is an iterative
a simple procedure for computing the weight assignment thpgeudopolynomial time algorithm for computingfa that sat-
minimizes the maximum error is as follows: isfies@. In the procedurelV ..., andW,4 store the weight as-
1) sort the errorg(s, b) between (source, ABR) pairs—letsignment values prior to and after each iteration. In each itera-
E.,...,E, bethe errors in order of increasing value; tion, a new weight assignmefit,,.., is computed after substi-
2) repeatedly invoke the procedufefor increasing values tuting the previous weight assignméni,q for the W’s only
of 4, until P returns a weight assignmefit for which on the LHS of each inequality i) (Steps 3—4). (We use LHS
max.cs e(s, B(s, W)) < E;. and RHS to denote the left- and right-hand side of an inequality,
Thus, E; is the smallest value for which a weight assignmeriespectively.) Note that each inequality@ has the formC' <
exists and represents the minimum possible value for the mak<{c) +1sp(s, c¢), whereC andlsp(s, ¢) are constants and (c)
imum error. FurtheV/ is the weight assignment that minimizess a variable. Alsolsp,,, .. is the maximum value fdep(s, b) for
the maximum error. Note that instead of considering dacbe- a (source, ABR) pair.
quentially, .O.”e can also use a bma.ry search procedurg .to Corq\_Ne assume that if for two ABRE andC', W (b) + lsp(s, b) = W(c) +
pute the minimum value for the maximum error more eff'C'en“Ysp(s., ¢), then the ABR with a smaller error is selected forin case this as-
Thus, the crucial task for us is to develop the procedtitieat  sumption does not hold, the following stronger inequality can be employed for
computes a weight assignméfit (if there exists one) such that?!l ¢ € B: — R(s):
maxses (s, B(s, W)) < E for some constarft. We show that

the problem of computing B such that the maximum error is o8 TV O) +1sp(s, D)} +1 < W(e) +1sp(s, )
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Fig. 7. Example network
COMPUTEWEIGHTSMAX.

tracing

Example 6: Consider sources; andss; and ABRSby, b,
and b3, shown in Fig. 7. Let the functionsp and e for the
(source, ABR) pairs be as depicted in the figure. Foe 10,
R(s1) = {ba,b3} andR(s2) = {b1}. Thus, for source;, Q
contains the following inequality:

Hlin{W(bQ) + 40, W(b3) + 50} < W(bl) + 30. Q)

And for sourcess, @ contains the following two inequalities:

(2
+70. ©)

Note that since weight assignments cannot be negative, even
though we do not explicitly state thi§, and@’ always contain

the following three constraint®: < W(b;), 0 < W (bs), and
0 < W(b3).

We now trace the execution ofdMPUTEWEIGHTSMAX for
the above set of inequalities i@. Initially, W,4(b;) is set to

0 for all three ABRs. In the first iteration, substituting O for aIIQ
the W (b;) variables on the LHS of inequalities (1)—(3) reSUIt§ubstituted withiv”
in the following set of equation®’ (Step 3 of the procedure): lows that the LHS of each ine

min{10,20} < W (b;) [due to inequality (1)]0 < W (b3) [due
to inequality (2)], and-30 < W (b3) [due to inequality (3)].
As a result,W,,.,(b1) is set to 10, whilelV,,., for b, andbs

continue to be 0. At the beginning of the second iteration, th

Woia(b1) = 10. Consequently, after substitution @f,4(b;)
for the W (b;) variables on the LHS of inequalities 1§, @’
contains equationsin{10,20} < W(by), 10 < W(b,), and

—20 < W(b3). This causedV,4(b1) andW,a(b2) to be set to

procedure

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 2, APRIL 2003

if @ is satisfiable, then there existslé that is a solution to

Q for which >, W(b) < (IBi] * (IBi — 1)/2) * Ispyyay.
Thus, sincel¥,q does not decrease between successive itera-
tions and the procedure terminates only whéi as found or

> ven, Wola(b) becomes greater thahB;| * (|B;| — 1)/2) *

ISP 110, COMPUTEWEIGHTSMAX computesV correctly. In the
proofs,W?,, denote the value d¥/,4 at the end of thgth itera-

tion. Also, Q’; denotes the set of inequalitiesghwhen? . is
substituted for all variables on the LHS of each inequalit@in
Lemma 1: For every ABRb € B;, W/i' (b) > W2, (b).

Proof: The proof is by induction on.

Basis:Clearly, the lemma holds fgr = 0. At the end of the
zeroth iteration (that is, initially)9,(b) = 0 for every ABR
b € B;. SinceQ contains the inequalit9p < W(b) for every
ABR b, Wyew(b) > 0 and, thusWW,(b) > 0.

Induction StepConsider g > 0. Since due to the induction
hypothesis W7 ,(b) > W7 '(b), it follows that the LHS of
each inequality irQ’;_, is less than or equal to the LHS of the
corresponding inequality i9’;. Thus, sincéV?,(b)/ W24 (b)
is the smallest possible value fidf (b) for which the inequalities
in Q;_,/Q’; with W(b) on the RHS are satisfied, it follows that
ngzl(b) 2 Woia(b)- 0

Lemma 2: For every weight assignmeHit’ that is a solution
to Q, W'(b) > Wqa(b), for every ABRD € B;.

Proof: We use induction to show that the lemma holds at
the end of each iteration
Basis:Clearly, the lemma holds fgr = 0. At the end of the
oth iteration (that is, initially)W%,(b) = 0 for every ABR
b € B;. Thus, sincéV’(b) > 0, the lemma holds at the end of
the O iteration.

Induction StepConsider g > 0. At the start of thej iter-
ation, due to the induction hypothesis, we have #dtb) >
glgl(b). Suppose that)’ denotes the set of inequalities in
when all variables on the LHS of every inequality@hare
Due to the induction hypothesis, it fol-
quality i9’._, is less than or
equal to the LHS of the corresponding inequality@h Thus,
sinceW?,,(b)/W’(b) is the smallest possible value f&¥ ()
for which the inequalities i), _, /Q" with W (b) on the RHS

Wre satisfied, it follows thalt’”(b) > W7 (b). O

Lemma 3:If @ is satisfiable, then there exists a weight
assignmentW’ that is a solution toQQ and for which
ZbeBi W/(b) S (|B7| * (|Bl| - 1)/2) * 1Spmax'

Proof: Let W’ be a weight assignment that is a solution

10 and 10, respectively, at the end of the iteration (in Step &y () with the smallest value fo},c 5. W'(b) and further

Similarly, it can be shown that at the end of the third iteratioRyppose thal e . W' (b) > (|Bi] * (|B;| —1)/2) * Isp

max*

Wola(b1) andWoia(b2) are set to 20 and 10, respectively, an&upposew is the smallest value fof¥’(b) among all the
during the fourth iterationiV,1a(b1) andWua(b2) are setto 20 ABRs. Then, v must be zero since the weight assign-

and 20, respectively. In the fifth and final iteration, equationgient W” where W"(b) =

in Q" after substitution are0 < Wi(by), 20 < W(bs), and
—10 < W(b3), causing¥,,., to be equal td¥,q4. Thus, in the
final weight assignment returned byo@PUTEWEIGHTSMAX,
W(bl) = 20, W(bg) = 20, andW(bg) =0.

In the following, we show that GMPUTEWEIGHTSMAX re-
turns aW that is a solution tay if and only if @ is satisfi-

W'(b) — v is also a solu-
tion to @ and > ,cp W'(b) < > cp W'(b)—which
leads to a contradiction. Without loss of generality,
let W’(b1),...,W’ (b,) be the weights for ABRs
sorted in increasing order. Thusy’(b;) = 0. Since
Ywen, W) > (IBil (|Bi]l =1)/2) * Ispyax, it must
be the case that for a pair of consecutive ABR&nd b1,

able. In order to show this, in the following lemmas, we shoW/’ (b; 1) — W' (b;) > 18p,,..- We show that¥” is a solu-

that: 1) for anyW that satisfiesQ, W q(b) < W (b) and 2)

tion for @, whereW”(b;) = W'(b;), for1 < j < [, and
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W"(b;) = W'(b;) —1,forl +1 < j < |B;|. However, this  The worst case time complexity of the overall proce-
leads to a contradiction sin¢e,,. 5, W (b) < > ,c5. W'(b). dure to compute dV that minimizes the maximum error
In order to show that) is satisfiable foriW”, we need to (by repeatedly invoking GMPUTEWEIGHTSMAX for error
consider the following two cases for each inequality. values in Eq,...,E., r = mn) can be shown to be
1) VariableW(b;) is on the RHS of the inequality <j <1). O(m*log(mn)lsp,..), wheremm = |B;| is the number
In this case, the value of the RHS of the inequality isf ABRs andn is the number of sources. Theg(mn) term
identical for bothiW’ andW”, while the value of the LHS is due to the binary search over all the errors to determine
for W is less than or equal to the LHS fol’. Thus, if the minimum error for which a weight assignmelt can
the inequality was satisfiable fé¥”, it is also satisfiable be computed by GMPUTEWEIGHTSMAX. In the worst case,
for W”. COMPUTEWEIGHTSMAX performs O(m?lsp,,..) iterations
2) VariableW(b;) is on the RHS of the inequality+1<j< since the procedure terminates when the sum of the weights
|Bi]). In this case, the value of the RHS of the inequalityecome(|B;| « (|B;| — 1)/2) * Isp,,., and the sum increases
decreases by one fo"’ compared tdV". If the value of 'y gt |east one in each iteration. Finally, the time complexity for
the LHS of the inequality also decreases by onef6t  computingi,..., in each iteration i€)(m?) since in the worst
compared tdV”, then since the inequality is satisfiablesase, the number of inequalitiesdnis m? (one inequality for

for W, itis also satisfiable fobV”. every pair of¥’ variables, one on the LHS and the other on the
The other case we need to consider is when the value of HQPIS of the inequality).

LHS of the inequality is the same f&¥’ andW” . This corre-
sponds to the case when the minimum value of the LHS (for both
W’ andW")is due to the terniV’ (b, ) +1sp(s, by, ) for somel <
k < 1. Since the inequality holds fa¥#", W’ (bx) +1sp(s, bx) < Address aggregation within OSPF areas is critical for scala-
W'(b;) + Isp(s,b;). Further, sincek < [ < j, W'(b;) — bility since it can result in significant reductions in routing table
W'(br) > 1sp,.... Rearranging termdy’(b;) > W'(bx) +  sizes, smaller link-state databases, and less network traffic to
18P ax, OF alternatelyW’(b;) > W'(bx) + Isp(s, bx) (since  synchronize the router link-state databases. However, address
Isp(s,br) < 18ppyay)- Thus,W'(b;) + Isp(s, b;) > W'(bk) +  aggregation can also lead to the selectiosudfoptimalOSPF
Isp(s, b) andW’(b;) +1sp(s, bj) — 1 > W'(bx) +1sp(s,bk).  routing paths between source—destination subnet pairs that
However, sincéV” (b;) = /?Vl(bj) —landW”(br) = W'(bk),  span different areas. In this paper, we addressed the important
the '”equa,','ty holds fobV”. _ practical problem of configuring OSPF aggregates at ABRs to
Thus,W"is a solutlon”forQ. However, ”/“S leads t0 a con-inimize the error in OSPF shortest-path computations due
tradiction since) e, W"(b) ,< > pep, W'(b), and, thus, it to subnet aggregation. We first developed an optimal dynamic
IZ]IL)JSt be the case thal,c 5, W'(b) < (IBi| * (1Bil = 1)/2) *  r0qramming algorithm that, given an upper boungn the
C?Iaexarly, if a weight assignment’ is returned by procedure number of_aggregates t.o be advertised by the ABRs and a
CoMPUTEWEIGHTSMAX, then this is a solution tQ. The reason weight assignment funct.|on for t.h.e aggregates, _comput_es the
k aggregates that result in the minimum cumulative/maximum

for this is that for the returned’, W = W,e = Wo1q—thus, . . .
when the value oV (b) returned by the procedure is substi€rror in the shortest-path computations for all source—desti-

tuted for the occurrence of variabl& (b) in each inequality, nation subnet pairs. Subsequently, we tackled the problem

every inequality is satisfied. However, we also need to show ttft 2SSigning weights to OSPF aggregates such that the cu-
our procedure finds a solution f6} if one exists. mulative/maximum error in the computed shortest paths is

Theorem 5:1f @ is satisfiable, then procedureminimized- We showed that, while for certain special cases
COMPUTEWEIGHTSMAX returns a weight assignmelit thatis  (€-9-, unweighted cumulative error) efficient optimal algorithms
a solution toQ. for the weight assignment problem can be devised, the general

Proof: Suppose() is satisfiable. Due to Lemma 3, it Problem itself is NP-hard. We proposed a randomized search
follows that there exists &V that is a solution toQ such strategy for the general case of weighted cumulative error. To
that Z})eBi W(b) < (|Bi|*(|Bi| —1)/2) * lsp,,... Fur- the best of our knowledge, our work is the first to carry out
ther, due to Lemma 2W,4(b) < W(b) and so forW,, @ systematic study of the algorithmic issues underlying the
Ypen, Woia(b) < (|Bil % (IBi| =1)/2) * lIspy,,. Also, configuration of OSPF aggregates and to propose efficient
due to Lemma 1), ; Woa(b) at the end of an iteration configuration algorithms that arerovably optimalfor many
is greater than or equal to its value at the end of the pneractical scenarios.
vious iteration. Thus, sincg_, , Woa(b) cannot exceed  While the problem of selecting OSPF aggregates is simplified
(|B;| * (|Bi] —1)/2) = lsppax. at some point during the if IP addresses are systematically assigned to carefully designed
execution of the procedure, the valudf,y between two con- networks and areas, such an approach may not work in practice
secutive iterations does not change. This weight assignientsince networks are seldom static and tend to evolve continuously
is returned by the procedure and is a solutio@torhe reason due to the addition of new network elements, subnets, and links.
for this is that for the returnetd’, W = W,.., = Woa—thus, Our proposed algorithms allow aggregates to be optimally con-
when the value fol¥ (b) returned by the procedure is substifigured in such continuously changing dynamic networks, and
tuted for the occurrence of variabl# (b) in each inequality, can also work on-line: emergence of spurious subnets (through
every inequality is satisfied. [0 external advertisements), link failures, and topology changes

V. CONCLUDING REMARKS
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would trigger the computation of changes to the optimal s °
of advertised aggregates/weights. This computation can alsc
carried out incrementally and efficiently.
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