Network Data Mining and Analysis: The NEMESZS
Project

Minos Garofalakis and Rajeev Rastogi

Bell Labs, Lucent Technologies

Abstract. Modern communication networks generate large amounts of opera-
tional data, including traffic and utilization statistics and alarm/fault data at vari-
ous levels of detail. These massive collections of network-management data can
grow in the order of several Terabytes per year, and typically hide “knowledge”
that is crucial to some of the key tasks involved in effectively managing a com-
munication network (e.g., capacity planning and traffic engineering). In this short
paper, we provide an overview of some of our recent and ongoing work in the
context of the NEMESTS project at Bell Laboratories that aims to develop
novel data warehousing and mining technology for the effective storage, ex-
ploration, and analysis of massive network-management data sets. We first give
some highlights of our work on Model-Based Semantic Compression (MBSC),
a novel data-compression framework that takes advantage of attribute semantics
and data-mining models to perform lossy compression of massive network-data
tables. We discuss the architecture and some of the key algorithms underlying
SPARTAN, a model-based semantic compression system that exploits predic-
tive data correlations and prescribed error tolerances for individual attributes to
construct concise and accurate Classification and Regression Tree (CaRT) mod-
els for entire columns of a table. We also summarize some of our ongoing work
on warehousing and analyzing network-fault data and discuss our vision of how
data-mining techniques can be employed to help automate and improve fault-
management in modern communication networks. More specifically, we describe
the two key components of modern fault-management architectures, namely the
event-correlation and the root-cause analysis engines, and propose the use of
mining ideas for the automated inference and maintenance of the models that lie
at the core of these components based on warehoused network data.

1 Introduction

Besides providing easy access to people and data around the globe, modern commu-
nication networks also generate massive amounts of operational data throughout their
lifespan. As an example, Internet Service Providers (ISPs) continuously collect traffic
and utilization information over their network to enable key network-management ap-
plications. This information is typically collected through monitoring tools that gather
switch- and router-level data, such as SNMP/RMON probes [13] and Cisco’s NetFlow
measurement tools [1]. Such tools typically collect traffic data for each network ele-
ment at fine granularities (e.g., at the level of individual packets or packet flows between
source-destination pairs), giving rise to massive volumes of network-management data
over time [7]. Packet traces collected for traffic management in the Sprint IP backbone

amount to 600 Gigabytes of data per day [7]! As another example, telecommunica-
tion providers typically generate and store records of information, termed “Call-Detail
Records” (CDRs), for every phone call carried over their network. A typical CDR is
a fixed-length record structure comprising several hundred bytes of data that capture
information on various (categorical and numerical) attributes of each call; this includes
network-level information (e.g., endpoint exchanges), time-stamp information (e.g., call
start and end times), and billing information (e.g., applied tariffs), among others [4].
These CDRs are stored in tables that can grow to truly massive sizes, in the order of
several Terabytes per year.

A key observation is that these massive collections of network-traffic and CDR data
typically hide invaluable “knowledge” that enables several key network-management
tasks, including application and user profiling, proactive and reactive resource man-
agement, traffic engineering, and capacity planning. Nevertheless, techniques for ef-
fectively managing these massive data sets and uncovering the knowledge that is so
crucial to managing the underlying network are still in their infancy. Contemporary
network-management tools do little more than elaborate report generation for all the
data collected from the network, leaving most of the task of inferring useful knowledge
and/or patterns to the human network administrator(s). As a result, effective network
management is still viewed as more of an “art” known only to a few highly skilled
(and highly sought-after) individuals. It is our thesis that, in the years to come, net-
work management will provide an important application domain for very innovative,
challenging and, at the same time, practically-relevant research in data mining and data
warehousing.

This short abstract aims to provide an overview of our recent and ongoing research
efforts in the context of NEMESZS (NEtwork-Management data warEhousing and
analySIS) , a Bell Labs’ research project that targets the development of novel data
warehousing and mining technology for the effective storage, exploration, and anal-
ysis of massive network-management data sets. Our research agenda for NEMESTS
encompasses several challenging research themes, including data reduction and approx-
imate query processing [2, 5, 6], mining techniques for network-fault management, and
managing and analyzing continuous data streams. In this paper, we first give some high-
lights of our recent work on Model-Based Semantic Compression (MBSC), a novel data-
compression framework that takes advantage of attribute semantics and data-mining
models to perform lossy compression of massive network-data tables. We also describe
the architecture and some of the key algorithms underlying SPARTAN, a system built
based on the MBSC paradigm, that exploits predictive data correlations and prescribed
error tolerances for individual attributes to construct concise and accurate Classifica-
tion and Regression Tree (CaRT) models for entire columns of a table [2]. We then
turn to our ongoing work on warehousing and analyzing network-fault data and dis-
cuss our vision of how data-mining techniques can be employed to help automate and
improve fault-management in modern communication networks. More specifically, we
describe the two key components of modern fault-management architectures, namely
the event-correlation and the root-cause analysis engines, and offer some (more specu-
lative) proposals on how mining ideas can be exploited for the automated inference and

maintenance of the models that lie at the core of these components based on warehoused
network data.

2 Model-Based Semantic Compression for Network-Data Tables

Data compression issues arise naturally in applications dealing with massive data sets,
and effective solutions are crucial for optimizing the usage of critical system resources
like storage space and I/O bandwidth, as well as network bandwidth (for transferring
the data) [4, 7]. Several statistical and dictionary-based compression methods have been
proposed for text corpora and multimedia data, some of which (e.g., Lempel-Ziv or
Huffman) yield provably optimal asymptotic performance in terms of certain ergodic
properties of the data source. These methods, however, fail to provide adequate solu-
tions for compressing massive data tables, such as the ones that house the operational
data collected from large ISP and telecom networks. The reason is that all these meth-
ods view a table as a large byte string and do not account for the complex dependency
patterns in the table. Compared to conventional compression problems, effectively com-
pressing massive tables presents a host of novel challenges due to several distinct char-
acteristics of table data sets and their analysis.

¢ Semantic Compression. Existing compression techniques are “syntactic” in the sense
that they operate at the level of consecutive bytes of data. Such syntactic methods typ-
ically fail to provide adequate solutions for table-data compression, since they essen-
tially view the data as a large byte string and do not exploit the complex dependency
patterns in the table. Effective table compression mandates techniques that are semantic
in nature, in the sense that they account for and exploit both (1) existing data dependen-
cies and correlations among attributes in the table; and, (2) the meanings and dynamic
ranges of individual attributes (e.g., by taking advantage of the specified error toler-
ances).

¢ Approximate (Lossy) Compression. Due to the exploratory nature of many data-
analysis applications, there are several scenarios in which an exact answer may not be
required, and analysts may in fact prefer a fast, approximate answer, as long as the
system can guarantee an upper bound on the error of the approximation. For exam-
ple, during a drill-down query sequence in ad-hoc data mining, initial queries in the
sequence frequently have the sole purpose of determining the truly interesting queries
and regions of the data table. Thus, in contrast to traditional lossless data compression,
the compression of massive tables can often afford to be lossy, as long as some (user-
or application-defined) upper bounds on the compression error are guaranteed by the
compression algorithm. This is obviously a crucial differentiation, as even small error
tolerances can help us achieve much better compression ratios.

In our recent work [2], we have proposed Model-Based Semantic Compression
(MBSC), a novel data-compression framework that takes advantage of attribute seman-
tics and data-mining models to perform guaranteed-error, lossy compression of massive
data tables. Abstractly, MBSC is based on the novel idea of exploiting data correlations
and user-specified “loss”/error tolerances for individual attributes to construct concise
data mining models and derive the best possible compression scheme for the data based
on the constructed models. To make our discussion more concrete, we focus on the

packets > 16

n, y
protocol |duration |byte-count|packets
http 12 2,000 1

hip | 16 | 24000 | 5 outtor mackets 1

ftp 27 | 100,000 | 24

http 15 20,000 3 packets > 10

ftp 32 | 300,000 | 35 . ,

http 19 40,000 11

http 26 58,000 | 18 byt;;)o(;lgt>

ftp 18 80,000 15 J y
protocol = http

protocol = http protocol = ftp

(a) Tuples in Table (b) CaRT Models

Fig. 1. Model-Based Semantic Compression.

architecture and some of the key algorithms underlying SPARTAN!, a system that
takes advantage of attribute correlations and error tolerances to build concise and ac-
curate Classification and Regression Tree (CaRT) models [3] for entire columns of a
table. More precisely, SPARTAN selects a certain subset of attributes (referred to as
predicted attributes) for which no values are explicitly stored in the compressed table;
instead, concise CaRTs that predict these values (within the prescribed error bounds)
are maintained. Thus, for a predicted attribute X that is strongly correlated with other
attributes in the table, SPARTAN is typically able to obtain a very succinct CaRT
predictor for the values of X, which can then be used to completely eliminate the col-
umn for X in the compressed table. Clearly, storing a compact CaRT model in lieu of
millions or billions of actual attribute values can result in substantial savings in storage.

Example 21 Consider the table with 4 attributes and 8 tuples shown in Figure 1(a),
where each tuple represents a data flow in an IP network. The categorical attribute pro-
tocol records the application-level protocol generating the flow; the numeric attribute
duration is the time duration of the flow; and, the numeric attributes byte-count and
packets capture the total number of bytes and packets transferred. Let the acceptable
errors due to compression for the numeric attributes duration, byte-count, and pack-
ets be 3, 1,000, and 1, respectively. Also, assume that the protocol attribute has to be
compressed without error (i.e., zero tolerance). Figure 1(b) depicts a regression tree for
predicting the duration attribute (with packets as the predictor attribute) and a classi-
fication tree for predicting the protocol attribute (with packets and byte-count as the

! [From Webster] Spartan: /’spart-*n/ (1) of or relating to Sparta in ancient Greece, (2) a:
marked by strict self-discipline and avoidance of comfort and luxury, b: sparing of words :
TERSE : LACONIC.

predictor attributes). Observe that in the regression tree, the predicted value of dura-
tion (label value at each leaf) is almost always within 3, the specified error tolerance,
of the actual tuple value. For instance, the predicted value of duration for the tuple with
packets = [is 15 while the original value is 12. The only tuple for which the predicted
value violates this error bound is the tuple with packets = 11, which is an marked as
an outlier value in the regression tree. There are no outliers in the classification tree.
By explicitly storing, in the compressed version of the table, each outlier value along
with the CaRT models and the projection of the table onto only the predictor attributes
(packets and byte-count), we can ensure that the error due to compression does not
exceed the user-specified bounds. Further, storing the CaRT models (plus outliers) for
duration and protocol instead of the attribute values themselves results in a reduction
Jfrom 8 to 4 values for duration (2 labels for leaves + I split value at internal node +
1 outlier) and a reduction from 8 to 5 values for protocol (3 labels for leaves + 2 split
values at internal nodes). il

To build an effective CaRT-based compression plan for the input data table, SPA-
RTAN employs a number of sophisticated techniques from the areas of knowledge
discovery and combinatorial optimization. Below, we list some of SPARTAN s salient
features.

o Use of Bayesian Network to Uncover Data Dependencies. A Bayesian network
is a directed acyclic graph (DAG) whose edges reflect strong predictive correlations
between nodes of the graph [12]. SPARTAN uses a Bayesian network on the table’s
attributes to dramatically reduce the search space of potential CaRT models since, for
any attribute, the most promising CaRT predictors are the ones that involve attributes in
its “neighborhood” in the network.

e Novel CaRT-selection Algorithms that Minimize Storage Cost. SPARTAN ex-
ploits the inferred Bayesian network structure by using it to intelligently guide the se-
lection of CaRT models that minimize the overall storage requirement, based on the
prediction and materialization costs for each attribute. We demonstrate that this model-
selection problem is a strict generalization of the Weighted Maximum Independent Set
(WMIS) problem [8], which is known to be A/"P-hard. However, by employing a novel
algorithm that effectively exploits the discovered Bayesian structure in conjunction with
efficient, near-optimal WMIS heuristics, SPARTAN is able to obtain a good set of
CaRT models for compressing the table.

o Improved CaRT Construction Algorithms that Exploit Error Tolerances. Since
CaRT construction is computationally-intensive, SPARTAN employs the following
three optimizations to reduce CaRT-building times: (1) CaRTs are built using random
samples instead of the entire data set; (2) leaves are not expanded if values of tuples in
them can be predicted with acceptable accuracy; (3) pruning is integrated into the tree
growing phase using novel algorithms that exploit the prescribed error tolerance for the
predicted attribute. SPARTAN then uses the CaRTs built to compress the full data set
(within the specified error bounds) in one pass.

An extensive experimental study of the SPARTAN system with several real-life
data tables has verified the effectiveness of our approach compared to existing syntactic
(gzip) and semantic (fascicle-based [10]) compression techniques [2].

2.1 Overview of Approach

Definitions and Notation. The input to the SPARTAN system consists of a n-attribute
table T', and a (user- or application-specified) n-dimensional vector of error tolerances
€ = [e1,...,€ey] that defines the per-attribute acceptable degree of information loss
when compressing 7. Let ¥ = {X1,...,X,} denote the set of n attributes of T" and
dom(X;) represent the domain of attribute X;. Intuitively, e;, the it* entry of the toler-
ance vector € specifies an upper bound on the error by which any (approximate) value
of X; in the compressed table T, can differ from its original value in 7. For a numeric
attribute X;, the tolerance e; defines an upper bound on the absolute difference between
the actual value of X; in T and the corresponding (approximate) value in 7. That is, if
z, ' denote the accurate and approximate value (respectively) of attribute X; for any
tuple of T, then our compressor guarantees that z € [z’ — e;, 2’ + e;]. For a categorical
attribute X;, the tolerance e; defines an upper bound on the probability that the (ap-
proximate) value of X; in T, is different from the actual value in 7. More formally, if
z, ¢’ denote the accurate and approximate value (respectively) of attribute X; for any
tuple of 7', then our compressor guarantees that P[z = z'] > 1 — e;. (Note that our
error-tolerance semantics can also easily capture lossless compression as a special case,
by setting e; = 0 for all 7.)

Model-Based Semantic Compression. Briefly, our proposed model-based methodol-
ogy for semantic compression of data tables involves two steps: (1) exploiting data
correlations and (user- or application-specified) error bounds on individual attributes to
construct data mining models; and (2) deriving a good compression scheme using the
constructed models. We define the model-based, compressed version of the input table
T asapair T, =< T',{Mj,..., Mp} > such that T can be obtained from 7T, within
the specified error tolerance e. Here, (1) T" is a small (possibly empty) projection of
the data values in T that are retained accurately in T,; and, (2) {M1,..., M,} is a set
of data-mining models. A definition of our general model-based semantic compression
problem can now be stated as follows.

[Model-Based Semantic Compression (MBSC)]: Given a multi-attribute table 7" and
a vector of (per-attribute) error tolerances €, find a set of models { M, ..., M, } and a
compression scheme for T' based on these models T, =< T, {M, ..., Mp} > such
that the specified error bounds é are not exceeded and the storage requirements |T,| of
the compressed table are minimized. il

Given the multitude of possible models that can be extracted from the data, the
general MBSC problem definition covers a huge design space of possible alternatives
for semantic compression. We now provide a more concrete statement of the problem
addressed in our work on the SPARTAN system.

[SPARTAN CaRT-Based Semantic Compression]: Given a multi-attribute table T
with a set of attributes X', and a vector of (per-attribute) error tolerances €, find a subset
{X1,...,X,} of X and a set of corresponding CaRT models { M, ..., M} such that:
(1) model M; is a predictor for the values of attribute X; based solely on attributes
in ¥ — {Xy,...,Xp}, foreach i = 1,...,p; (2) the specified error bounds & are

not exceeded; and, (3) the storage requirements |T,| of the compressed table T, =<
T, {Mi,...,Mp} > are minimized. il

Abstractly, SPARTAN seeks to partition the set of input attributes X into a set of
predicted attributes { X1, ..., Xp} and a set of predictor attributes X — {X1, ..., Xp}
such that the values of each predicted attribute can be obtained within the specified error
bounds based on (a subset of) the predictor attributes through a small classification
or regression tree (except perhaps for a small set of outlier values). Note that we do
not allow a predicted attribute X; to also be a predictor for a different attribute. This
restriction is important since predicted values of X; can contain errors, and these errors
can cascade further if the erroneous predicted values are used as predictors, ultimately
causing error constraints to be violated. The final goal, of course, is to minimize the
overall storage cost of the compressed table. This storage cost |T,| is the sum of two
basic components:

1. Materialization cost, i.e., the cost of storing the values for all predictor attributes
X —{X1,..., Xp}. This cost is represented in the 7" component of the compressed
table, which is basically the projection of T" onto the set of predictor attributes. The
storage cost of materializing attribute X; is denoted by MaterCost(X;).

2. Prediction cost, i.e., the cost of storing the CaRT models used for prediction plus
(possibly) a small set of outlier values of the predicted attribute for each model. (We
use the notation X; — X; to denote a CaRT predictor for attribute X; using the set
of predictor attributes X; C X — {X1,...,Xp}.) The storage cost of predicting
attribute X; using the CaRT predictor X; — X is denoted by PredCost(X; —
X;); this does nor include the cost of materializing the predictor attributes in X;.

22 SPARTAN System Architecture

As depicted in Figure 2, the architecture of the SPARTAN system comprises of
four major components: the DEPENDENCYFINDER, the CARTSELECTOR, the CART-
BUILDER, and the ROWAGGREGATOR. In the following, we provide a brief overview
of each SPARTAN component; for a more detailed description of each component
and the relevant algorithms, the interested reader is referred to [2].

o DEPENDENCYFINDER. The purpose of the DEPENDENCYFINDER component is to
produce an interaction model for the input table attributes, that is then used to guide
the CaRT building algorithms of SPARTAN . The main observation here is that, since
there is an exponential number of possibilities for building CaRT-based attribute predic-
tors, we need a concise model that identifies the strongest correlations and “predictive”
relationships in the input data.

The approach used in the DEPENDENCYFINDER component of SPARTAN is to
construct a Bayesian network [12] on the underlying set of attributes X'. Abstractly,
a Bayesian network imposes a Directed Acyclic Graph (DAG) structure G on the set
of nodes X, such that directed edges capture direct statistical dependence between at-
tributes. (The exact dependence semantics of G are defined shortly.) Thus, intuitively, a
set of nodes in the “neighborhood” of X; in G (e.g., X;’s parents) captures the attributes

Error tolerance vector

‘e=lel, e2,e3,e4,e5,¢e6,e7] t

" /’T\ s
X6

Table T
X1 [Xo[X3 X4 [X5[X6[X7

CaRT for X3
\within error e3

X3=..
X3=..

v/

BuildCaRT({X4X7}->X3,¢3) -

3 o

Predictor Attributes +
CaRT Predictors +
Error Tolerance,

T, =
Compressed E
Table o e o o o e cecmemeoeooo

Fig.2. SPARTAN System Architecure.

that are strongly correlated to X; and, therefore, show promise as possible predictor at-
tributes for X;.

o CARTSELECTOR. The CARTSELECTOR component constitutes the core of SPA-
RTAN’s model-based semantic compression engine. Given the input table T' and er-
ror tolerances e;, as well as the Bayesian network on the attributes of 7" built by the
DEPENDENCYFINDER, the CARTSELECTOR is responsible for selecting a collection
of predicted attributes and the corresponding CaRT-based predictors such that the fi-
nal overall storage cost is minimized (within the given error bounds). As discussed
above, SPARTAN’s CARTSELECTOR employs the Bayesian network G built on X
to intelligently guide the search through the huge space of possible attribute prediction
strategies. Clearly, this search involves repeated interactions with the CARTBUILDER
component, which is responsible for actually building the CaRT-models for the predic-
tors (Figure 2).

We demonstrate that even in the simple case where the set of nodes that is used to
predict an attribute node in G is fixed, the problem of selecting a set of predictors that
minimizes the combination of materialization and prediction cost naturally maps to the
Weighted Maximum Independent Set (WMIS) problem, which is known to be N"P-hard
and notoriously difficult to approximate [8]. Based on this observation, we propose
a CaRT-model selection strategy that starts out with an initial solution obtained from
a near-optimal heuristic for WMIS [9] and tries to incrementally improve it by small
perturbations based on the unique characteristics of our problem.

e CARTBUILDER. Given a collection of predicted and (corresponding) predictor at-
tributes X; — X, the goal of the CARTBUILDER component is to efficiently construct
CaRT-based models for each X; in terms of X for the purposes of semantic compres-
sion. Induction of CaRT-based models is typically a computation-intensive process that
requires multiple passes over the input data [3]. As we demonstrate, however, SPA-
RTAN"s CaRT construction algorithms can take advantage of the compression seman-
tics and exploit the user-defined error-tolerances to effectively prune computation. In

addition, by building CaRTs using data samples instead of the entire data set, SPA-
RTAN is able to further speed up model construction.

e ROWAGGREGATOR. Once SPARTAN’s CARTSELECTOR component has final-
ized a “good” solution to the CaRT-based semantic compression problem, it hands off
its solution to the ROWAGGREGATOR component which tries to further improve the
compression ratio through row-wise clustering. Briefly, the ROWAGGREGATOR uses
a fascicle-based algorithm [10] to compress the predictor attributes, while ensuring
(based on the CaRT models built) that errors in the predictor attribute values are not
propagated through the CaRTs in a way that causes error tolerances (for predicted at-
tributes) to be exceeded.

3 Data Mining Techniques for Network-Fault Management

Modern communication networks have evolved into highly complex systems, typically
comprising large numbers of interconnected elements (e.g., routers, switches, bridges)
that work together to provide end-users with various data and/or voice services. This
increase in system scale and the number of elements obviously implies an increased
probability of faults occurring somewhere in the network. Further, the complex inter-
dependencies that exist among the various elements in the network cooperating to pro-
vide some service imply that a fault can propagate widely, causing floods of alarm
signals from very different parts of the network. As an example, a switch failure in an
IP network can cause the network to be partitioned resulting in alarms emanating from
multiple elements in different network partitions and subnets, as they detect that some
of their peers are no longer reachable. To deal with these situations, modern network-
management platforms provide certain fault-management utilities that try to help ad-
ministrators make sense of alarm floods, and allow them to quickly and effectively zero
in on the root cause of the problem.

Typically, the architecture of a fault-management subsystem comprises two key
components: the Event Correlator (EC) and the Root-Cause Analyzer (RCA), as de-
picted in Figure 3. The goal of the Event Correlator is improve the information content
of the observed events by filtering out uninteresting, “secondary” alarms from the alarm
flood arriving at the network-management station [11, 14]. (Secondary alarms or symp-
toms are observable events that are directly caused by other events observed in the
network.) This filtering is implemented with the help of a set of fault-propagation rules
that the Event Correlator uses to model the propagation of alarm signals in the under-
lying network. The output of the Event Correlator, i.e., the “primary” alarm signals in
the observed set of alarms, are then fed into the Root-Cause Analyzer whose goal is to
produce a set of possible root causes for the observed problem along with associated
degrees of confidence for each “guess” (Figure 3).

The fault-propagation rules that model the propagation of alarms throughout the
underlying network form the basic core of the Event Correlation engine. In general,
these rules try to capture the probabilistic causal relationships that exist between the
various alarm signals in the network. As an example, Figure 4 depicts a small subset of
such fault-propagation rules; based on the figure, alarm signal A, causes the occurrence
of alarm signal A3 with probability pi3 and that of alarm signal A, with probability
p14. Thus, the fault-propagation rules that lie at the heart of the Event Correlator are

"PRIMARY"'

ALARMS { (RC1, confl),
(RC2, conf2),
o

Fig. 3. Fault-Management System Architecture.

essentially equivalent to a causal Bayesian model [12] for network alarm signals. Given
such a causal model for network alarms, the problem of filtering out secondary events
in the Event Correlator can be formulated as an optimization problem in a variety of
interesting ways. For example, a possible formulation would be as follows: Given a
confidence threshold # € (0,1) and the set of all observed alarm signals A, find a
minimal subset P of A such that P[A|P] > 6 (i.e., the probability that A was actually
“caused” by P exceeds the desired confidence).

Fig. 4. Example Fault-Propagation Model for EC.

Current State-of-the-Art. There are several commercially-available products that offer
event-correlation services for data-communication networks. Examples include SMARTS
InCharge [14], the Event-Correlation Services (ECS) component of the HP OpenView
network-management platform, CISCO’s InfoCenter, GTE’s Impact, and so on. A com-
mon characteristic of all these Event Correlators is that they essentially force the net-
work administrator(s) to “hand-code” the fault-propagation rules for the underlying
network using either a language-based or a graphics-based specification tool. This is
clearly a very tedious and error-prone process for any large-scale IP network compris-
ing hundreds or thousands of heterogeneous, multi-vendor elements. Furthermore, it is
non-incremental since a large part of the specification may need to be changed when the
topology of the network changes or new network elements are introduced. We believe

10

that such solutions are simply inadequate for tomorrow’s large-scale, heterogeneous,
and highly-dynamic IP networking environments.

Our Proposed Approach. Rather than relying on human operators to “hand-code” the
core of the Event-Correlation engine, we propose the use of data-mining techniques to
help automate the task of inferring and incrementally maintaining the causal model of
network alarm signals (Figure 5). For the inference task (typically performed off-line),
our data-mining tool can exploit the database of alarm signals collected and stored
over the lifespan of the network along with important “domain-specific knowledge”
(e.g., network topology and routing-protocol information) to automatically construct
the correct causal model of fault-propagation rules. For the maintenance task (typi-
cally performed on-line), our data-mining tool can again exploit such “domain-specific
knowledge” along with information on network updates (e.g., topology changes or new
additions to the network) and the incoming stream of network alarm signals to automat-
ically effect the appropriate updates to the fault-propagation model.

EC Inference (off-line) EC Maintenance (on-line)

Alarms

Network Updates
Alarm
DB \
e é‘&g_’ %

"Domam

Knowledge"
"Domain
Knowledge"

Fig. 5. Exploiting Data Mining for Automated EC Inference and Maintenance.

We should note here that, even though the problem of inferring causal Bayesian
models from data has been studied for some time in the data-mining and machine-
learning communities [12], the automatic extraction of event-correlation models for
communication networks presents a host of new challenges due to several unique char-
acteristics of the problem domain. First, the issue of how to effectively incorporate and
exploit important “domain-specific knowledge” (like the network topology or routing-
protocol information) in the model-learning algorithm is certainly very challenging and
non-trivial. Second, it is important to incorporate the temporal aspects of network alarm
signals in the data-mining process; for example, alarms that occur within a small time
window are more likely to be correlated than alarms separated by larger amounts of
time. Finally, the learning algorithm needs to be robust to lost or spurious alarm sig-
nals, both of which are common phenomena in modern communication networks.

For the Root-Cause Analyzer, data-mining techniques can again be exploited; for
example, our tools can use failure data collected from the field to automatically learn
failure “signatures” and map them to an associated root cause. Once again, it is cru-

11

cial to effectively incorporate important “domain-specific knowledge” (like the network
topology) in the data-mining process.

4 Conclusions

Operational data collected from modern communication networks is massive and hides
“knowledge” that is invaluable to several key network-management tasks. In this short
abstract, we have provided an overview of some of our recent and ongoing work in
the context of the NEMESIS project at Bell Labs that aims to develop novel data
warehousing and mining technology for the effective storage, exploration, and analysis
of massive network-management data sets. We believe that, in years to come, network
management will provide an important application domain for innovative, challenging
and, at the same time, practically-relevant research in data mining and warehousing.

Acknowledgements: Many thanks to Shivnath Babu (our coauthor in [2]) for his valu-
able contributions on the SPARTAN semantic-compression engine.

References

1. “NetFlow Services and Applications”. Cisco Systems White Paper, 1999.

2. S. Babu, M. Garofalakis, and R. Rastogi. “SPARTAN: A Model-Based Semantic Compres-
sion System for Massive Data Tables”. In Proc. of the 2001 ACM SIGMOD Intl. Conf. on
Management of Data, May 2001.

3. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. “Classification and Regression
Trees”. Chapman & Hall, 1984.

4. A.L.Buchsbaum, D.F. Caldwell, K. Church, G.S. Fowler, and S. Muthukrishnan. “Engineer-
ing the Compression of Massive Tables: An Experimental Approach”. In Proc. of the 11th
Annual ACM-SIAM Symp. on Discrete Algorithms, January 2000.

5. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. “Approximate Query Processing
Using Wavelets”. In Proc. of the 26th Intl. Conf. on Very Large Data Bases, September 2000.

6. A. Deshpande, M. Garofalakis, and R. Rastogi. “Independence is Good: Dependency-Based
Histogram Synopses for High-Dimensional Data”. In Proc. of the 2001 ACM SIGMOD Intl.
Conf. on Management of Data, May 2001.

7. C.Fraleigh, S. Moon, C. Diot, B. Lyles, and F. Tobagi. “Architecture of a Passive Monitoring
System for Backbone IP Networks”. Technical Report TR0O0-ATL-101-801, Sprint Advanced
Technology Laboratories, October 2000.

8. ML.R. Garey and D.S. Johnson. “Computers and Intractability: A Guide to the Theory of
NP-Completeness”. W.H. Freeman, 1979.

9. M.M. Halldérsson. “Approximations of Weighted Independent Set and Hereditary Subset
Problems”. Journal of Graph Algorithms and Applications, 4(1), 2000.

10. H.V. Jagadish, J. Madar, and R. Ng. “Semantic Compression and Pattern Extraction with
Fascicles”. In Proc. of the 25th Intl. Conf. on Very Large Data Bases, September 1999.

11. G. Jakobson and M.D. Weissman. “Alarm Correlation”. IEEE Network, November 1993.

12. Judea Pearl. “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence”. Morgan Kaufmann Publishers, Inc., 1988.

13. William Stallings. “SNMP, SNMPv2, SNMPv3, and RMON 1 and 2”. Addison-Wesley
Longman, Inc., 1999. (Third Edition).

14. S. Yemini, S. Kliger, E. Mozes, Y. Yemini, and D. Ohsie. “High Speed & Robust Event
Correlation”. IEEE Communications Magazine, May 1996.

12

