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Several studies have demonstrated the effectiveness of the wavelet decomposition as a tool for
reducing large amounts of data down to compact wavelet synopses that can be used to obtain fast,
accurate approximate query answers. Conventional wavelet synopses that greedily minimize the
overall root-mean-squared (i.e., Ly-norm) error in the data approximation can suffer from impor-
tant problems, including severe bias and wide variance in the quality of the data reconstruction,
and lack of nontrivial guarantees for individual approximate answers. Thus, probabilistic thresh-
olding schemes have been recently proposed as a means of building wavelet synopses that try to
probabilistically control maximum approximation-error metrics (e.g., maximum relative error).

A key open problem is whether it is possible to design efficient deterministic wavelet-
thresholding algorithms for minimizing general, non-Lg error metrics that are relevant to approxi-
mate query processing systems, such as maximum relative or maximum absolute error. Obviously,
such algorithms can guarantee better maximum-error wavelet synopses and avoid the pitfalls of
probabilistic techniques (e.g., “bad” coin-flip sequences) leading to poor solutions; in addition, they
can be used to directly optimize the synopsis construction process for other useful error metrics,
such as the mean relative error in data-value reconstruction. In this article, we propose novel,
computationally efficient schemes for deterministic wavelet thresholding with the objective of opti-
mizing general approximation-error metrics. We first consider the problem of constructing wavelet
synopses optimized for maximum error, and introduce an optimal low polynomial-time algorithm
for one-dimensional wavelet thresholding—our algorithm is based on a new Dynamic-Program-
ming (DP) formulation, and can be employed to minimize the maximum relative or absolute error
in the data reconstruction. Unfortunately, directly extending our one-dimensional DP algorithm
to multidimensional wavelets results in a super-exponential increase in time complexity with the
data dimensionality. Thus, we also introduce novel, polynomial-time approximation schemes (with
tunable approximation guarantees) for deterministic wavelet thresholding in multiple dimensions.
We then demonstrate how our optimal and approximate thresholding algorithms for maximum
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error can be extended to handle a broad, natural class of distributive error metrics, which includes
several important error measures, such as mean weighted relative error and weighted L ,-norm
error. Experimental results on real-world and synthetic data sets evaluate our novel optimization
algorithms, and demonstrate their effectiveness against earlier wavelet-thresholding schemes.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—Combinato-
rial algorithms; H.2.4 [Database Management]: Systems—Query processing

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Data synopses, Haar wavelets, approximate query processing

1. INTRODUCTION

Approximate query processing over precomputed data synopses has emerged
as a cost-effective approach for dealing with the huge data volumes, the high
query complexities, and the increasingly stringent response-time requirements
that characterize today’s data-analysis applications. Typically, users pose very
complex queries to the underlying Database Management System (DBMS) that
require complex operations over large amounts of disk-resident data and, thus,
take a very long time to execute to completion and produce exact answers. Due
to the exploratory nature of many data-analysis applications, there are a num-
ber of scenarios in which an exact answer may not be required, and a user
may in fact prefer a fast, approximate answer. For example, during a drill-
down query sequence in ad-hoc data mining, initial queries in the sequence
frequently have the sole purpose of determining the truly interesting queries
and regions of the database [Hellerstein et al. 1997]. Providing (reasonably ac-
curate) approximate answers to these initial queries gives users the ability to
focus their explorations quickly and effectively, without consuming inordinate
amounts of valuable system resources. An approximate answer can also pro-
vide useful feedback on how wellposed a query is, allowing users to make an
informed decision on whether they would like to invest more time and resources
to execute their query to completion. Moreover, approximate answers obtained
from appropriate synopses of the data may be the only available option when
the base data is remote and unavailable [Amsaleg et al. 1997]. Finally, for data-
analysis queries requesting a numerical answer (e.g., total revenues or annual
percentage), it is often the case that the full precision of the exact answer is not
needed and the first few digits of precision will suffice (e.g., the leading few dig-
its of a total in the millions or the nearest percentile of a percentage) [Acharya
et al. 1999].

Wavelets provide a mathematical tool for the hierarchical decomposition of
functions, with a long history of successful applications in signal and image
processing [Jawerth and Sweldens 1994; Natsev et al. 1999; Stollnitz et al.
1996]. Recent studies have also demonstrated the applicability of wavelets to
selectivity estimation [Matias et al. 1998] and to approximate query process-
ing over massive relational tables [Chakrabarti et al. 2000, 2001; Vitter and
Wang 1999] and data streams [Matias et al. 2000; Gilbert et al. 2001]. Briefly,
the idea is to apply wavelet decomposition to the input relation (attribute
column(s) or OLAP cube) to obtain a compact data synopsis that comprises
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a select small collection of wavelet coefficients. The results of Matias, Vitter,
and Wang [Matias et al. 1998; Vitter and Wang 1999] and Chakrabarti et al.
[2000, 2001] have demonstrated that fast and accurate approximate query pro-
cessing engines can be designed to operate solely over such compact wavelet
synopses.

A major shortcoming of conventional wavelet-based techniques for approx-
imate query processing (including all the above-cited studies) is the fact that
the quality of approximate answers can vary widely and no meaningful error
guarantees can be provided to the users of the approximate query engine. Co-
efficients in conventional wavelet synopses are typically chosen to optimize the
overall root-mean-squared (i.e., Lo-norm average) error in the data approxi-
mation which, as demonstrated in recent studies by Garofalakis and Gibbons
[2002, 2004], can result in wide variance as well as severe bias in the quality
of the approximation over the underlying domain of data values. Their pro-
posed solution, termed probabilistic wavelet synopses, relies on probabilistic
thresholding schemes (based on randomized rounding [Motwani and Raghavan
1995]) for synopsis construction that try to probabilistically control maximum
approximation-error metrics, such as the maximum relative error in the data
reconstruction [Garofalakis and Gibbons 2002, 2004]. Such maximum relative-
error metrics represent an important quality measure for effective approximate
query processing and can provide meaningful error guarantees for individual
approximate answers. In order to probabilistically control maximum relative
error, the algorithms proposed in Garofalakis and Gibbons [2002, 2004] ex-
plicitly try to minimize appropriate probabilistic metrics (such as normalized
standard error or normalized bias) for the randomized synopsis construction
process [Garofalakis and Gibbons 2002, 2004]. (Similar schemes are also given
for controlling maximum absolute error.)

1.1 Our Contributions

A potential problem with the probabilistic thresholding techniques of
Garofalakis and Gibbons [2002, 2004] is that, exactly due to their probabilistic
nature, there is always a possibility of a “bad” sequence of coin flips resulting in
a poor synopsis; furthermore, they are based on a quantization of the possible
synopsis-space allotments, whose impact on the quality of the final synopsis is
not entirely clear. Clearly, a deterministic thresholding algorithm that explicitly
minimizes the relevant maximum-error metric (e.g., maximum relative error)
in the synopsis, is always guaranteed to give better results. Unfortunately, as
already pointed out by Garofalakis and Gibbons [2002, 2004], their threshold-
ing algorithms depend critically on the probabilistic nature of their solution,
and are inapplicable in a deterministic setting. An additional shortcoming of
the probabilistic thresholding schemes of Garofalakis and Gibbons [2002, 2004]
is that they explicitly target only maximume-error metrics; it is not at all clear
if or how they can be extended to other useful error measures for approximate
query answers (such as, e.g., mean relative error). In fact, one of the main
open problems cited in Garofalakis and Gibbons [2002, 2004] is whether it is
possible to design efficient deterministic thresholding for minimizing non-Lg
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error metrics that are relevant for approximate query answering systems, such
as the maximum or mean relative error in the data approximation.

In this article, we propose novel, computationally efficient schemes for deter-
ministic wavelet thresholding with the objective of optimizing a general class of
error metrics (e.g., maximum or mean relative error). We first consider the prob-
lem of constructing wavelet synopses optimized for maximum error metrics, and
present an optimal low polynomial-time algorithm for one-dimensional wavelet
thresholding. Our algorithm is based on a novel Dynamic-Programming (DP)
formulation and can be employed to minimize either maximum relative error
or maximum absolute error in the data reconstruction—its running time and
working-space requirements are only O(N?) and O(N min{B, log N}), respec-
tively, where N denotes the size of the data domain and B is the desired size
of the synopsis (i.e., number of retained coefficients). Unfortunately, directly
extending our optimal DP algorithm to multidimensional wavelets results in
a superexponential increase in time complexity with the data dimensionality,
rendering such a solution unusable even for the relatively small dimensional-
ities where wavelets are typically used (e.g., 2-5 dimensions). Thus, we also
introduce two efficient, polynomial-time approximation schemes (with tunable
e-approximation guarantees for the target maximum-error metric) for deter-
ministic wavelet thresholding in multiple dimensions. Both our approximation
schemes are based on approximate dynamic programs that tabulate a much
smaller number of subproblems than the optimal DP solution, while guaran-
teeing a small deviation from the optimal objective value. More specifically, our
first approximation algorithm can give ¢-additive-error guarantees for maxi-
mum relative or absolute error, whereas our second algorithm is a (1 + ¢)-ap-
proximation scheme for maximum absolute error—the running time for both
our approximation schemes is roughly proportional to O(%N log® NBlog B).
We then demonstrate how our optimal and approximate thresholding algo-
rithms for maximum error can be extended to handle a broad, natural class
of distributive error metrics; this class includes several useful error measures
for approximate query answers, such as mean weighted relative error and
weighted L ,-norm error. Finally, we present the results of an empirical study
that evaluates our novel synopsis-construction algorithms over real-world and
synthetic data sets, demonstrating their effectiveness against known wavelet-
thresholding schemes [Garofalakis and Gibbons 2002, 2004]. To the best of our
knowledge, our work is the first to propose efficient optimal and near-optimal
algorithms for building wavelet synopses optimized for general error metrics
in one or multiple dimensions.

1.2 Organization

The remainder of this article is organized as follows; Section 2 discusses back-
ground material on the wavelet decomposition and wavelet data synopses. In
Section 3, we develop our deterministic maximum-error thresholding algo-
rithms for both one- and multidimensional wavelets. Section 4 discusses the
extension of our maximum-error algorithms and results to a general class of
distributive error metrics. Experimental results on real-world and synthetic
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data are presented in Section 5. Section 6 gives an overview of related work
and, finally, Section 7 outlines our conclusions along with some interesting di-
rections for future research in this area.

2. WAVELET BASICS

Wavelets are a useful mathematical tool for hierarchically decomposing func-
tions in ways that are both efficient and theoretically sound. Broadly speaking,
the wavelet decomposition of a function consists of a coarse overall approxi-
mation together with detail coefficients that influence the function at various
scales [Stollnitz et al. 1996]. The wavelet decomposition has excellent energy
compaction and de-correlation properties, which can be used to effectively gen-
erate compact representations that exploit the structure of data. Furthermore,
wavelet transforms can generally be computed in linear time.

2.1 One-Dimensional Haar Wavelets

Suppose we are given the one-dimensional data vector A containing the N = 8
data values A = [2, 2,0, 2, 3,5, 4, 4]. The Haar wavelet transform of A can be
computed as follows. We first average the values together pairwise to get a new
“lower-resolution” representation of the data with the following average values
[2,1,4,4]. In other words, the average of the first two values (i.e., 2 and 2) is
2, that of the next two values (i.e., 0 and 2) is 1, and so on. Obviously, some
information has been lost in this averaging process. To be able to restore the
original values of the data array, we need to store some detail coefficients, that
capture the missing information. In Haar wavelets, these detail coefficients are
simply the differences of the (second of the) averaged values from the computed
pairwise average. Thus, in our simple example, for the first pair of averaged
values, the detail coefficient is 0 since 2 — 2 = 0, for the second we again need
to store —1 since 1 — 2 = —1. Note that no information has been lost in this
process—it is fairly simple to reconstruct the eight values of the original data
array from the lower-resolution array containing the four averages and the
four detail coefficients. Recursively applying the above pairwise averaging and
differencing process on the lower-resolution array containing the averages, we
get the following full decomposition:

Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5, 4, 4] —
2 2,1, 4,4] [0, -1, -1, 0]
1 [3/2, 4] [1/2, 0]
0 [11/4] [—5/4]

The wavelet transform (also known as the wavelet decomposition) of A
is the single coefficient representing the overall average of the data val-
ues followed by the detail coefficients in the order of increasing resolution.
Thus, the one-dimensional Haar wavelet transform of A is given by Wy =
[11/4,-5/4,1/2,0,0,—1,—1,0]. Each entry in W, is called a wavelet coeffi-
cient. The main advantage of using W, instead of the original data vector A is
that for vectors containing similar values most of the detail coefficients tend to
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do dl d2 d3 d4 d5 d6 d7 I1=0 =1
() (b)

Fig.1. (a)Error-tree structure for our example data array A (N = 8). (b) Support regions and signs
for the sixteen nonstandard two-dimensional Haar basis functions. The coefficient magnitudes are
multiplied by +1 (—1) where a sign of + (respectively, —) appears, and 0 in blank areas.

have very small values. Thus, eliminating such small coefficients from the wa-
velet transform (i.e., treating them as zeros) introduces only small errors when
reconstructing the original data, resulting in a very effective form of lossy data
compression [Stollnitz et al. 1996].

Note that, intuitively, wavelet coefficients carry different weights with re-
spect to their importance in rebuilding the original data values. For example,
the overall average is obviously more important than any detail coefficient since
it affects the reconstruction of all entries in the data array. In order to equalize
the importance of all wavelet coefficients, we need to normalize the final entries
of W4 appropriately. A common normalization scheme [Stollnitz et al. 1996] is
to divide each wavelet coefficient by +/27, where [ denotes the level of resolution
at which the coefficient appears (with [ = 0 corresponding to the “coarsest”
resolution level). Thus, the normalized coefficient, ¢}, is ¢;/+/21evel),

2.1.1 Basic Haar Wavelet Properties and Notational Conventions. A help-
ful tool for exploring and understanding the key properties of the Haar wavelet
decomposition is the error tree structure [Matias et al. 1998]. The error tree
is a hierarchical structure built based on the wavelet transform process (even
though it is primarily used as a conceptual tool, an error tree can be easily
constructed in linear O(N) time). Figure 1(a) depicts the error tree for our sim-
ple example data vector A. Each internal node ¢; . = 0,...,7) is associated
with a wavelet coefficient value, and each leaf d; 0 = 0,...,7) is associated
with a value in the original data array; in both cases, the index i denotes the
positions in the (data or wavelet transform) array. For example, co corresponds
to the overall average of A. Note that the values associated with the error tree
nodes c; are the unnormalized coefficient values; the resolution levels [ for
the coefficients (corresponding to levels in the tree) are also depicted. We use
the terms “node”, “coefficient”, and “node/coefficient value” interchangeably in
what follows. For ease of reference, Table I summarizes some of the key notation
used in this article with a brief description of its semantics. Detailed definitions
of all these parameters are provided at the appropriate locations in the text.
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Table I. Notation

Symbol (¢ € {0..N —1}) Description
N Number of data-array cells
D Data-array dimensionality
B Space budget for synopsis
A, Wy Input data and wavelet transform arrays
d; Data value for ith data-array cell
d; Reconstructed data value for ith array cell
[ Haar coefficient at index/coordinate i
T; Error subtree rooted at node c;
coeff(T;), data(T;) Coefficient/data values in error subtree T;
path(u) All non-zero proper ancestors of node u

in the error tree
s Sanity bound for relative-error metric
relErr;, absErr; Relative and absolute error for data value d;

For simplicity, the notation assumes one-dimensional wavelets—extensions to
multidimensional wavelets are straightforward. Additional notation will be in-
troduced when necessary.

Given a node u in an error tree T, let path(z) denote the set of all proper
ancestors of u in T (i.e., the nodes on the path from u to the root of T', including
the root but not ©) with nonzero coefficients. A key property of the Haar wavelet
decomposition is that the reconstruction of any data value d; depends only on
the values of coefficients on path(d;); more specifically, we have

d; = Z sign; ; - ¢j, D

cj Epath(di)

where sign; ; = +1if d; is in the left child subtree of ¢c; or j = 0, and sign; ; =
—1 otherwise. Thus, reconstructing any data value involves summing at most
log N + 1 coefficients. For example, in Figure 1(a), dy = ¢y —¢1 +cg = % —
(—g) + (=1) = 3. The support region for a coefficient ¢; is defined as the set of
(contiguous) data values that ¢; is used to reconstruct; the support region for a

coefficient c; is uniquely identified by its coordinate i.

2.2 Multidimensional Haar Wavelets

The Haar wavelet decomposition can be extended to multidimensional data
arrays using two distinct methods, namely the standard and nonstandard Haar
decomposition [Stollnitz et al. 1996]. Each of these transforms results from a
natural generalization of the one-dimensional decomposition process described
above, and both have been used in a wide variety of applications, including
approximate query answering over high-dimensional data sets [Chakrabarti
et al. 2000, 2001; Vitter and Wang 1999].

As in the one-dimensional case, the Haar decomposition of a D-dimensional
data array A results in a D-dimensional wavelet-coefficient array W, with
the same dimension ranges and number of entries. (The full details as well as
efficient decomposition algorithms can be found in Chakrabarti et al. [2000,
2001] and Vitter and Wang [1999].) Consider a D-dimensional wavelet co-
efficient W in the (standard or nonstandard) wavelet-coefficient array W4.
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W contributes to the reconstruction of a D-dimensional rectangular region of
cells in the original data array A (i.e., W’s support region). Further, the sign
of W’s contribution (+W or —W) can vary along the quadrants of W’s support
region in A. As an example, Figure 1(b) depicts the support regions and signs of
the sixteen nonstandard, two-dimensional Haar coefficients in the correspond-
ing locations of a 4 x 4 wavelet-coefficient array W4. The blank areas for each
coefficient correspond to regions of A whose reconstruction is independent of
the coefficient, that is, the coefficient’s contribution is 0. Thus, W4[0, 0] is the
overall average that contributes positively (i.e.,“+W4[0, 0]”) to the reconstruc-
tion of all values in A, whereas W4[3, 3] is a detail coefficient that contributes
(with the signs shown in Figure 1(b)) only to values in A’s upper right quadrant.
Each data cell in A can be accurately reconstructed by adding up the contribu-
tions (with the appropriate signs) of those coefficients whose support regions
include the cell. Figure 1(b) also depicts the two levels of resolution (I = 0, 1)
for our example two-dimensional Haar coefficients; as in the one-dimensional
case, these levels define the appropriate constants for normalizing coefficient
values [Chakrabarti et al. 2000, 2001; Stollnitz et al. 1996].

Error-tree structures for multidimensional Haar wavelets can be constructed
(once again in linear O(NN) time) in a manner similar to those for the one-
dimensional case, but their semantics and structure are somewhat more com-
plex. A major difference is that, in a D-dimensional error tree, each node (except
for the root, i.e., the overall average) actually corresponds to a set of 2° —1 wave-
let coefficients that have the same support region but different quadrant signs
and magnitudes for their contribution. Furthermore, each (nonroot) node ¢ in
a D-dimensional error tree has 2° children corresponding to the quadrants of
the (common) support region of all coefficients in ¢.! (Note that the sign of each
coefficient’s contribution to the leaf (data) values residing at each of its children
in the tree is determined by the coefficient’s quadrant sign information.) As an
example, Figure 2 depicts the error-tree structure for the two-dimensional 4 x 4
Haar coefficient array in Figure 1(b). Thus, the (single) child ¢ of the root node
contains the coefficients W4[0, 1], W4[1, 0], and W4[1, 1], and has four children
corresponding to the four 2 x 2 quadrants of the array; the child correspond-
ing to the lower-left quadrant contains the coefficients W4[0, 2], W4[2, 0], and
Wal2, 2], and all coefficients in ¢ contribute with a “+” sign to all values in this
quadrant.

Based on the above generalization of the error-tree structure to multiple
dimensions, we can naturally extend the formula for data-value reconstruction
(Eq. (1)) to multi-dimensional Haar wavelets. Once again, the reconstruction
of d; depends only on the coefficient sets for all error-tree nodes in path(d;),
where the sign of the contribution for each coefficient W in node ¢ € path(d;) is
determined by the quadrant sign information for W.

1The number of children (coefficients) for an internal error-tree node can actually be less than
2D (respectively, 2P — 1) when the sizes of the data dimensions are not all equal. In these sit-
uations, the exponent for 2 is determined by the number of dimensions that are “active” at the
current level of the decomposition (i.e., those dimensions that are still being recursively split by
averaging/differencing).
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Fig. 2. Error-tree structure for the sixteen nonstandard two-dimensional Haar coefficients for a
4 x 4 data array (data values omitted for clarity).

2.3 Wavelet-Based Data Reduction: Coefficient Thresholding

Given a limited amount of storage for building a wavelet synopsis of the input
data array A, a thresholding procedure retains a certain number B <« N of
the coefficients in Wy as a highly compressed approximate representation of
the original data (the remaining coefficients are implicitly set to 0). The goal
of coefficient thresholding is to determine the “best” subset of B coefficients to
retain, so that some overall error measure in the approximation is minimized.
The method of choice for the vast majority of earlier studies on wavelet-based
data reduction and approximation [Chakrabarti et al. 2000, 2001; Matias et al.
1998, 2000; Vitter and Wang 1999] is conventional coefficient thresholding that
greedily retains the B largest Haar-wavelet coefficients in absolute normalized
value. It is a well-known fact that this thresholding method is in fact provably
optimal with respect to minimizing the overall root-mean-squared error (i.e.,
Ly-norm average error) in the data compression [Stollnitz et al. 1996]. More
formally, letting d; denote the (approximate) reconstructed data value for cell
i, retaining the B largest normalized coefficients implies that the resulting
synopsis minimizes the quantity ./ % > ";(d; — d;)? (for the given amount of space
B).

Unfortunately, wavelet synopses optimized for overall Ly error may not al-
ways be the best choice for approximate query processing systems. As observed
in the recent study of Garofalakis and Gibbons [2002, 2004], such conventional
wavelet synopses suffer from several important problems, including the intro-
duction of severe bias in the data reconstruction and wide variance in the qual-
ity of the data approximation, as well as the lack of nontrivial guarantees for
individual approximate answers. To address these shortcomings, their work in-
troduces novel, probabilistic thresholding schemes based on randomized round-
ing [Motwani and Raghavan 1995], that probabilistically round coefficients
either up to a larger rounding value (to be retained in the synopsis) or down
to zero. Intuitively, their probabilistic schemes assign each non-zero coefficient
fractional storage y € (0, 1] equal to its retention probability, and then flip in-
dependent, appropriatelybiased coins to construct the synopsis. Their winning
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strategies (termed MinRelVar and MinRelBias in Garofalakis and Gibbons [2002,
2004]) are based on trying to probabilistically control the maximum relative
error (with an appropriate sanity bound s)? in the approximation of individ-
ual data values based on the synopsis; that is, they attempt to minimize the

quantity
max \d; —d;|
i max{|d;|, s} |’

(where d; denotes the data value reconstructed based on the synopsis) with
sufficiently high probability. More specifically, their MinRelVar and MinRelBias al-
gorithms are based on Dynamic-Programming (DP) formulations that explicitly
minimize appropriate probabilistic metrics, such as the maximum normalized
standard error (MinRelVar) or the maximum normalized bias (MinRelBias), in the
randomized synopsis construction; these formulations are then combined with
a quantization of the potential fractional-storage allotments to give combina-
torial thresholding algorithms [Garofalakis and Gibbons 2002, 2004]. (Similar
probabilistic schemes are also given for probabilistically controlling maximum
absolute error.)

2.3.1 Building and Using Wavelet Synopses in a DBMS. The construction
of wavelet synopses typically takes place during the statistics collection pro-
cess, whose goal is to create concise statistical approximations for the value
distributions of either individual attributes or combinations of attributes in
the relations of a DBMS [Acharya et al. 1999; Garofalakis and Gibbons 2001,
Toannidis 2003a]. (Statistics collection is usually an off-line process, carried out
during night-time or other system-idling periods.) Once created, such statisti-
cal summaries are typically stored as part of the DBMS-catalog information.
More specifically, a wavelet synopsis comprising B wavelet coefficients is stored
as a collection of B pairs {< ij,c;; >: j =1,..., B}, where i; and ¢;, denote the
index and value (respectively) of the jth retained synopsis coefficient.

Wavelet-synopsis information in the DBMS catalog can be exploited for sev-
eral different purposes. The primary (and, more conventional) use of such
summaries is as a tool for enabling effective (compile-time) estimates of the
result sizes of relational operators for the purpose of cost-based query optimiza-
tion [Matias et al. 1998]. For instance, estimating the selectivity of a range
predicate like [ < X < h is equivalent to estimating the range summation
fxU : h) = Z?:l fxlil, where fx is the frequency-distribution array for at-
tribute X . It is not difficult to see that, given a B-coefficient synopsis of the fx
array, computing fx( : h) only involves coefficients in path( fx[I])Upath( fx[h])
and, thus, can be estimated by summing only min{B, 2log N + 1} synopsis
coefficients [Chakrabarti et al. 2000, 2001; Garofalakis and Gibbons 2004;
Vitter and Wang 1999. A B-coefficient wavelet synopsis can also be easily ex-
panded (in O(B) time) into an O(B)-bucket histogram (i.e., piecewise-constant)
approximation of the underlying data distribution with several possible

2The role of the sanity bound is to ensure that relative-error numbers are not unduly dominated
by small data values [Haas and Swami 1992; Vitter and Wang 1999].
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uses (e.g., as a data visualization/approximation tool [Ioannidis 2003b]).
Finally, wavelet-coefficient synopses can enable very fast and accurate approx-
imate query answers [Garofalakis and Gibbons 2001] during interactive data-
exploration sessions (e.g., initial drill-down query sequences in data-mining
tasks [Hellerstein et al. 1997]); in fact, as demonstrated in Chakrabarti et al.
[2000, 2001], efficient approximate query processing algorithms for complex
Select-Project-Join relational queries can be designed to operate entirely in the
wavelet-coefficient domain.

3. DETERMINISTIC WAVELET THRESHOLDING FOR MAXIMUM ERROR

Rather than trying to probabilistically control maximum relative error through
the optimization of probabilistic measures (like normalized standard error or
bias [Garofalakis and Gibbons 2002, 2004]), a more direct solution would be to
design deterministic thresholding schemes that explicitly minimize maximum-
error metrics. Obviously, such schemes can not only guarantee better synopses,
but they can also avoid the potential pitfalls of randomized techniques, as
well as the space-quantization requirement of Garofalakis and Gibbons [2002,
2004] whose impact on the quality of the final solution is not entirely clear. Un-
fortunately, as already pointed out by Garofalakis and Gibbons [2004], their DP
formulations and algorithms depend crucially on the ability to assign fractional
storage (i.e., retention probability) values in (0, 1] to individual coefficients,
which renders their schemes inapplicable for deterministic wavelet threshold-
ing (where the storage assigned to each coefficient is either O or 1). In fact, one
of the main open problems in Garofalakis and Gibbons [2002, 2004] is whether
it is possible to design efficient algorithms for deterministic Haar-coefficient
thresholding for minimizing maximum-error metrics that are relevant for
approximate query answers, such as maximum relative or absolute error in
the data approximation. We now attack this problem for both one- and multidi-
mensional Haar wavelets; later in the article (Section 4), we demonstrate that,
unlike the probabilistic schemes of Garofalakis and Gibbons, our algorithmic
techniques are in fact applicable to a general class of approximation-error
metrics (which includes, for example, mean weighted relative error).

3.1 One-Dimensional Wavelet Thresholding

In this section, we propose a novel, simple, low polynomial-time scheme based
on Dynamic-Programming (DP) for building deterministic Haar-wavelet syn-
opses that minimize the maximum relative or absolute error in the data-value

approximation. More formally, let relErr; = % be an error metric that
combines relative error with an appropriate sanity bound s (as in Garofalakis
and Gibbons [2002, 2004]) and, similarly, let absErr; = |d; — d;| denote the ab-
solute approximation error for the ith data value. Our deterministic wavelet

thresholding problem can be formally defined as follows:

Deterministic Maximum Relative | Absolute Error Minimization. Given a syn-
opsis space budget B, determine a subset of at most B Haar-wavelet coefficients
that minimize the maximum relative (or, absolute) error in the data-value ap-
proximation; that is, for err € {relErr, absErr}, minimize max;c, . y—1{err}.

ACM Transactions on Database Systems, Vol. 30, No. 4, December 2005.



Wavelet Synopses for General Error Metrics . 899

The important thing to note here is that, unlike the probabilistic normal-
ized standard error or normalized bias metrics employed in Garofalakis and
Gibbons [2002, 2004], our relErr and absErr metrics do not have a simple mono-
tonic/additive structure over the Haar-coefficient error tree. The key problem,
of course, is that, even though data values are simple linear combinations of
coefficients, each coefficient contributes with a different sign on different parts
of the underlying data domain. Unfortunately, the above facts also imply that
the DP formulations in Garofalakis and Gibbons [2002, 2004] are no longer
applicable, since the assumed “principle of optimality” for error subtrees is no
longer valid; in other words, due to the absence of additive/monotonic struc-
ture for the objective, the optimal solution for the subtree rooted at node c; is
not necessarily a combination of the optimal (partial) solutions for c;’s child
subtrees.

We now formulate a novel DP recurrence and algorithm for our deterministic
maximume-error optimization problem. In a nutshell, the basic idea in our new
DP formulation is to condition the optimal error value for an error subtree not
only on the root node c; of the subtree and the amount B of synopsis storage
allotted, but also on the error that “enters” that subtree through the coefficient
selections made on the path from the root to node c; (excluding c; itself), that
is, coefficient selections on path(c;). The key observation here is that, since the
depth of the error tree is O(log V), we can afford to tabulate all such possible se-
lections while keeping the running-time of our algorithm in the low-polynomial
range.

More formally, let B denote the total space budget for the synopsis, and let T);
be the subtree of the error-tree rooted at node ¢ j, with coef£(7’;) (data(7’;)) denot-
ing the set of coefficient (respectively, data) values in T';. Finally, let M[j, b, S|
denote the optimal (i.e., minimum) value of the maximum error (relative or
absolute) among all data values in T; assuming a synopsis space budget of
b coefficients for the T; subtree, and that a subset S C path(c;) (of size at
most min{B — b,log N + 1}) of proper ancestors of ¢; have been selected for the
synopsis;? that is, assuming a relative-error metric (i.e., err = relErr),

Mlj,b,S]= min max relEr; ¢,
Sjgcoeff(Tj),\Sﬂsb diEda‘ta(T_,’)

where

ldi = > e, epatndncs; us) SNk * Cl
max{|d;], s}

relErr; =

(The case for absolute error (i.e., err = absErr) is defined similarly.) We now for-
mulate a DP recurrence for computing the M|[j, b, S]entries; clearly, M [0, B, ¢]
gives us the desired optimal error value at the root node of the error tree
(the corresponding error-optimal wavelet synopsis can then be built by simply
retracing the choices of our DP computation using standard techniques).

3Note that all distinct ancestor-coefficient subsets S for a given node c; can be indexed in our DP
array by simply using a bit-string of length log N + 1, or, equivalently, an integer index in the range
0,...,208N+1_ 1 _9N —1.
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The base case for our recurrence occurs for data (i.e., leaf) nodes in the Haar
error tree; that is, for ¢; = dj_y with j > N (see Figure 1(a)). In this case,
MI[j,b,S] is not defined for b > 0, whereas for b = 0 and for each subset
S C path(dj_n) (of size < min{B, log N + 1}) we define

di_N— sign;_n 1 - €
M15,0,81 = N Z“kef Pyows ],

where r = max{|d ;_n|, s} for err = relErr, and r = 1 for err = absErr.

In the case of an internal error-tree node c; with j < N, our DP algorithm has
two distinct choices when computing M[j, b, S]1, namely either drop coefficient
c; or keep it in the final synopsis. If we choose to drop c¢; from the synopsis, then
it is easy to see that the maximum error from c;’s two child subtrees (i.e., cg;
and cy;+1) will be propagated upward; thus, the minimum possible maximum
error M[j, b, S]for T; in this case is simply

Maropls, b, S1= min max{M[2/,0', S], M[2j +1,b -0, S]}. (2)

Note that, in the above recurrence, S contains proper ancestors of ¢; which are
clearly proper ancestors of cg; and cgj41 as well; thus, the right-hand side of
the recurrence is well defined as the DP computation proceeds bottom-up to
reach c;. If, on the other hand, we choose to keep c; in the synopsis (assuming,
of course, b > 1), the least possible error M[j, b, S]for T; is computed as

Myeepls, b, S1= min max{MI[2,, 8 U{c;}],
M[2j+1,b—b —1,S Uf{c;}1}. (3)

(Again, note that the right-hand side of the recurrence is well defined.)
The final value for M[j, b, S] is defined as the minimum of the two possi-
ble choices for coefficient c¢; (Egs. (2) and (3) above); that is, M[j,b,S] =
min{MgroplJj, b, S1, Mieeplj, b, S1}. A pseudo-code description of our optimal
DP algorithm for deterministic maximum-error thresholding in one dimension
(termed MinMaxErr) is depicted in Figure 3.

3.1.1 Time and Space Complexity. Given a node/coefficient c; at level [ of
the error tree, our MinMaxErr algorithm considers at most B + 1 space allotments
to the T; subtree (where the “+1” accounts for the possibility of zero space),
and at most 2/*! subsets of ancestors of ¢;. Thus, the number of entries in our
DP array M[] that need to be computed for c¢; is O(B2!t1). Furthermore, the
time needed to compute each such entry is O(log B). To see this, note that for
any fixed node 2 and ancestor subset S, M[k, b, S] is a decreasing function
of the space allotment &'. Thus, the optimal distribution point 4" in Eqgs. (2)—
(3) (Steps 11-28 in MinMaxErr) can be computed using an O(log B)-time binary
search procedure, looking for the space allotment where the error values for
the two child subtrees are equal or the adjacent pair of cross-over allotments.
(To simplify the exposition, this binary-search procedure has been omitted from
the pseudo-code description in Figure 3.) Since the total number of error-tree
nodes at level  is 2!, this straightforward analysis directly gives the following
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procedure MinMaxErr( Wi , B , root , S, err )

Input: Array Wa = [co,...,cn—1] of N Haar wavelet coefficients, space budget B
(number of retained coefficients), error-subtree root-node index root, subset
of retained ancestors of root node S C path(root), target maximum error
metric err.

Output: Value of M[root, B, S| according to our optimal dynamic program
(M[root, B, S].value), decision made for the root node (M[root, B, S].retained),
and space allotted to left child subtree (M([root, B, S].leftAllot). (The last
two are used for re-tracing the optimal solution to build the synopsis.)

begin

1. if (M([root, B, S].computed = true) then

2. return M[root, B, S].value // optimal value already in M]]
3. if ( N <root < 2N ) then // leaf/data node

4. if (B=0) then

5. Mroot, B, S].value := |droot-N — >, cs Si8Nroot— N,k * Ckl

6. if (err = relErr ) then

7. M{root, B, S].value := —:ﬁﬁr;riimlg(}

8. endif

9. else

10.  MJroot, B, S].value := oo

11. for b := 0 to B step 1 do // first choice: drop root
12. left := MinMaxErr( Wa , b, 2xroot , S, err )

13. right := MinMaxErr( Wy , B—b, 2*root+ 1, S, err)

14. if ( max{ left, right } < M[root, B, S].value ) then

15. M]root, B, S].value := max{ left, right }

16. M]root, B, S].retained := false

17. M{root, B, S].leftAllot := b

18. endif

19. endfor

20. forb:=0to B—1step1ldo // second choice: keep root
21. left := MinMaxErr( W4 , b, 2 xroot , S U {root}, err)

22. right := MinMaxErr( Wa , B—b—1,2xroot +1,SU{root}, err)
23. if ( max{ left, right } < M[root, B, S].value ) then

24. M]root, B, S].value := max{ left, right }

25. M{root, B, S].retained := true

26. M{root, B, S].leftAllot := b

27. endif

28. endfor

29. endif

30. Mroot, B, S].computed := true
31. return ( M[root, B, S].value )
end

Fig. 3. The MinMaxErr algorithm: Optimal deterministic thresholding for maximum error in one
dimension.

upper bound on the overall time complexity of our DP algorithm
log N log N
o (Z 2121+1Blog3> =0 (B logB ) 22”1) = O(N2BlogB).
1=0 1=0

Following our original conference paper [Garofalakis and Kumar 2004], Guha
[2004] observed that the above (loose) worst-case bound on the running-time
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complexity of our DP scheme can be tightened by a more thorough accounting
for the number of entries in our DP array. In a nutshell, his key observation
is that, given an internal node c; at level [ of the error tree and a synopsis
budget B, the number of coefficients that can be retained inside the 7'; subtree
is actually upper bounded by min{B, 26N~ _ 1} (since T; comprises at most
2leN=l _ 1 coefficient nodes). Thus, the number of entries for ¢; in our M[]
array is at most O(2!*1 min{B + 1, 21°%¢N-1}) = O(min{B2/*1, 2N}), with each
entry requiring O(min{log B, log N — [}) computation time. Summing across
all error tree nodes (as above) using these tighter bounds gives an overall time
complexity of only O(N?2) for our DP algorithm; the full details can be found in
Guha [2004].

With respect to the space requirements of our scheme, employing Guha’s
observation once again, it is easy to see that the overall size of our DP array
Ml]is

log N log N
0] (Z 2! min{32’+l,2N}) <0 (N > 21) = O(N?).
=0 =0

It is important to note, however, that our MinMaxErr algorithm does not actually
require the entire DP array to be memory-resident at all times. For instance,
the results for all descendants of a node c; are no longer needed and can be
swapped out of memory once the results for node c; have been computed. With
this small optimization, it is easy to see that our bottom-up DP computation
never requires more than one active “line” (i.e., entries corresponding to a sin-
gle tree node) of the M[] array per error-tree level, where the size of such a
line for a node at level / is O(min{B2!*1, 2N}) (as discussed earlier). Thus, the
size of the memory-resident working set for our DP algorithm drops to only
O(Z}():gON min{B2/*1, 2N}) = O(N min{B, log N}). We summarize our discus-
sion for the one-dimensional case in the following theorem.

THEOREM 3.1. Our MinMaxErr algorithm is an optimal deterministic thresh-
olding scheme for building one-dimensional wavelet synopses that minimize
the maximum relative error (or, maximum absolute error) in the data approx-
imation. MinMaxErr runs in time O(N?) and has a total-space (working-space)
requirement of O(N?) (respectively, O(N min{B, log N})).

3.2 Multidimensional Wavelet Thresholding

Our deterministic wavelet thresholding problem becomes significantly more
complex for multi-dimensional wavelets, and directly extending our optimal
one-dimensional DP formulation to the case of multiple dimensions fails to give
a practical solution. Remember that, in the D-dimensional error-tree structure
(Section 2.2), even though the tree depth remains O(log N), each node in the
tree now contains up to 2° — 1 wavelet coefficients with the same support re-
gion and different quadrant signs (Figure 2).* This implies that the total num-
ber of possible ancestor subsets S for a multidimensional coefficient at a level

4Note that, since N here denotes the total number of cells in the multi-dimensional data array,
the error tree depth is actually O(log N1/P) = % O(log N). Similarly, the total number of error-tree
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I = ®(log N) is O(21sN-2°-D) — O(N2°-1), rendering the exhaustive-enumer-
ation DP scheme of Section 3.1 completely impractical, even for the relatively
small data dimensionalities (i.e., D = 2-5) where wavelet-based data reduction
is typically employed. (It is well known that, due to the “dimensionality curse”,
wavelets and other space-partitioning schemes become ineffective above 5—6
dimensions [Chakrabarti et al. 2001; Deshpande et al. 2001; Garofalakis and
Gibbons 2004; Gunopulos et al. 2000].)

In this section, we introduce two efficient, polynomial-time approxima-
tion schemes for deterministic multi-dimensional wavelet thresholding for
maximume-error metrics. Both our approximation schemes are based on approx-
imate dynamic programs that explore a much smaller number of options than
the optimal DP formulation, while offering tunable e-approximation guarantees
for the final target maximum-error metric. More specifically, our first scheme
can give e¢-additive-error guarantees for maximum relative or absolute error,
whereas our second scheme is a (1 + ¢)-approximation algorithm for maximum
absolute error.

3.2.1 An e-Additive-Error Approximation Scheme for Maximum Absolute /
Relative Error Minimization. Intuitively, our optimal one-dimensional DP
scheme is based on exhaustively enumerating, for each error subtree, all the
possible error values “entering” the subtree through the choices made on the
path to the subtree’s root node. The key technical idea in our first approxi-
mation scheme is to avoid this exhaustive enumeration and, instead, try to
approximately “cover” the range of all possible error contributions for paths up
to the root node of an error subtree using a much smaller number of (approx-
imate) error values. Our approximation scheme is then going to be based on
a much “sparser” DP formulation, that only tabulates this smaller set of error
values.

Specifically, let R denote the maximum absolute coefficient value in the
error tree, and let ¢ < 1 denote the desired approximation factor. Clearly,
the additive contribution to the absolute data-value reconstruction error from
any possible path in the error tree is guaranteed to lie in the range R =
[-R2P1log N, +R2Plog N]. Our approximation scheme covers the entire R
range using error-value breakpoints of the form +(1+¢)*, for a range of (contigu-
ous) integer values for the exponent k. Note that the number of such breakpoints
needed is essentially

O(log,,.(2R2”1og N)) ~ O (D +1logR + 1oglogN> ’

€

for small values of € < 1; in other words, 2 € X ={0,1, ..., O(M)}.

Now, let round.(v) be a function that rounds any value v € R down to the closest
value in the set £ = {0} U {(1 + €)%,k € K}; that is, letting [ = logy . Iv], we
have round.(v) = (1 + €)% ifv > 1, —(1 + €)' if v < —1, and 0 otherwise. The

nodes is not N, but rather O(§DNT1> = EDlTl O(N). Since, for most wavelet applications, the dimen-
sionality D is typically a small constant (e.g., between 2-5), and to simplify the exposition, we tend
to ignore these constant multiplicative factors in the development that follows.
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DP array M?[] for our approximation scheme tabulates the values M?[J, b, e]
capturing the approximate maximum error (relative or absolute) in the T'; error
subtree (rooted at node j), assuming a space budget of b coefficients allotted
to T'; and an approximate/rounded additive error contribution of e € £ due to
proper ancestors of node j being discarded from the synopsis.

The base case for the computation of M*[], that is, the case of a leaf/data
node j > N in the error tree is fairly straightforward: once again, M?[j, b, e]
is only defined for b = 0, and M*[j, b,e] = ‘i—‘, where r is either max{|d;_n|, s}
or 1 depending on whether we are targeting a relative or absolute error
metric.

In the case of an internal error-tree node j, remember that each node now
corresponds to a set S(j) of at most 2° — 1 (nonzero) coefficients, and has at
most 22 child subtrees (with indices, say, ji, ..., jm). Assume that we choose to
maintain a subset s € S(j) of node j’s coefficients in the synopsis and, for each
coefficient ¢ € S(j), let sign(c, j;) denote the sign of ¢’s contribution to the j;
child subtree (Section 2.2); then, we can estimate the least possible maximum
error entries M°[j, b, el, e € &, for T; (assuming, of course, that b > |s|) as

05b1+fr}rlbggb7|s\ Plﬂ&;};{M |:J,,bl,rounde(e+ Z sign(ce, j;) c):|}.

ceS(j)-s

In other words, for a given selected coefficient subset s, we consider all possible
allotments of the remaining b — |s| space to children of node j, with the rounded
cumulative error that enters those children taking into account the contribution
from the dropped coefficients in S(j)—s. To avoid the O(B2”) factor in run-time
complexity implied by the search of all possible space allotments b4, ..., b, to
child subtrees in the above recurrence, we can simply order the search among
a node’s children (in a manner similar to Garofalakis and Gibbons [2004]).
The basic idea is to generalize our approximate DP-array entries to M“[j, b, el,
where j = (j1, ..., jr)is alist of error-tree nodes and e = (eq, ... ,e) is a list of
“incoming” additive errors corresponding to the nodes in j. The DP recurrence
for computing M°[(j), b, (e)] then becomes simply

M®[(j),b,()]= msi(n,){M“[(jl,--- » Jm), b —1sl, (e1, ... ,en)]},
sCS(j

where e, = round.(e + sign(c, ji)-c),fork =1,...,m, and

ceS(j)—s
Ma[(jl: D) jm)a b/; (ely ey em)] = Ogl}/i’gb’ maX{Ma[(jl)a b//, (el)]a
Ma[(j2’ ey .]m)> b — b”’ (62’ ey em)]}

Intuitively, the first equation states that the approximate error value
M*[(j), b, (e)] at node j is computed as the minimum (over all possible choices
for the subset s € S(j) of retained coefficients at j) of the corresponding ap-
proximate error values for the list of node j’s children. The second equation
then computes the approximate error values for this list (j1, ... , j») by explor-
ing all possible allotments of a given space budget b’ between the first child (j)
and the list suffix of all remaining children (jo, ... , j,) of node j.
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To see how this generalization affects the space complexity of our DP for-
mulation note that, assuming a given node j in the error tree: (1) there are at
most 2P possible different values for the list suffix j of child error-tree nodes
of j; and, (2) for each such list suffix j and each possible incoming error value
e € £ at node j, there are at most 22°-1 possible different values for the corre-
sponding list of child error values e (i.e., one for each possible subset s € S(j)
of retained coefficients at j). Thus, given that we obviously have O(B) choices
for the b parameter, it is easy to see that the overall space requirements of
our generalized DP array are O(|€|22”+P N B). (Again, remember that D is a
small constant, typically between 2-5.) In terms of time complexity, note that
our generalization also allows for an O(log B)-time search for the breakup of a
node’s allotment to its children (using binary search in the above recurrence,
as described earlier in this article); thus, the overall time complexity of our dy-
namic program is O(|€|22”+P N B log B). The following theorem summarizes the
results of our analysis for our approximate deterministic thresholding scheme:

THEOREM 3.2. The previously described approximation scheme for determin-
istic multidimensional wavelet thresholding discovers an approximate solution
that is guaranteed to be within a worst-case additive error of € R (respectively,
e%) of the optimal (i.e., minimum) maximum absolute (respectively, relative)

error in time O(2H8R+tloglogN 922420 N B16o? N log B) and with a total space
requirement of O( wﬂl) +2D N Blog® N).

Proor. Our goal is to demonstrate that our approximation scheme produces
a solution that is within a small additive error of the optimal solution. We
only consider the case of absolute error, as the argument for relative error
is similar. Let M[j,b,e]l = MI[(j1,..., Jjm), b, (e1,...,en)] denote the optimal
absolute error value when we are allowed a coefficient synopsis of size b in the
list of error subtrees (T,, ..., T, ), assuming an incoming additive error of e,
at subtree T, (due to its discarded ancestor coefficients), where 2 =1,...,m.
Thus, our goal is to upper-bound the absolute difference |M*[(root), B, (0)] —
M(root), B, (0)]|.

Let the height of an error-tree node denote its distance from the error-tree
leaf (i.e., data) nodes (i.e., the leaves are at height 0). We use induction to
demonstrate the following claim.

Cramm 3.3. Ifthe tree nodes in list j = (jy,..., jm) are at height i, then, for
any space allotment b and error-value list e,

|M“[j,b,el — M[j,b,e]| <(i+1)-e2°RlogN.

Let N (j) denote the number of nodes in the subtrees rooted at all nodes in j;
thatis, N(j) = |T;, U---UT;, |. Our proof of Claim 3.2.1 is based on an inductive
argument on N (j). For the base case, note that if j comprises only a leaf node,
then our claim is clearly true by the construction of our approximate breakpoint
set £. Now, assume that the claim is true for all lists j’ with N(G') < n, and let j
be a node list such that N (j) = n; also, assume that the nodes in j are at height
i in the error tree.
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Consider the simpler case where j comprises a single node j, thatis,j = (j),
and let (1, ..., J») denote the list of children of node j. Recall that

M“1(j),b,(e)] = rggg){M“[(j1, s Jm)y b — sl (e1, ..., e}, 4)
sSS(
where e, = round.(e + ZceS(j)—s sign(c, jr) - c), for k = 1,...,m. Now, if we let

e, = e+ ZceS(j)fs sign(c, ji) - ¢, for k. = 1,...,m, it is easy to see that the
corresponding optimal error value at node j is defined similarly as

MI(j),b, ()] = l'cr}gi(n){M[(jl, e Jm)y b —sl, (€, ... e} (5)
sSS(j
For the sake of brevity, let j. = (ji,...,Jm), € = (e1,...,en), and € =
(e}, ...,ey,). By our inductive hypothesis, we have that, for any choice of the
s subset,
|M°[j,,b—|s|,el — M[j.,b—|s|,ell <i-e2P°RlogN. (6)

Now, assume that we want to compute the optimal error value for j, with
the unrounded incoming additive errors, that is, M[j,, b — |s|, €']. Clearly, an
upper bound for this error can be obtained by retaining those coefficients
corresponding to the optimal value with the rounded incoming errors (i.e.,
MTj., b — Is|, e]), and then adding the rounding error |e; — e,| to all the leaf
nodes in the subtree rooted at node j, (¢ = 1,...,m). In other words, we
have

|M[jc’b - |s|,e] - M[jmb - |S|’e/]| < kn}aX |ek _e;e|-
=1...m

But, since e, = round.(e,), we obviously have |e, —e}| < €le,| < e2PRlogN.
Thus, the above inequality gives

\MTj,,b— |s|, el — MI[j,,b— |s|, €] < ¢2PRlog N. 7)

Now, a simple application of the triangle inequality over Inequalities (6) and
(7) gives

|M%[j,,b—|s|,el — M[j,,b—|s|,e] <G +1)-¢2P°RlogN,

which, combined with Inequalities (4) and (5), guarantees that |M“[(j), b, (e)]—
MI(j), b, ()] <(i+1)-€2PRlog N. This completes the proof of Claim 3.2.1 for
the case of a single-node list j = (j).

For the case of a multinode list j = (j1, ..., j;), wherel > 1, recall that

M*[j,b,e] = min max(M*[(j1), ¥, (e1)],
Ma[(jza 7jl)1b_b/’ (eZ’ ’el)]}y

with the exact same relation holding for the optimal error values (using M[]
instead of M?[] above). Thus, once again, applying the inductive hypothesis
and the properties of our error-rounding procedure to the right-hand side of the
above expression, we have that |M®[j,b,e] — M[j,b,el| <G +1)-e2PR1logN.
Thus, our claim holds for this case as well.
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Now, a simple application of Claim 3.2.1 with j = (root), gives

|M®[(root), B, (0)] — M[(root), B, (0)]] < (1+1logN)e2?RlogN

= 0(e2PR10g® N).

Thus, simply setting ¢/ = m, gives a worst-case additive deviation of

€R from the optimal maximum absolute error value. The running-time and
space complexity of our approximation scheme for the above value of ¢’ follow
immediately from our earlier discussion. O

We should stress here that the bounds in Theorem 3.2 represent a truly
pathological worst-case scenario for our scheme, where all coefficients on a root-
to-leaf path are of maximum absolute value R. In real-life applications, most of
the energy of a data signal (i.e., array) is typically concentrated in a few large
wavelet coefficients [Chakrabarti et al. 2001; Gilbert et al. 2001; Matias et al.
1998; Vitter and Wang 1999], which implies that most coefficient values in the
error tree will be (much) smaller than R. Thus, for real-life practical scenarios,
we would typically expect our approximation scheme to be much closer to the
optimal solution than the worst-case deviation bounds asserted in Theorem 3.2.

3.2.2 A (1 + ¢) Approximation Scheme for Maximum Absolute Error Mini-
mization. We now consider the special case of minimizing maximum absolute
error for deterministic multidimensional wavelet thresholding, and propose a
novel, polynomial-time (1 + ¢)-approximation scheme. Our discussion here as-
sumes that all wavelet coefficients are integers—we can always satisfy this
assumption by appropriately scaling the coefficient values. For example, for in-
teger data values d; (e.g., a multidimensional frequency count array), scaling
by a factor of O(2P1¢N) = O(NP) is always guaranteed to give integer Haar
coefficients. Let Rz denote the maximum (scaled) coefficient value in the er-
ror tree; as previously, it is easy to see that the additive (integer) contribution
to the absolute reconstruction error from any possible path in the Haar error
tree is guaranteed to lie in an integer range Rz = [—Epaxlog N, +Epax log N,
where, of course, Epnax < Rz2P. This observation directly leads to an optimal
pseudopolynomial time algorithm for our maximum absolute-error minimiza-
tion problem. (In fact, this pseudopolynomial time scheme directly extends to
maximum relative-error minimization as well.) The key idea of our (1 + ¢)-
approximation scheme for absolute error is then to intelligently scale-down the
coefficients in the error tree so that the possible range of integer additive-error
values entering a subtree is polynomially bounded.

We start by describing our optimal pseudo-polynomial time scheme. Briefly,
our scheme is again based on dynamic-programming over the error tree of in-
teger coefficient values, and follows along similar lines as our additive-error
approximation algorithm presented in Section 3.2.1, but without doing any
“rounding” of incoming error values. The algorithm starts by precomputing an
error vector E(j,s) for each internal node j in the error tree and each sub-
set s of the coefficient values in S(j). The E(j,s) vector basically stores the
total additive error propagated to each of the children of node j if we decide
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to drop the coefficients in s C S(j) from the synopsis; thus, the E(J, s) vector
is indexed by the children of node j, and, for the ith child node j; of j, we
define the corresponding ith error-vector entry as E(j, s)lil = }_ ., sign(c, j;)-c,
where sign(c, j;) is the sign of ¢’s contribution to the j; child subtree. It is
easy to see that computing these error vectors E(J,s) for every j and every
s € S(j) takes O(N22°-120) = O(N22"+D) time. (Also, note that the Emax
boundary in the integer error range Rz can now be defined more precisely as
Enax = maxj,s,i{E(jy s)il} < RZ2D-)

Our pseudopolynomial DP scheme then constructs a table M[j, b, e] for every
node j, space budget b < B and error value e, e € Ry, where M|[J, b, e] denotes
the minimum possible maximum absolute error in the T'; subtree, assuming a
space budget of b coefficients in T'; and an error contribution of e due to ancestors
of node j. As earlier, we define M[j, 0,e] = |e| for a leaf/data node j, whereas
for an internal node j (with children ji,..., j,) and assuming that a subset
s € S(j) of coefficients is dropped from the synopsis, we compute M[j, b, e] as

min max {Ml[j;, b;, E(j, s)i] +el}.
0<by+++by <b—(2P—1—[s|) 1<i<m

Thus, the final (optimal) value of M[j, b, e] is computed by dropping the coeffi-
cient subset s € S(j) that minimizes the above term. Once again, the O(B2”)
factor needed to cycle through all the b4, . .. , b,, allotments can be avoided using
the generalization described earlier; thus, we have an optimal DP algorithm
that runs in time O(Epa22 2N log N Blog B). The key observation here is
that, if E,.x is polynomially bounded, then the described DP scheme above is
also a polynomial-time algorithm. We use this idea to devise a polynomial-time
(1 4 €)-approximation scheme.

Given a threshold parameter t > 0, we define a truncated DP algorithm
as follows. Let V., denote the set of error vectors E(j,s) for which the ab-
solute value of each of their entries E(j,s)[i] is at most t; that is, V., =
{E(j,s) : |[E(j,s)lil] < t for all i}. Similarly, let V., denote the set of error
vectors E(j,s)li] not in V... Finally, define K, as the quantity K, = IO‘gTN.
Our truncated DP algorithm replaces each error vector E(j, s) in the error tree
with a scaled-down error vector E°(j,s) = L%{’S)J (i.e., E*(j,s)i] = LE(JT?[‘]J
for all i), and works with these scaled (integer) error vectors; furthermore, at
any node j, our algorithm only considers dropping subsets s C S(j) such that
E(j,s) € V., from the synopsis. More formally, we build a DP array M*[j, b, e]
using the scaled error vectors as follows. As previously, for a leaf node j, we
define M*[j,0,e] = |e|. For an internal node j, our algorithm cycles through
only those subsets s € S(j) such that E(j,s) € V., (the M*[j, b, e] entry is
undefined if 5 < 2P — 1 — |s| for all s such that E(j,s) € V). The DP recur-
rence for computing M [, b, e] is identical to the one for our pseudo-polynomial
scheme above, except for the fact that E(J, s) is replaced by its scaled version
E*(j,s).

We claim that the above truncated dynamic program is a polynomial-time al-
gorithm for any value of the threshold parameter 7. Indeed, since, at each node
J, we only consider dropping coefficient subsets s with error vectors E(j,s) in
V., the absolute additive error propagated to each child of ;j is guaranteed
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to be at most max; |[E(j,s)lill < - = lo‘(’;N. This, of course, implies that the
absolute additive error that can enter any subtree in our truncated DP al-
gorithm is at most log® N/e; in other words, the range of possible (integer)
incoming error values e for our truncated DP array M*[] is guaranteed to be
only Rz° = [—% log®> N, +% log® N1. Thus, based on our earlier analysis, the
running time of our truncated DP algorithm for a fixed parameter t is only
0(122°+P N log? N Blog B).

Given a threshold parameter 7, our truncated DP algorithm selects a sub-
set C; of coefficients to retain in the synopsis. Our absolute-error approxima-
tion scheme employs the truncated DP algorithm for each value r € {2" : k =
0,...,[log(Rz2P)7}, and finally selects the synopsis C, that minimizes the max-
imum absolute error in the data-value reconstruction. Clearly, since we only try
O(D + log Ryz) different values for 7, the running time of our approximation
algorithm remains polynomial.

We now demonstrate that the above-described scheme gives a (1 + ¢)-
approximation algorithm for maximum absolute error minimization. Consider
the optimal maximum absolute error synopsis Copr, and let absErr(Copr) denote
the corresponding maximum absolute error value. Also, for each internal node
J in the error tree, let s7 € S(j) denote the subset of coefficients dropped from
the optimal synopsis Cop; at node j. Finally, let C denote the maximum absolute
value across all entries in the collection of error vectors E(j, s¥) for all j; that
is, C = max; ;{E(J, sl Clearly, our approximation algorithm is going to try
a threshold parameter, say 1/, such that " € [C, 2C). Our goal is to show that
the maximum absolute error achieved by C. (i.e., absErr(C,/)) is very close to that
achieved by the optimal solution Cgpr.

First, note that, by the definition of C and 7/, the optimal solution may drop
a subset of coefficients s € S(j) at node j only if E(j,s) € V... Thus, Copr i
obviously a feasible solution to our truncated DP instance (with threshold =
7’). Now, let absErr./(C,), absErr.(Copr) denote the maximum absolute errors in the
K .-scaled instance for the C,, synopsis (obtained by our truncated DP scheme)
and the optimal Cyp; synopsis, respectively. Given the optimality of our trun-
cated dynamic program for the scaled instance, clearly

absErr, (Cy) < absErry/(Copr). (8)

Let C be any wavelet synopsis (i.e., subset of Haar coefficients). Obviously, in a
K . -scaled instance, any error-vector value for C is represented by E7'(j, s)[i] =
L%J which differs by at most 1 from %, thus, it is easy to see that the
scaled and nonscaled maximum absolute errors for the C synopsis are related
as follows

abskrr(C) € (K abskrr(C) £+ K. logN). 9)
Applying the above formula for C = Copr and combining with Eq. (8), we have

absErr(Copr) > Ky abskrry(Copr) — Ko log N
> KabsErr.(C,) — K, logN,
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and, using Eq. (9), once again with C = C,/, we get
absErr(C,) < KpabsErry(Cy) + K. logN.

Now, simply combining the last two formulas and substituting K, = %, we
have
absErr(C;)) < absErr(Copr) + 2K, log N
< absErr(Copy) + 2€7. (10)

Our goal now is to demonstrate that absErr(Copr) is at least Q(z’). Our proof relies
on the following ancillary claim.

Cramv 3.4. Let C be any Haar-coefficient synopsis and, for any internal node
J, let eg denote the absolute value of the additive error coming into the T; subtree

due to ancestors of node j dropped from the C synopsis. Then, abstrr(C) > e?.

Proor. We make use of the following key observation. Let T' denote the
(multi-dimensional) Haar error tree (Figure 2) where all coefficient values are
retained (to allow for exact data reconstruction). Given an internal node j, let
v(T;) denote the total additive contribution from ancestors of node j during the
data-reconstruction process for the data values at the leaves of the T'; subtree
(rooted at j). Clearly, this additive contribution v(T’;) is the same for all leaves of
T;, and, letting path(j) denote the set of all proper ancestor nodes of j in T', v(T;)
is simply computed as v(T}) = }_;, cpatn(j) Si9n;, ; - ¢i, where sign; ; is either +1 or
—1 depending on how the ¢; coefficient affects the data values in the T'; subtree
(Section 2.2). One of the basic properties of the Haar-wavelet decomposition is
that v(T}) is exactly the average of all the data values at the leaf nodes of the
T; subtree. (This is obviously quite intuitive, as the Haar-wavelet coefficients
are essentially trying to summarize the data at successively coarser levels of
resolution.)

Now, let T denote the error tree where only the coefficients in C are retained
(With all other coefficients set to 0). Note that, by our definition of e?, we have

= [v(T;) — v(TC)| Also, let ji, ..., j. be the children of node j in T and T°.
Our observation above directly implies that v(T};) is the average of the child-
subtree values v(T,), thatis, v(T;) = L > u(T};, )(and of course, the same also
holds for the correspondlng appr0x1mate Values v(TJC) and v(TJC) v(TC ).
Consider the absolute incoming additive errors e¢ 5, at child nodes j; of J- Our
discussion easily implies the following inequality:

1|& S 1
ef = [T —o(T)| = — |3 v(T;) = Y o(T})| = gz

Thus, there must exist at least one child node, say ji, of j such that e > eS.
Continuing this argument, we obtain a path from node j to a leaf/data value
d; in the TC subtree such that the absolute additive error entering that leaf,
that is, |cfl dj|, is at leaste But then, clearly, absErr(C) > |d; —d;| > ec This
completes the proof for our clalm ]
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Lemma 3.5.  Let Copr be the optimal maximum absolute error synopsis, and
let " be as defined above. Then, absErr(Copr) > T

Proor. By our definition of 7/, there exists an error-tree node j such that
the subset of dropped coefficients s7 € S(j) for j in the optimal solution Copr
satisfies |E( 7, s}")[k]l > ’ for some child j; of j. We now consider two possible
cases for e’ the absolute addltlve error entering the subtree rooted at node j
in the optlmal solutlon (1) Ifetorr > 2 then, by Claim 3.4, we immediately have
that absErr(Copr) > Z. (2) If e J‘)” , then the absolute Value of !:he addltlve

error entering the subtree rooted at chlld Jr of j is at least ’ — 7 = 7 thus,

Claim 3.4 again implies that absErr(Cypy) > ’—. This completes the proof. O
Combining Inequality (10) with Lemma 3.5, we have
absErr(C,) < (1 + 8e)absErr(Copr).

Thus, simply setting ¢’ = ¢/8, we have a (1 + ¢)-approximation scheme for max-
imum absolute error minization in multiple dimensions. The following theorem
summarizes our analysis.

THEOREM 3.6. The above-described approximation scheme for deterministic
multidimensional wavelet thresholding discovers an approximate solution that
is guaranteed to be within (1 + €) of the optimal (i.e., minimum) maximum
absolute error in time O(@?l)”’ N log? NBlog B) and with a total space

requirement of O(12P N log® N B).

4. EXTENSION TO GENERAL ERROR METRICS

Our discussion thus far has focused on the minimization of maximum-error
metrics (like, maximum relative error) in the approximate data-value recon-
struction. However, as we demonstrate in this section, our algorithmic solu-
tions have much more general applicability; once again, this is in sharp con-
trast with earlier probabilistic thresholding schemes [Garofalakis and Gibbons
2002, 2004 ] that can handle only maximum-error metrics. Consider the natural
class of distributive error metrics defined formally below.

Definition 4.1 (Distributive Error Metrics). Consider an approximation of
a (one- or multidimensional) data array A, and let f(R) denote the error in the
data-value approximation over the (one- or multidimensional) range of values
R in A. We say that the error metric f() is distributive if and only if, for any
collection of disjoint ranges R, ..., Ry, there exists some combining function
£() such that the error over the entire region UleRi can be defined as

f(U R) =g(f(Ry),..., f(Ry).

The class of distributive error metrics defined above encompasses several
important approximation-error functions. For instance, the maximum-error
metrics defined in Sections 2 and 3 are clearly distributive (with the combining
function g() being simply the max{} of its input arguments). Furthermore,
it is not hard to see that most important cumulative approximation-error
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metrlcs are also naturally distributive, including the mean relative error
N L 3. relErr; and the L ,-norm error [N > |cf —d;|”]¥ (for any p > O) in the data
reconstructlon as Well as the weighted variants of these metrics (& N i Wi-relErr;
and [+ N i Wi |cf d; |P]p respectively), where different weights w; (typically
normalized, such that ), w; = 1) are associated with the errors for different
values in the underlying data domain. (Such weights are an important tool
for capturing the importance of individual data values, e.g., based on the
nonuniformities of the observed query workload [Muthukrishnan 2004].)

The key observation here is that our optimal DP formulation of Section 3.1
can, in fact, be easily adapted to work with any distributive error metric. Given
such an error metric f(), the basic idea is to define the DP array M[j,b, S]
as well as the DP recurrences for computing its entries using the general form
of the f()-metric and the corresponding combining function g() that allows
us to “distribute” the computation of f() over sub-ranges of the data domain
(Definition 4.1). More specifically, following along similar lines as in Section 3.1,
we define the base case for our DP recurrence (i.e., for leaf nodes ¢; = d;_y,
Jj = N)as M[j,0,S] = f({d;_n}|S) for each subset S C path(d,_yn), where
f({d;_n}IS) denotes the value of the £ () error metric at data valued ;_y assum-
ing the coefficients in S are kept in the synopsis. Now, in the case of an internal
node ¢; with j < N, we define the optimal error M|[j, b, S] when coefficient c;
is either dropped from or kept in the synopsis in a manner similar to Egs. (2)-(3)
with the key difference that max{} is now replaced by the combining function
g() for our distributive error metric f(). More formally, our general DP recur-
rence for f() simply defines M[j, b, S] = min{MgyoplJ, b, SI, MieeplJ, b, S},
where

Maropli, b, S1= min g(MI2/,b, 8], M[2j +1,b-b,S),  and
Mieepls,0,81= min g(M[2,b,8U(ej}], MI2j +1,b -~ 1,8 Ulc;}).

Example 4.1. As a more concrete problem setting, consider the adaptation
of our optimal DP formulation for the case of the mean weighted relative error
metric % >, w; - relErr;. Since the averaging factor N is basically constant (i.e.,
the size of the data domain), it is obviously sufficient to optimize the cumulative
weighted relative error; that is, we seek to minimize

fUdy,...,dyD) = w; relEm; =Y w

max{|d;|, s}
(for a given sanity bound value s).

For the base case of data (i.e., leaf) nodes ¢; = d;_n with j > N, we define
MI[j, 0, S] (for each subset S C path(d;_n)) as the weighted relative error at
value d;j_y (assuming the coefficients in S are retained in the synopsis); that
is,
wi-N - ldj-N =D ces 89NNk - CE

M[j,0,S1= f{d;-n}IS) = max{|d;_n/|, s}

For the case of internal nodes c; with j < N, note that the combining function
g () for our cumulative weighted relative error metric is simple summation; thus,
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we define M[j, b, S] = min{M gyoplJ, b, S1, Myeeply, b, S1}, where

Mdrop[j’ b’ S] = Ornbl’nb{M[z‘]’ bly S] + M[ZJ + 1’ b - b/a S]}; and
Myeeply, b, S1= 0<rg;<i?_1{M[2j, b, SU{c;} ]+ M[2j +1,6—-b" —1,S U{c;}l}.

Since our optimal DP formulation extends directly to multidimensional data
arrays and wavelets, the above-described generalizations are directly appli-
cable to multiple dimensions as well; that is, of course, modulo the super-
exponential explosion in space/time complexity with increasing dimensionality
(Section 3.2). Furthermore, note that both our efficient approximation schemes
for near-optimal thresholding in multipledimensions are essentially based on
sparser versions of this optimal multidimensional dynamic program. Thus, our
maximume-error approximation algorithms can also be adapted to work with
other distributive error metrics as well with similar approximation guarantees;
for instance, the techniques and analyses in Sections 3.2.1-3.2.2 can easily be
extended to (approximately) optimize for the corresponding cumulative error
metrics (i.e., mean absolute and mean relative error).

5. EXPERIMENTAL STUDY

In this section, we present the results of an empirical study we have conducted
using the algorithmic techniques developed in this article for building deter-
ministic wavelet synopses optimized for general error metrics. The primary
objective of our study is to verify the effectiveness of our deterministic synopsis
construction techniques in reducing relative-error metrics in the data-value re-
construction compared to the probabilistic wavelet synopses of Garofalakis and
Garofalakis and Gibbons [2002, 2004], as well as the more conventional, Lo-
optimal wavelet summaries (Section 2.3). To this end, we have experimented
with a variety of different synthetic and real-world data sets. The major findings
of our study can be summarized as follows:

—More Consistent, Low Relative Error Data Reconstruction. By directly opti-
mizing for the desired relative-error metric and avoiding the randomness
of probabilistic coin flips and randomized value rounding, our deterministic
thresholding algorithms enable a more consistent, lower-error approxima-
tion of the original data values. The end result is a consistently smaller
mean relative error in data reconstruction across the entire underlying data
domain.

—More Consistent, Improved Quality Guarantees for Individual Data-Value
Approximation. Again, by avoiding probabilistic coin flips when it comes to
minimizing the maximum relative error at individual data points, our de-
terministic optimization strategies can offer tighter quality guarantees for
reconstructed data values than probabilistic wavelets.

All experiments reported in this section were performed on a 3.0-GHz
Pentium-IV machine with 1-GB of main memory running Red Hat Enterprise
Linux 4.
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5.1 Testbed and Methodology

5.1.1 Techniques, Parameter Settings, and Approximation-Error Metrics.
Our experimental study compares the deterministic wavelet thresholding tech-
niques developed in this paper with: (1) the two winning probabilistic wavelet
schemes of Garofalakis and Gibbons [2002, 2004], namely the MinRelVar and
MinRelBias algorithms, designed to minimize the maximum normalized standard
error and the maximum normalized bias, respectively and, (2) conventional,
greedy wavelet coefficient thresholding (denoted by L2opt) for minimizing the
overall Ly error in the approximation (Section 2.3). More specifically, we exper-
imented with two adaptations of our optimal deterministic DP algorithm for co-
efficient thresholding (Sections 3—4), MinMaxRelErr and MinAvgRelErr, designed to
minimize the maximum and mean relative error in data-value reconstruction,
respectively. Our MinMaxRelErr and MinAvgRelErr implementations employ the
optimizations discussed near the end of Section 3.1 to guarantee a worst-case
running time of O(N?2) and a working-space requirement of O(N min{B, log N'})
(by computing our dynamic program in a bottom-up fashion, swapping out un-
necessary lines of the DP array for descendant nodes). For the two probabilistic
schemes (MinRelVar and MinRelBias), we utilize the quantization and perturba-
tion parameter settings already suggested in Garofalakis and Gibbons [2002,
2004].

We consider two key metrics to gauge the accuracy of the different wavelet-
synopsis techniques. Let d; (d;) denote the ith accurate (respectively, recon-
structed) value in the domain, and let s be the specified sanity bound for
the approximation. The maximum relative error in the data reconstruction

is max;{ IJ;{X&?;} }. The mean relative error is + >N m'jx[z”s} As suggested
in Garofalakis and Gibbons [2002, 2004], the maximum relative error value
can be returned to the user as a guaranteed-error bound for the reconstruction
of any individual data value, and both probabilistic techniques (MinRelVar and
MinRelBias) as well as our MinMaxRelErr algorithm are designed to help minimize
this error. However, it is based solely on the largest error, and hence it provides
a less informative comparison than a mean relative error metric. Thus, follow-
ing Garofalakis and Gibbons [2002, 2004], we will also primarily use the mean
relative error for the comparisons in this section (the corresponding results for
maximum relative error are qualitatively similar). Remember that, while our
MinAvgRelErr strategy directly optimizes for mean relative error in the data re-
construction, there are no known probabilistic thresholding schemes targeting
mean relative error metrics.

5.1.2 Synthetic Data Generation. We ran our techniques against several
different one-dimensional synthetic data distributions, generated as follows.
First, a Zipfian data generator was used to produce Zipfian frequencies for var-
ious levels of skew (controlled by the z parameter of the Zipfian), numbers of
distinct values N, and total frequency values (i.e., data-tuple counts). We var-
ied the z parameter between 0.3 (low skew) to 2.0 (high skew), the number of
distinct values N between 16, 384 and 65, 536, and the tuple count between
2 x 10° and 16 x 10°. Next, a permutation step was applied on the generated
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Zipfian frequencies to order them over the data domain; we experimented with
four different permutation techniques: (1) “NoPerm” basically leaves the or-
dering as specified by the Zipfian data generator, that is, smaller values have
higher frequencies; (2) “Normal” permutes the frequencies to resemble a bell-
shaped normal distribution, with the higher (lower) frequencies at the center
(respectively, ends) of the domain; (3) “PipeOrgan” permutes the frequencies
in a “pipe-organ”-like arrangement, with higher (lower) frequencies at the two
ends (respectively, center) of the data domain; and, (4) “Random” permutes the
frequencies in a completely random manner over the data domain. (Our syn-
thetic data generator emulates that of Garofalakis and Gibbons [2002, 2004],
using permutations that try to capture “smooth” Zipfian data distributions of
various shapes as well as more random, noncanonical distribution patterns.)
Following Garofalakis and Gibbons [2002, 2004], we determined the value of
the sanity bound s in our relative-error metrics for each input data set as the
10-percentile value in the data (i.e., 90% of the data points had values greater
than s).

5.2 Experimental Results—Accuracy on Synthetic Data Sets

We present some of our experimental results with synthetic data sets for differ-
ent frequency permutations and settings of Zipfian skew. The numbers shown in
this section were obtained using a data domain of N = 32, 768 distinct values, a
tuple count of 4 x 10, and varying the number of retained synopsis coefficients
B between 25 and 2, 000—we observed similar results for other parameter set-
tings. As suggested by Garofalakis and Gibbons [2002, 2004], once the proba-
bilistic MinRelVar and MinRelBias schemes determined their respective coefficient-
retention probabilities, five trials of the (randomized) coefficient-selection
process using different random seeds were performed, and the synopsis was se-
lected that gave the best (i.e., smallest) value for the observed mean/maximum
relative error (depending on the specific error measure of interest). The goal,
of course, was to avoid worst-case sequences of coin flips that could result in
poorly performing wavelet synopses [Garofalakis and Gibbons 2002, 2004]. In
our study, however, in order to quantify the impact of such potential bad coin-flip
sequences on the quality of the probabilistic wavelet solutions, we also obtained
error measurements for the worst synopsis out of our five trials (i.e., the one
with the largest observed mean/maximum relative error).

5.2.1 Data-Value Reconstruction Relative Errors. Figure 4 depicts the
mean and maximum relative error numbers in the data-value reconstruc-
tion obtained by our deterministic optimization techniques, the probabilis-
tic MinRelVar and MinRelBias algorithms (for both the best- and worst-case
randomized coefficient selections), and the conventional L2opt thresholding
scheme on a “Normal” Zipfian data set with skew parameters of z = 1.0 (a,
b),z = 1.5 (c, d), and z = 2.0 (e, f). It is easy to see that our deterministic
MinMaxRelErr and MinAvgRelErr schemes consistently outperform the best-case
probabilistic MinRelVar and MinRelBias synopses, offering improvements of up to
over 100% in terms of both mean and maximum relative error, with the benefits
becoming more evident for small synopsis sizes (e.g., B < 200) and larger values
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Fig. 4. Mean and maximum data-reconstruction error for “Normal” Zipfian permutations with
data skew values of z = 1.0 (a, b),z = 1.5 (¢, d), and z = 2.0 (e, f).

of data skew z. Furthermore, the numbers in Figure 4 also demonstrate that
a bad sequence of coin flips can, in fact, significantly deteriorate the quality of
the probabilistic wavelet synopses constructed by the MinRelVar and MinRelBias
schemes. (The impact of such bad coin-flip sequences is particularly evident
for the MinRelBias algorithm and larger values of the skew parameter z.) Our
numbers also clearly show that all our relative-error schemes significantly out-
perform conventional L2opt thresholding in terms of both mean and maximum
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Fig. 5. Mean data-reconstruction error for “PipeOrgan” (a, b) and “Random” (¢, d) Zipfian permu-
tations with data skew values of z = 0.7 and z = 1.0.

relative error on “Normal” Zipfian data (with the benefits, once again, becom-
ing more pronounced for larger data-skew values). This is obviously expected
since, by optimizing for overall Ly error, the L2opt algorithm can result in very
large relative errors for nondominant frequency values (see also Garofalakis
and Gibbons [2002, 2004]).

Similar trends can be observed in the plots of Figure 5 which depict the
mean relative-error numbers for “PipeOrgan” (a, b) and “Random” (¢, d) Zipfian
data sets with skew z = 0.7 and z = 1.0. The numbers for our “PipeOrgan”
frequency arrangement are essentially identical to those for “Normal” Zipfian
data (Figure 4), since both represent fairly smooth data distributions (with
somewhat different overall shapes). In the case of randomly-permuted Zip-
fian data (Figures 5(c, d)), our MinAvgRelErr deterministic scheme offers even
more significant improvements (typically ranging between 20% and well over
100%) in terms of mean relative error compared to both best-case probabilistic
(MinRelVar and MinRelBias) synopses and conventional Ly-optimal synopses. The
impact of coin-flip variability on the quality of the data reconstruction for the
two probabilistic schemes is, once again, evident in our “Random” data num-
bers (especially for small synopsis sizes). Note that, by randomly permuting
Zipfian frequencies, “Random” typically results in irregular, non-smooth data
distributions which are quite difficult to approximate well by compact Haar
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wavelet synopses (hence, the higher error numbers compared to, say, “Nor-
mal” and “PipeOrgan” data sets). For such “difficult” data distributions, L20opt
synopses can often result in lower mean relative errors compared to proba-
bilistic MinRelVar/MinRelBias synopses (an observation also made by Garofalakis
and Gibbons [2002, 2004]). Still, as our results demonstrate, our deterministic
MinAvgRelErr synopses can offer even more consistent and significant accuracy
benefits over their probabilistic and Lg-optimal counterparts for such “diffi-
cult” data sets. Overall, by directly optimizing for the objective error metrics,
our deterministic thresholding algorithms enable significantly better and more
consistent mean and maximum relative error behavior over a wide range of
data sets and parameters.

5.2.2 Effect of Data Skew. The plots in Figure 6 depict the ratios be-
tween the mean relative error values obtained by our deterministic MinAvgRelErr
scheme and the (best-case) MinRelVar/MinRelBias probabilistic synopses and con-
ventional L2opt synopses for “Normal” (a, ¢, e) and “Random” (b, d, f) Zipfian
distributions with varying values of the skew parameter z. (The corresponding
ratios for the worst-case probabilistic synopses are omitted to avoid cluttering
the figures.) It is easy to see that our MinAvgRelErr synopses guarantee consis-
tently lower mean relative errors across the range of Zipfian skew parameters,
with the benefits being, once again, more evident in the case of the more dif-
ficult to summarize “Random” data sets. Furthermore, the relative error im-
provements offered by our (optimal) deterministic thresholding strategies, in
general, tend to increase as the level of skew in the data goes up; in fact, we
had to omit the curves for high data skew (z = 2.0) from several of our plots
since they resulted in error ratios well outside our plot ranges. The impact of
data skew on relative-error benefits is again more pronounced for the “difficult”,
randomly-permuted Zipfian data distributions (Figures 6(b, d, f)).

5.3 Experimental Results—Accuracy on Real-World Data Sets

To explore how our techniques performed on real-world data distributions, we
employed two distinct real-life data collections:

—The Weather data set (www-k12.atmos.washington.edu/k12/grayskies/)
comprises different meteorological measurements obtained from a station
at the University of Washington Department of Atmospheric Sciences. For
our experiments here, we extracted N = 524, 288 real-valued data points
for six measured quantities (wind speed, wind peak, solar irradiance, rel-
ative humidity, air temperature, and dewpoint temperature) over the 2002
calendar year.

—The Corel Image Features data set (kdd.ics.uci.edu/databases/
CorelFeatures/CorelFeatures.html) contains several different image
features extracted from a Corel collection of N = 68, 040 photo images from
various categories. For our experiments, we primarily made use of individual
real-valued attributes from the color histogram and color-histogram layout
features. In a nutshell, the color histogram data describes each Corel
image in terms of 32 real-valued features corresponding to individual color
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Fig. 6. Effect of Skew on Data Reconstruction: Ratio of mean relative reconstruction errors be-
tween MinAvgRelErr and (best-case) MinRelVar/MinRelBias and L2opt synopses for “Normal” (a, ¢, e) and
“Random” (b, d, f) Zipfian data distributions.

densities (in the entire image) for an 8 x 4 partitioning of the HSV color
space. Similarly, the color-histogram layout table comprises 32-dimensional,
real-valued tuples, each giving a 4 x 2 HSV color histogram for 4 subimages
(one horizontal + one vertical split) of each original Corel image.

In all cases, we treat the sequences of data points (or, subsequences thereof)
as our input data array (with a specified number of entries N), which we
compress using the different wavelet-based techniques explored in our study.
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Fig. 7. (a, b) First and last segment of the Weather solar-irradiance measurements. (c, d) Ratio of

mean relative errors between MinAvgRelErr and (best-case) MinRelVar/MinRelBias and L2opt synopses
for the two Weather solar-irradiance segments.

We report results from a representative subset of the data sequences for each
of our three real-life data sets—qualitatively similar results were obtained for
other attributes in our data collections.

Figures 7(a, b) depict the histograms of data-array values (i.e., the input to
our synopsis techniques) for two distinct segments of N = 65,536 entries of
the solar-irradiance attribute in the Weather data set. Figures 7(c, d) show the
corresponding mean relative error ratios between our optimal deterministic
MinAvgRelErr scheme and the (best-case) MinRelBias/MinRelVar probabilistic syn-
opses and conventional L2opt synopses as the number of retained coefficients
B is varied between 25 and 4, 000. Clearly, our MinAvgRelErr synopses offer
consistent, significant accuracy benefits over both Ls-optimal and (best-case)
probabilistic wavelet summaries, especially in the case of space-constrained
synopses (e.g., B < 500). Furthermore, all three relative error strategies
(MinAvgRelErr, MinRelVar, and MinRelBias) perform consistently much better
than L2opt—in fact, the L2opt curve for the first, more “spiky” segment of our
solar-irradiance data had to be omitted since its error ratios were well outside
our plot range.

Figure 8 depicts the corresponding data-array histograms and mean rela-
tive error ratio numbers for two distinct segments of N = 65, 536 entries of the
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Fig. 8. (a, b) First and last segment of the Weather relative-humidity measurements. (c, d) Ratio
of mean relative errors between MinAvgRelErr and (best-case) MinRelVar/MinRelBias and L2opt synopses
for the two Weather relative-humidity segments.

relative-humidity measurements in the Weather data set. Clearly, the relative-
humidity attribute exhibits a significantly smoother distribution than solar
irradiance, thus resulting in smaller relative errors (and relative-error ratios)
for all schemes. It is also interesting to note that, in this case, the relative order-
ing of the conventional L2opt strategy and the probabilistic MinRelVar/MinRelBias
strategies is reversed, with L2opt giving consistently better accuracy numbers.
Still, our MinAvgRelErr synopses continue to outperform all the other strategies
in our study, offering consistent and substantial relative-error benefits through-
out the range of synopsis sizes.

Finally, Figure 9 shows the histograms and corresponding mean relative
error ratio numbers (for synopsis sizes B = 25 to 4,000) for two distinct
color-histogram image features (attribute numbers 1 and 5 out of a total of
32 features) in the Corel data set. (We obtained qualitatively similar results
with other color histogram and color-histogram layout attributes.) Due to their
high variability and numerous large “spikes”, these data arrays turned out to
be particularly difficult for the conventional L2opt strategy, resulting in large
relative-error ratios that were well outside the range of our plots. Compared
to the (best-case) probabilistic MinRelVar/MinRelBias algorithms, our proposed
MinAvgRelErr strategy once again emerges as a clear winner, giving consistent
and very significant accuracy benefits across the range of synopsis sizes.
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Fig. 9. (a, b) First and fifth color-histogram attributes in the Corel image features data set. (c, d)
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the two Corel data arrays.

5.4 Experimental Results—Running Time and Memory Requirements

In order to test the scalability of our wavelet-thresholding techniques to large
domain sizes N and synopsis sizes B, we measure the running times and
memory requirements for the different relative-error minimization schemes
employed in our experimental study. (The L2opt thresholding algorithm is ob-
viously quite trivial and, thus, excluded from our discussion here.) We use
MinMaxRelErr as a representative of the optimal deterministic-thresholding
schemes proposed in this paper, and MinRelVar as a representative of the
probabilistic-thresholding schemes [Garofalakis and Gibbons 2002, 2004].
(Note that MinAvgRelErr and MinRelBias are based on essentially identical dy-
namic programs as MinMaxRelErr and MinRelVar (respectively), thus giving
very similar running-time and memory-requirement numbers.) We also fo-
cus primarily on the Weather relative-humidity data arrays, since we ob-
served very little variation in the running times and memory requirements
of the algorithms across different data sets (for the same values of N
and B).

Figures 10(a, b) depict the observed running times for the MinMaxRelErr and
MinRelVar algorithms as a function of the domain size N (for fixed B = 2,000)
and the synopsis size B (for fixed N = 32, 768). The quadratic dependence of the
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Fig. 10. Running times (a, b) and memory requirements (c) for our relative-error thresholding
schemes as a function of the domain size (V) and the synopsis size (B).

running times of our dynamic-programming scheme on the data-domain size N
is immediately apparent—even though the running times of MinMaxRelErr start
at the same levels as those of MinRelVar for small N (roughly a couple of minutes
for N = 8, 192), they quickly jump to a little less than an hour for N = 32, 768
and about four hours for N = 65,536. On the other hand, the time complexity
of the probabilistic MinRelVar scheme is only linear in N, keeping its running
times at about ten minutes even for N = 65, 536. Still, given that statistics
construction is typically an off-line process (e.g., run during night-time or other
system-idling periods), as well as the significant accuracy benefits of our op-
timal deterministic strategies (Sections 5.2-5.3), we believe that our schemes
can provide an effective solution for data summarization in decision-support
environments. Also, note that, in situations where the quadratic time com-
plexity of our optimal dynamic programs becomes a limiting factor, our prov-
ably near-optimal approximation algorithms of Section 3.2 (whose complexity is
roughly linear in V) can provide a more efficient alternative. Figure 10(b) shows
that, as expected, the observed running times for our optimized MinMaxRelErr al-
gorithm are essentially independent of the synopsis size B, demonstrating only
a very slight increase as B is varied from 1, 000 to 8, 000 coefficients. The same
observation roughly holds for the probabilistic MinRelVar algorithm as well (even
though its worst-case time complexity is linear in B [Garofalakis and Gibbons
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2002, 2004]), mostly due to the large amount of pruning achieved at the lower
levels of the coefficient error tree.

With respect to memory requirements, our experimental runs verify that
the amount of memory needed by our optimized MinMaxRelErr algorithm is es-
sentially independent of the synopsis size B for the range of parameter set-
tings considered in our study. (Remember that the corresponding asymptotic
working-space bound is O(N min{B, log N}).) More specifically, with the do-
main size fixed at N = 32, 768, the maximum memory requirement for our
MinMaxRelErr implementation is approximately only 3.75-MB, regardless of the
specified synopsis size B (varied between 1,000 and 8, 000 coefficients). The
corresponding total-space requirements for the dynamic-programming array
of the probabilistic MinRelVar algorithm are significantly higher (between 112-
MB-125-MB)—this is due to the fact that, even though the size of the MinRelVar
DP array is linear in IV, B, it also has a linear dependence on other algorithm
constants (i.e., the integer quantization parameter). (We should, of course, note
here that, using the working-space optimizations discussed in Garofalakis and
Gibbons [2002, 2004] typically lowers the memory needs of MinRelVar in the
range of a few hundred Kilobytes.) Finally, Figure 10(c) depicts the memory
requirements of our MinMaxRelErr implementation as a function of the domain
size N (for fixed B = 2, 000). As expected, the maximum memory needed by our
optimized dynamic-programming scheme shows a roughly linear dependence
on the data-domain size, and remains at reasonably-small levels even for fairly
large values of N (e.g., about 7.2-MB for N = 65, 536). Overall, our experimen-
tal numbers demonstrate that, in terms of memory requirements, our proposed
dynamic-programming algorithms can easily scale to large domain sizes N and
synopsis sizes B.

6. RELATED WORK

Wavelets have a long history of successes in the signal and image process-
ing arena [Jawerth and Sweldens 1994; Natsev et al. 1999; Stollnitz et al.
1996] and, recently, they have also found their way into data-management
applications. Matias et al. [1998] first proposed the use of Haar-wavelet
coefficients as synopses for accurately estimating the selectivities of range
queries. Vitter and Wang [1999] describe I/O-efficient algorithms for building
multidimensional Haar wavelets from large relational data sets and show that
a small set of wavelet coefficients can efficiently provide accurate approximate
answers to range aggregates over OLAP cubes. Chakrabarti et al. [2000,
2001] demonstrate the effectiveness of Haar wavelets as a general-purpose
approximate query processing tool by designing efficient algorithms that can
process complex relational queries (with joins, selections, etc.) entirely in the
wavelet-coefficient domain. Matias et al. [2000] consider the problem of online
maintenance for coefficient synopses and propose a probabilistic-counting
technique that approximately maintains the largest normalized-value coef-
ficients in the presence of updates. Gilbert et al. [2001] propose algorithms
for building approximate one-dimensional Haar-wavelet synopses over
numeric data streams. Deligiannakis and Roussopoulos [2003] introduce
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time- and space-efficient techniques for constructing Haar-wavelet synopses
for data sets with multiple measures (such as those typically found in OLAP
applications).

All the above papers rely on conventional, Lg-error-based thresholding
schemes that typically decide the significance of a coefficient based on its abso-
lute normalized value. Garofalakis and Gibbons [2002, 2004] have shown that
such conventional wavelet synopses can suffer from several important prob-
lems, including the introduction of severe bias in the data reconstruction and
wide variance in the quality of the data approximation, as well as the lack of
nontrivial guarantees for individual approximate answers. In contrast, their
proposed probabilistic wavelet synopses rely on a a probabilistic thresholding
process based on randomized rounding [Motwani and Raghavan 1995], that
tries to probabilistically control the maximum relative (or, absolute) error in the
synopsis by minizing appropriate probabilistic metrics (like, normalized stan-
dard error or normalized bias). The problem addressed in this article, namely
the design of efficient deterministic thresholding schemes for maximum error
as well as more general, non-Ly error metrics, is one of the main open problems
posed by their study [Garofalakis and Gibbons 2004]. More recent work has
also considered the problem of minimizing the maximum absolute error in the
data approximation in the context of different applications, such as the index-
ing of spatio-temporal trajectory data using Chebyshev polynomials [Cai and
Ng 2004].

There is a rich mathematics literature on m-term approximations using wa-
velets (m is the number of coefficients in the synopsis). Some prior work has
studied thresholding approaches for meeting a target upper bound for an L -
error metric [DeVore 1998; Stollnitz et al. 1996]. We are not aware of work ad-
dressing the deterministic minimization of relative errors with sanity bounds
(arguably the most important scenario for approximate query processing in
databases) and, to the best of our knowledge, ours are the first results on com-
putationally efficient (optimal and near-optimal) deterministic thresholding
schemes for minimizing general error metrics for one- and multidimensional
wavelet summaries.

Following up on the conference version of this work [Garofalakis and
Kumar 2004], Muthukrishnan has recently proposed optimization algorithms
based on our optimal DP formulation for Haar-coefficient thresholding with
the objective of minimizing a non-uniform (i.e., weighted) Lg-norm error
[Muthukrishnan 2004]. An interesting contribution of that work is the intelli-
gent coupling of our optimal dynamic program with exhaustive search at lower
levels of the error tree, resulting in a running-time complexity of O(N2B/ log B)
(ie., a O(log? B) improvement over our time bounds in Section 3.1). As we
demonstrate in this paper, our dynamic-programming ideas are, in fact, appli-
cable to a much broader class of “distributive” error metrics, which includes
several useful error measures for approximate query processing engines (such
as mean weighted relative error and general weighted L, norms). Even more
recently, Guha has given a careful complexity analysis of our optimal dynamic
program, showing the O(IN?) bound on the worst-case running-time complexity
of our DP algorithm [Guha 2004] (see Section 3.1).
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7. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this article, we have proposed novel, computationally efficient schemes for
deterministic wavelet thresholding for general error metrics in both one and
multiple dimensions. For one-dimensional wavelets, we have introduced an op-
timal, low polynomial-time thresholding algorithm based on a new Dynamic-
Programming (DP) formulation that can be used to efficiently minimize any dis-
tributive error measure in the data approximation. For the multidimensional
case, we have designed novel, polynomial-time approximation schemes (with
tunable ¢-approximation guarantees for the target error metric) for wavelet
thresholding based on approximate dynamic programs. Results from an em-
pirical study of our DP optimization algorithms over real-world and synthetic
data sets have clearly demonstrated their effectiveness against earlier-proposed
wavelet-thresholding techniques.

There are several interesting directions for future research in this area. As
demonstrated in this article, deterministic Haar-wavelet thresholding for gen-
eral, non-Ls error metrics appears to become significantly more difficult as the
data dimensionality increases (similar observations have also been made for
the related problem of histogram construction [Muthukrishnan et al. 1999]).
Investigating the existence of optimization algorithms for multidimensional
wavelet thresholding that potentially avoid the super-exponential explosion in
dimensionality inherent in our dynamic programs is certainly a challenging
area for future work. The question of designing an efficient (1 + ¢)-approxima-
tion scheme for maximum relative error in multiple dimensions is also left open.
Finally, an important question in this realm concerns the general suitability of
the Haar-wavelet transform as a data-summarization and approximate query
processing tool when it comes to error metrics other than Lg norms. Could there
be other (existing or new) wavelet bases that are better suited for optimizing,
for example, relative-error metrics in the data approximation?
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