
Intel Mash Maker: Join the Web

Rob Ennals
Intel Research

2150 Shattuck Avenue
Penthouse Suite

Berkeley, CA 94704, USA

robert.ennals@intel.com

Eric Brewer
Intel Research

2150 Shattuck Avenue
Penthouse Suite

Berkeley, CA 94704, USA

eric.a.brewer@intel.com

Minos Garofalakis
∗

Yahoo Research
2821 Mission College Blvd
Santa Clara, CA 94, USA

minos@yahoo-inc.com

Michael Shadle
Software Solutions Group

Intel Corporation
5200 NE Elam Young Parkway

Hilsboro, OR 97124, USA
michael.shadle@intel.com

Prashant Gandhi
Intel Research

2200 Mission College Blvd
Santa Clara, CA 95054, USA

prashant.gandhi@intel.com

ABSTRACT
Intel®Mash Maker is an interactive tool that tracks what the user
is doing and tries to infer what information and visualizations they
might find useful for their current task. Mash Maker uses structured
data from existing web sites to create new “mashed up” interfaces
combining information from many sources.

The Intel®Mash Maker client is currently implemented as an ex-
tension to the FireFox web browser. Mash Maker adds a toolbar
to the browser that shows buttons representing enhancements that
Mash Maker believes the user might want to apply to the current
page. An enhancement might combine the data on the page with
data from another source, or visualize data in a new way. Mash
Maker is intended to be an integral part of the way the user browses
information, rather than being a special tool that a user uses when
they want to create mashups.

In order to create mashups from normal websites, Mash Maker
must first extract structured data from them. If the web site does
not provide RDF data, then Mash Maker extracts structured data
from the raw HTML using a community-maintained database of
extractors, where each extractor describes how to extract structured
data from a particular kind of web site.

Categories and Subject Descriptors
H.4.3 [Information Systems]: Information Browsers

General Terms
Management, Design, Human Factors

Keywords
Mashup, Data integration, Personalization, Visualization

∗Work done primarily while at Intel Research

1. INTRODUCTION
Historically, the process of writing new queries and creating new

graphic interfaces has been something that has been left to the ex-
perts. A small set of experts would create applications, and all users
would have to make do with what was available, even if it did not
quite fit their needs.

Mashups are an attempt to move control over data closer to the
user and closer to the point of use. Although mashups are techni-
cally similar to the data integration techniques that preceded them,
they are philosophically quite different. While data integration
has historically been about allowing the expert owners of data to
connect their data together in well-planned, well-structured ways,
mashups are about allowing arbitrary parties to create applications
by repurposing a number of existing data sources, without the cre-
ators of that data having to be involved. The importance of mashups
is arguably more political and cultural than technical. Mashups are
about the “democratization of innovation” [11].

Intel®Mash Maker is a project within Intel Research that is aim-
ing to push the mashup envelope a few steps further. Previous work
in mashups has followed a model in which a reasonably skilled user
uses a special interface to visually compose information from dif-
ferent data sources, creating a new mashed-up application that can
then be used by other users. Although this approach has empow-
ered a new class of semi-skilled users to create a vast number of
customized applications, specially tailored for particular tasks, or
particular groups of people, we believe that the concepts can be
taken much further. With Intel®Mash Maker, our intention is that
normal users should be able to easily create applications and inter-
faces that are specially customized not only for them, but for the
exact task they are performing at that moment. Our aim is mashups
for the moment, on demand.

Intel®Mash Maker does this by making mashup creation part
of the normal browsing process. Rather than having a reasonably
skilled user create a mashup in advance as a mashup site that other
users browse to, Mash Maker instead creates personalized mashups
for the user inside their web browser. Rather than requiring that a
user tell a mashup tool what they want to create, Mash Maker in-
stead watches what information the user looks at, correlates the
user’s behavior with that of other users, and guesses a mashed up
application that the user would find useful, without the user even
having to realize they wanted a mashup.

Mash Maker is currently implemented as an extension to the

SIGMOD Record, December 2007 (Vol. 36, No. 4) 27



Figure 1: The mashup bar

FireFox web browser, with versions planned for other browsers.
As the user browses the web, the Mash Maker toolbar displays but-
tons representing enhancements that Mash Maker thinks the user
might want to apply to their current page (Figure 1). The user need
simply turn on some combination of these enhancements to create
a new mashup; e.g., to plot all items on a map, the user can click
on the Google Maps button.

In addition to suggesting known enhancements defined by other
users, Mash Maker will also suggest new enhancements that it has
created by filling in gaps in known enhancements (Section 4.3).
Similarly, a user can create a composite mashup by turning on sev-
eral generic enhancements (e.g. good restaurants + crime level +
map).

If a user knows what enhancement they want and Mash Maker
does not suggest it then the user can use a simple copy and paste in-
terface to show Mash Maker a pair of web sites that the user would
like Mash Maker to combine (Section 4.2).

If a web site source exports its data in a structured form such as
RDF then Mash Maker can use this, otherwise Mash Maker must
extract structured data from the raw HTML. Mash Maker consists
of two key parts: the client, which is a browser extension that al-
lows a user to create mashups as part of their normal browsing pro-
cess; and the server, which stores extractors that tell Mash Maker
how to extract structured data from normal web sites (Figure 2).
The server operates like a wiki, allowing any user to edit the ex-
tractor for a page.

We believe that Mash Maker offers a radically new approach to
querying and visualizing data:

• Mashups for me, right now, on demand. Mash Maker al-
lows an unskilled used to create mashups that are tailored not
only for them, but tailored for the task they are performing
right now.

• The Mashups come to you. Mash Maker watches what the
user does and tries to suggest mashups that the user will like.

• Mashing is browsing. Mash Maker does not require a user
to use a special mashup creation interface, or browse to spe-
cial mashup sites. Instead, Mash Maker augments the fa-
miliar web browsing interface that the user already uses to
browse data, and enhances this with mashed up information.

• Rely on the community to structure your unstructured
data. Mash Maker can mash up data from web sites that have
no structured data API. It does this by maintaining a central-
ized community-maintained database of extractors. Any user
can edit this database to create an extractor, describing how
to extract structured data from a particular kind of web page.

This paper should be approached as an overview paper. Many
of the topics discussed in this paper contain considerable subtleties
that we do not have space to explore fully.

Figure 2: The Mash Maker client and server

Figure 3: Visualizing data on a map

2. A QUICK TOUR OF MASH MAKER
We will begin with a couple of example usage scenarios for

Intel®Mash Maker, illustrating some of the concepts that we dis-
cuss in this paper:

2.1 Showing things on maps
Over half of the mashups listed on ProgrammableWeb.com in-

volve plotting things on a map. Since this is a common mashup
scenario, we will use that as our first example, by showing how a
user, Alice, creates the classic “Craigslist houses on a map” mashup
using Mash Maker.

Alice browses to the Craigslist apartment listing, as she would
normally, and browses the apartments that are available. Mash
Maker notices that the page contains items with addresses, and so
displays a “Google Maps” button that Alice can use to visualize
this data on a map. Alice is interested in an apartment that has good
restaurants nearby, so she opens another window and searches for
restaurants on Yelp. Mash Maker notices that Alice is interested in
restaurants and so updates the mashup bar for the Craigslist page to
suggest adding a list of restaurants in the area.

Alice clicks on this new suggestion and Mash Maker responds
by inserting information about Yelp restaurants directly into the
Craigslist page. Mash Maker found the Yelp restaurants by passing
the current location and the topic “food” as arguments to a form on
the Yelp website. In effect, Mash Maker has performed a join on
the data in Craigslist and Yelp, while obtaining the data through the
standard web interface.

Alice also clicks on the “Google Maps” button to see all this data
visualized on one map (Figure 3). Finally, Alice turns on the “an-
notate” enhancement. This is a built-in enhancement that can be
suggested for any page that contains items with their own URLs.

28 SIGMOD Record, December 2007 (Vol. 36, No. 4)



Figure 4: Flights annotated with legroom

The annotate enhancement augments each item on the page (in this
case apartments) with an interactive widget that allows Alice to
attach a persistent personal note. Items are identified by the (nor-
malized) URLs, and so the same note will appear for each item if it
appears on a different page, provided the item’s URL is the same.
As demonstrated by the “annotate” enhancement, not all enhance-
ments bring in data from other web pages. Some enhancements add
new UI features or services that the user might want.

2.2 Information about Flights
As a second example, we will demonstrate the general principle

of “copy and paste mashups” by having a user, Bob, add leg room
information to Expedia flights.

Bob browses to Expedia and searches for flights. Bob is con-
cerned that he should book a flight that will give him a lot of leg
room, but Mash Maker is not currently suggesting legroom. Bob
is disappointed that Mash Maker has not given him a button to add
leg room to the page, so he browses to a page giving the typical
leg room for different airlines. Mash Maker has still not guessed
what Bob wants, so he clicks “copy” on the leg room and “paste”
on the flight listing, to tell Mash Maker that he would like to aug-
ment the page about flights with information from the page about
legroom. Mash Maker brings up a dialog box, asking Bob how the
data should be connected. Mash Maker has correctly guessed that
the data should be equi-joined based on the “Airline” column, but
is not sure with which column to annotate the flights. Bob selects
“economy legroom”, gives the new enhancement a brief name and
description, and clicks “publish” to tell Mash Maker that this en-
hancement should be suggested to other users. Mash Maker turns
the new enhancement on automatically, giving the display in Fig-
ure 4.

3. THE BASIC APPROACH
The examples in Section 2 demonstrated several of the features

of the Intel®Mash Maker user interface. The user can turn on and
off any combination of enhancements by clicking on buttons on
the mashup toolbar (Figure 1). The user can also search for a spe-
cific enhancement by typing keywords into the search box. If Mash
Maker does not suggest appropriate enhancements then the user can
show Mash Maker what they want by viewing web pages about the
topic they are interested in, or by using copy and paste to explicitly
tell Mash Maker what they want to combine.

Mash Maker allows the user to pick and choose the informa-
tion and visualizations that they would like to combine together.
Going back to the example from Section 2.1, there are many dif-
ferent apartment listing sites, many different local search services,
and many different mapping services. With Mash Maker, a user
can pick any combination of these services by simply browsing to
their preferred apartment listing service, and then turning on the
enhancements for their favorite local search service and mapping
service. It is not necessary for any pair of these services to have
been combined previously, so long as other users have previously
shown Mash Maker the generic ways that these sites can be com-
bined with other sites (Section 4.2).

When enabled, an enhancement adds additional content to the
current web page (Figure 4). This information is visualized using
a widget, which may be static or interactive. Enhancements are
non-side-effecting. Clicking an enhancement button can only add
information to the page — it cannot perform externally visible ac-
tions. If an enhancement wants to perform actions, then it must
do this by inserting a widget that the user can use to perform such
actions. For example, rather than having an “add to my calendar”
enhancement (as in Operator [18]), one would instead have a “cal-
ender operations” enhancement that adds an “add to my calendar”
button to every event on the page.

Internally, Mash Maker describes its enhancements using an un-
derlying functional programming language [5].

Previous mashup tools [8, 19, 20, 21] have taken a server-based
approach in which a mashup server retrieves data from other sites
and uses this to create a new web site that hosts the mashup. Mash
Maker instead runs almost entirely on the client, running as an ex-
tension to the user’s web browser. This client-based approach has
advantages for data access, privacy, performance, and user expe-
rience. Since Mash Maker is a browser extension, Mash Maker
can see everything the browser can see, including local files, in-
formation on the intranet, information requiring a login, and ac-
tive content generated by Javascript. There are also privacy and
performance advantages, since Mash Maker does not need to ship
data to and from a central server in order to create the user inter-
face. Finally, running as an integrated part of the browser allows
Mash Maker to present a more pervasive user experience, in which
mashups are an integral part of the way the user looks at informa-
tion.

A key driving principle of Mash Maker is that mashups should
be personal. Rather than using fixed mashups created by other
users, an unskilled user should instead be provided with mashups
that have been created specially for them, and for the task that they
are currently performing. Mash Maker looks at the information that
the user browses, and the mashups that the user has turned on in the
past, and uses this to guess what mashups this particular user might
want right now, which it then suggests on the mashup bar. Since
Mash Maker runs on the client, it can mine sensitive private infor-
mation without leaking it to third parties. In future versions, we
plan to make use of physical sensor information such as location,
time, device type, and inferred activity, to improve the suggestions
that Mash Maker makes.

3.1 The Server
In order to create such mashups, Mash Maker needs to under-

stand the meaning of web pages. In an ideal world, all web sites
would expose the structured databases that underly their sites, mak-
ing it easy to integrate the data, however this ideal world has not yet
arrived. It is thus necessary, at least for now, that we use more ad-
hoc techniques to understand the meaning of web pages.

Mash Maker understands the meaning of web pages using a col-

SIGMOD Record, December 2007 (Vol. 36, No. 4) 29



laboratively maintained database of extractors. An extractor de-
scribes how to extract structured information from the raw HTML
of a particular kind of page. For example, the extractor for
Craigslist apartments says how to find an apartment on the page,
and how to extract each of the properties of an apartment.

The Mash Maker server is influenced by wikis such as
Wikipedia. Like a wiki, the Mash Maker server allows any user
to edit the extractors for any web site. To avoid vandalism, Mash
Maker allows high profile or sensitive pages to be locked down
so that they can only be edited by trusted users. Mash Maker also
provides a complete version history, allowing users to roll back pre-
vious edits if vandalism has occurred. Section 3.4 briefly discusses
some of the security issues relating to bad data.

In addition to being able to tell us how to extract meaning from
a page, the Mash Maker server also stores information about how
the page is parameterised. For example, if we have a page about
“England”, then the server can tell us that the page is parameterized
by a country, and that the argument is encoded as a form parameter
of the URL. A related URI-comprehension mechanism is also used
for normalizing URIs that are textually different but refer to the
same resource. This information is provided by a collection of arg
handlers, which are managed similarly to extractors.

The Mash Maker browser extension includes an extractor editor,
allowing any user to edit the semantic extractor for the page they are
currently browsing by opening the extractor editor side bar. Indeed
Mash Maker will prompt the user to do this if it does not understand
the meaning of the current page.

3.2 Suggestions
Mash Maker chooses which enhancements to suggest using an

ad-hoc algorithm that assigns weights to enhancements based on a
number of factors. The main factor affecting the weight of an en-
hancement is how recently and how often the current user and other
users have applied that enhancement to pages similar to the current
page. For each extractor/enhancement pair, the Mash Maker server
maintains a record of how often and how recently the user and the
community as a whole have applied that enhancement to pages de-
scribed by that extractor.

The suggestion algorithm also uses a number of ad-hoc heuristic
rules to improve suggestion weights, including favoring informa-
tion from sites that the user has viewed recently, and taking ac-
count of explicit votes for and against particular enhancements by
users. The current suggestion algorithm is quite crude and we be-
lieve there is much potential for improvement. We plan to improve
it in future work.

3.3 Copyright
We have no interest in using content in ways that the creators

disapprove of. However, it is impractical to ask permission from
every site in advance, since we don’t know what content our users
might wish to combine. Our approach is to assume that a small
amount of data extraction from a website is probably harmless. If
we see that a data source is being used a lot, then we will contact the
owners of that content to ask them if and how they would like their
content to be used, and store this information on the central server.
For content for which we do not yet have an agreement, we throttle
the rate at which Mash Maker extracts data until we know what
the content owner wants. Our hope is that, just as most web sites
like being listed by Google, most content owners will appreciate
the additional exposure Mash Maker provides for their content.

3.4 Privacy and Security
Giving unskilled users the power to combine data sources in pre-

viously unexpected ways opens up a number of issues for privacy
and security. If one applies an enhancement to a page that con-
tains private information, then that enhancement could cause that
information to become visible to a third party. For example the
“Google Maps” enhancement sends all addresses on the page to
Google, which might not be acceptable if they were the addresses
of confidential locations. There are several ways we try to address
this problem. First, all enhancements are manually checked by
trusted “moderator” users, before they can be suggested to other
users, to make sure that they are not obviously malicious. Second,
the Mash Maker server has facilities for marking data on a page
that should be considered private, and should not be passed outside
the client. Third, some standard classes of confidential data, such
as passwords, and credit card numbers, can be easily detected and
blocked from being passed outside the client. This is an area of
active research, and we do not yet have a perfect solution.

A similar issue is the ability of Mash Maker to track what users
do. One of the goals of Mash Maker is that the client should tell the
server as little as possible about what the user is doing. In partic-
ular, when the client requests extractors from the server, it does so
for an entire domain rather than a particular page, and does not send
identifying information (while we could log IP addresses, we inten-
tionally avoid doing so). Moreover, since the Mash Maker provides
extractors using an anonymous, cacheable, REST API, a group of
users could potentially hide their behavior from Mash Maker by
accessing it through a shared proxy. Since a user may have multi-
ple devices and browsers that they wish to be synchronized, Mash
Maker will, by default, store on the server a record of what mashups
the user has applied to particular general kinds of page. The user
can turn this off if they prefer.

3.5 Query Optimization
Extracting data from web pages is often a very inefficient way

to access a data source. Our hope is that the popularity of mashup
tools will encourage an increasing number of content providers to
provide high level access to their data, through interfaces such as
SPARQL [23]. If we know that the data provided by a site is not
private, and that it is okay for us to cache it, then the Mash Maker
server will cache it in a high-level database on the Mash Maker
server. The Mash Maker client can use this database to obtain
data using efficient high-level queries. For example, to retrieve the
head of state of 100 countries using Wikipedia pages would re-
quire downloading 100 pages if accessed directly, or doing a small
database query to the cache on the Mash Maker server. We believe
that further research is needed on the optimization of cross-provider
queries of web content.

4. MAKING MASHUPS
The enhancements suggested by Mash Maker take several forms,

from simple linked data, through to mashups inferred from user be-
havior, and new visualizations. Our experience so far is that, while
most users limit themselves to turning on combinations of previ-
ously defined enhancements, one only needs a fairly small number
of more skilled users to create enhancements for all users to benefit,
since all the enhancements these users create can be used by other
users.

30 SIGMOD Record, December 2007 (Vol. 36, No. 4)



4.1 Linked Data
The simplest kind of enhancement is one that just follows a link

on the page and inserts information that it finds there. If an item on
a page contains a URL for another page, then Mash Maker will au-
tomatically provide enhancement buttons for annotating the current
page with information described on the linked page.

4.2 Copy and Paste
If the user knows what mashup they want, and Mash Maker does

not automatically suggest it, then they can teach Mash Maker new
connections between web sites using a simple “copy” and “paste”
interface. The user clicks “copy” on the source page that they
would like to use information from, and then clicks “paste” on the
host page that they would like to add this information to. For ex-
ample, in Section 2.2 the user copied information about airlines and
pasted it into a page listing flights with those airlines. Mash Maker
will try to guess how the data should be combined, based on the
property and form argument types for the two pages, and the be-
havior of past users. The most common ways to combine pages are
to do a simple join of the data, and/or pass data from the host page
as a form argument to the source page. If Mash Maker guesses
wrong then the user can manually specify how to combine the data.

Of course, if the user has to edit the enhancement manually then
we are essentially back to the same difficulty level as specifying a
query in a database. Mash Maker thus tries where possible to avoid
the user having to do this, either by guessing how to combine data,
or by suggesting enhancements created by previous users.

4.3 Filling in the Gaps
When creating an enhancement using copy and paste, one can

leave gaps in the definition that can be filled in later. These gaps
correspond to function parameters in the underlying functional lan-
guage [5]. Mash Maker can fill in gaps with information from pages
the user looked at recently. For example, in Section 2.1 we used a
local search enhancement that allowed Mash Maker to guess what
the user was interested in. In that case, Mash Maker guessed that
the user wished to search for “food” because Mash Maker had seen
this was the “search term” property of a previous page. It is also
possible for a user to fill in the gaps explicitly, by clicking on the
button for the enhancement template, and entering the arguments
directly.

4.4 Applicability of an Enhancement
Once a user has defined a new enhancement, Mash Maker can

suggest the enhancement for any pages that are similar to the orig-
inal host page. Early versions of Mash Maker could potentially
suggest an enhancement for any page that had the properties that
were required by the enhancement, or that had applicable enhance-
ment that could produce such properties. However we found that
this caused Mash Maker to suggest a lot of inappropriate enhance-
ments. More recent versions allow a user to restrict the classes of
items for which a particular enhancement should be suggested. For
example, one might constrain the “legroom” enhancement to only
be applicable to “flights”.

4.5 Visualization Widgets
Mash Maker visualizes data added to a page using visualization

widgets. Widgets range from simple static widgets such as static
text and images, through to right interactive widgets such as maps.
A user can write a new widget by creating a normal web page
that exposes a Javascript function called mashmaker widget. Mash
Maker renders a widget by inserting this page as an iframe [12] and
passing the javascript function a value representing the RDF data

that the widget should visualize. Widgets can communicate with
other web services. For example the annotate widget communi-
cates with a web service that stores personal notes written by users,
and the google maps widget communicates with Google Maps.

4.6 Schema Matching
Since content providers are not always consistent in the names

they use to refer to the same thing, Mash Maker allows users to
interactively teach Mash Maker which strings and URLs should be
considered equivalent. If a mashup is trying to join together two
data sets and can’t find a connection then it will insert a button
saying “click to connect this”. If the user clicks this button then
they are presented with an interface that allows them to say what
the key should have been matched to. As with all other metadata,
such equivalences are edited collaboratively, and are shared with
all users.

More generally, combining information from arbitrary web
pages, decoded using extractors written by different authors, is a
potentially very difficult schema-matching problem. We have so
far only touched on the issues that need to be addressed. While our
current simple implementation is already able to do a good job in
many cases, we intend to explore this area a lot more in the future,
including looking at what ideas we can borrow from previous data
integration work.

5. RELATED WORK
Since mashups are a hot topic right now, there has been a lot of

previous work done in this field.

5.1 Data Integration
The database community has done a huge amount of research on

data integration – reliably connecting together data from different
sources that might have very different schemas, and different ways
of naming the same things. Recent interesting examples include
SEMEX [3], DataSpaces [7], and Cohera [24]. We believe that
many of the techniques developed by this work are applicable to
Mash Maker. Indeed we see Mash Maker, and mashups in general,
as being primarily about providing approachable environments that
allow arbitrary unskilled users to easily apply existing data inte-
gration techniques to repurpose data from arbitrary existing data
sources.

5.2 Mashup Creation as a Separate Activity
There are many mashup tools that allow one to create mashups

by graphically combining data sources and operators together as
graphical dataflow graphs or pipelines. Examples include Ya-
hoo Pipes [19], Marmite [25], Microsoft Popfly [20], IBM QED
Wiki [21], and Anthracite [1]. These are all very powerful tools,
and there are interesting differences between them, however they
all follow a broadly similar model in which a reasonably skilled
user creates a mashup by visually connecting components together,
with the intention of creating a new site that users can use. Mash
Maker extends this work by integrating both the creation and the
use of mashups with the normal browsing experience, and pre-
dicting what the user wants based on their past behavior. In ad-
dition, with the exception of Marmite, these are all server-based
tools, which means they have to deal with the issues we discussed
in Section 3.

There are also a number of mashup creation tools that work at
a lower level. Tools like Google Mashup Editor [8], Plagger.org,
Ning.com, Javascript Dataflow Architecture [14], and Web Mashup
Scripting Language [22] give the user a lot of power over the

SIGMOD Record, December 2007 (Vol. 36, No. 4) 31



mashups that they create, at the expense of requiring the user to
write some form of program.

5.3 Mashups as Browsing
Operator [18] and Miro [6] are browser extensions that suggest

actions to be performed on items they have found on the current
web page. Operator looks for data tagged with microformats [15]
and Miro uses a sophisticated data detector. Miro allows users
to teach it new operations using a “program by example” inter-
face. Mash Maker goes beyond what is possible with these tools
by adding content to pages, and allowing one to create complex
composite mashups that go beyond applying a single operation to
the elements on a page.

GreaseMonkey1 allows users to write scripts that can arbitrar-
ily change the behavior of websites. If a user visits a web page
for which they have registered a script, the greasemonkey script
will run and can do pretty much anything to the page, including
adding information to the page from other sites, or bringing in
extra information. Many greasemonkey scripts provide behavior
that is equivalent to, or superior to that which is achievable with
Mash Maker mashups. GreaseMonkey provides mashup-writers
with enormous power, at the cost of requiring them to write their
mashups as Javascript programs.

There are also a number of mashup tools that excel in creat-
ing a particular kind of mashup. Google MyMaps and Microsoft
MapCruncher2 make it easy for end users to create mashups in-
volving maps and Swivel.com makes it very easy for end users to
create graph mashups from multiple data tables.

5.4 Semantic Web Browsers
Like Mash Maker, semantic web browsers such as Tabulator [2]

and PiggyBank [13] are implemented as FireFox extensions, and
allow one to browse data that can be found by following links on a
page. PiggyBank allows one to create extractors using Solvent,
which is similar to our extractor editor. Mash Maker improves
on these tools by allowing one to add new information directly to
the current page, rather than having to use a new interface. Mash
Maker also extends this previous work by allowing users to com-
pute new data from the data they have available, rather than being
restricted to finding information by following links.

There are many other semantic web browsers. For example
Haystack [9] is implemented as a stand-alone application and On-
toWiki [10], DISCO [4], mSpace [16], and OpenLink [17] are im-
plemented as web applications. All semantic web browsers we are
aware of treat semantic web browsing as a separate task, rather than
augmenting the normal browsing interface with semantic data.

5.5 Widgets
A huge number of sites exist that provide widgets that can be

embedded into pages to show visualization of data. Google Wid-
gets, ClearSpring.com, Widsets.com, WidgetBox.com, and Apple’s
Dashboard allow users to write small graphical web widgets and
then lay them out together on a screen. DataMashups.com addi-
tionally allows users to connect these widgets together.

The difference between Mash Maker widgets and these other
widget systems is more in their intended purpose, rather than
the underlying architecture. Mash Maker intends that widgets be
used to visualize potentially arbitrary RDF data, rather than being
loosely parameterised representations of a particular web site.

1http://diveintogreasemonkey.org
2http://research.microsoft.com/mapcruncher

5.6 Content Suggesters
Many tools exist that try to understand the user’s interests and

suggest things that they might want. StumbleUpon.com is a
browser toolbar that suggests web sites that one might be interested
in. Last.fm and Pandora.com are internet radio stations that try to
play songs that the user would be interested in. Amazon.com has
a product suggestion system that suggests products that you might
be interested in, based on past behavior.

6. CONCLUSIONS
Mash Maker as it is now is just a small step toward our even-

tual vision. Our intention is to move toward a personal proactive
internet in which a user’s computing devices anticipate what the
users wants and make use of semantic information on the internet
to present them with the information they want, presented the way
they want it, while requiring a minimum of interaction.

Mash Maker is currently available as a limited “technology pre-
view release”. Although use is currently invite only, members of
the public can sign up online to be put on a waiting list to be sent
an invite when we want more testers. Visit the URL below to try
out Intel®Mash Maker:
http://mashmaker.intel.com

Acknowledgments
This work has benefited from the input of many people. Particular
thanks should go to Kulki Dattatraya, David Gay, Badari Komman-
dur, Eric Paulos, Rusty Sears, Ian Smith, and K Sridharan.

7. REFERENCES
[1] Anthracite. http:

//www.metafly.com/products/anthracite.
[2] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly,

R. Dhanaraj, J. Hollenbach, A. Lerer, and D. Sheets.
Tabulator: Exploring and analysing linked data on the
semantic web. In Proceedings of the 3rd International
Semantic Web User Interaction Workshop, 2006.

[3] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan.
Personal information management with SEMEX. In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 921–923, New
York, NY, USA, 2005. ACM Press.

[4] Disco - hyperdata browser. http://sites.wiwiss.
fu-berlin.de/suhl/bizer/ng4j/disco/.

[5] R. Ennals and D. Gay. User-friendly functional programming
for web mashups. In ICFP ’07: Proceedings of the 2007
ACM SIGPLAN international conference on Functional
programming, pages 223–234, New York, NY, USA, 2007.
ACM Press.

[6] A. Faaborg and H. Lieberman. A goal-oriented web browser.
In CHI ’06: Proceedings of the SIGCHI conference on
Human Factors in computing systems, pages 751–760, New
York, NY, USA, 2006. ACM Press.

[7] M. Franklin, A. Halevy, and D. Maier. From databases to
dataspaces: A new abstraction for information management.
In SIGMOD Record, 2005.

[8] Google mashup editor.
http://editor.googlemashups.com.

[9] Haystack project.
http://groups.csail.mit.edu/haystack/.

[10] M. Hepp, D. Bachlechner, and K. Siorpaes. Ontowiki:
community-driven ontology engineering and ontology usage

32 SIGMOD Record, December 2007 (Vol. 36, No. 4)



based on wikis. In WikiSym ’06: Proceedings of the 2006
international symposium on Wikis, 2006.

[11] E. V. Hippel. Democratizing Innovation. MIT Press, 2006.
[12] HTML 4.01 specification.

http://www.w3.org/TR/REC-html40/.
[13] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank:

Experience the semantic web inside your browser. In
Proceedings of the 4th International Semantic Web
Conference, 2005.

[14] S. C. S. Lim and P. Lucas. Jda: a step towards large-scale
reuse on the web. In OOPSLA ’06: Companion to the 21st
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 586–601, New
York, NY, USA, 2006. ACM Press.

[15] Microformats. http://microformats.org.
[16] mspace. http://mspace.fm.
[17] OpenLink RDF Browser. http://demo.openlinksw.

com/DAV/JS/rdfbrowser/index.html.
[18] Introducing operator. http://labs.mozilla.com/

2006/12/introducing-operator.
[19] Yahoo Pipes. http://pipes.yahoo.com.
[20] Microsoft popfly. http://popfly.com.
[21] Qedwiki. http:

//services.alphaworks.ibm.com/qedwiki/.
[22] M. Sabbouh, J. Higginson, D. Gagne, and S. Semy. Web

mashup scripting language (poster). In 16th International
World Wide Web Conference, 2007.

[23] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[24] M. Stonebraker and J. M. Hellerstein. Content integration for
e-business. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, 2001.

[25] J. Wong and J. Hong. Marmite: end-user programming for
the web. In CHI ’06: CHI ’06 extended abstracts on Human
factors in computing systems, pages 1541–1546, New York,
NY, USA, 2006. ACM Press.

SIGMOD Record, December 2007 (Vol. 36, No. 4) 33




