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DEFINITION

A majority of today’s data is constantly evolving and fundartally distributed in nature. Data for almost any largaksc
data-management task is continuously collected over aaviele and at a much greater rate than ever before. Compdrad to
ditional, centralized stream processing, querying sudelscale, evolving data collections poses new challemyesmainly
to the physical distribution of the streaming data and th@roinication constraints of the underlying network. Dsited
stream processing algorithms should guarantee efficientymly in terms ofspaceand processing timgas conventional
streaming techniques), but also in terms of¢benmunication loadmposed on the network infrastructure.

HISTORICAL BACKGROUND

The prevailing paradigm in database systems has been tenidirg the management oéntralizeddata: how to organize,
index, access, and query data that is held centrally on desingchine or a small number of closely linked machines. Work
on parallel and distributed databases has focused on differotions of consistency and methods for effectivelyrithigt-

ing query execution plans over multi-node architectureshe-issues of monitoring or querying distributed, high-speata
streams in a space-, time- and communication-efficient mawere not addressed in this realm. Similarly, the bulk ofyea
research on data-streaming algorithms and systems hasrtoated on @entralizedmodel of computation, where the stream-
processing engine has direct access to all the streamiagrél@drds. Centralized stream-processing models can wdlyio
ignore communication-efficiency issues; still, such med®k also painfully inadequate for many of the prototypétzth-
streaming applications, including IP-network and sensbimmonitoring.

SCIENTIFIC FUNDAMENTALS
Tracking and querying large-scale, evolving data colietiposes a number of challenges. First, in contrast witherdgional,
centralized models of data-stream processing, the taskééntlydistributed that is, the underlying infrastructure comprises
several remote sites (each with its own local data sour@)ddin exchange information through a communication ndtwor
This also means that there typically are import@rhmunication constraintsving to either network-capacity restrictions (e.g.,
in IP-network monitoring, where the volumes of collecteitization and traffic data can be huge [7]), or power and badtw
restrictions (e.g., in wireless sensor networks, wheremanication overhead is the key factor in determining sebsttery
life [18]). Second, each remote site may seeigh-speed strearof data and, thus, must solve a local (centralized) stream-
processing problem within its own local resource limitagpsuch aspaceor CPU-timeconstraints. This is certainly true for
IP routers (that cannot possibly store the log of all obsgpeacket traffic at high network speeds), as well as wireless@
nodes (that, even though may not observe large data voluypésally have very little memory on-board). Finally, ajgaitions
often requirecontinuous monitoringf the underlying streams (i.e., real-time tracking of meaments or events), not merely
one-shot responses to sporadic queries.

To summarize, the focus is on techniques for processingepiever collections of remote data streams. Such techgique
have to work in a distributed setting (i.e., over a commutmcanetwork), support one-shot or continuous query ansyserd
be space, time, and communication efficient. It is importamtote that, for most realistic distributed streaming agajions,
the naive solution of collecting all the data in a single timais simplynot a viable option: the volume of data collection
is too high, and the capacity for data communication reddfifow. Thus, it becomes critical to exploit local processi
resources to effectively minimize the burden on the comeation network. This establishes the fundamental condej-o
network processing”if more computational work can be dométhin the network to reduce the communication needed, then
it is possible to significantly improve the value of the netkdy increasing its useful life and communication capaend
extending the range of computations possible over the mkhildnis is a key idea that permeates the bulk of existing vasrk
distributed data-stream processing — this work can, in ggnige characterized along three (largely orthogonalyaxe

(1) Querying ModelThere are two broad classes of approaches to in-networly puecessing, by analogy to types of queries
in traditional DBMSs. In the@ne-shotmodel, a query is issued by a user at some site, and must betsty “pulling” the



current state of data in the network. For simple aggreg#tescan be done in a few rounds of communication where only
small, partial-aggregate messages are exchanged ovenmirsparee of the network. For more compldwlistic aggregates
(that depend on the complete data distribution, such astidggropk#, count-distinct, and so on), simple combination of
partial results is insufficient, and instead clever comptesaummaries give a compact way to accurately approximageyq
answers.

In the continuousmodel, users can register a query with the requirement tleathswer be tracked continuously. For
instance, a special case of such a continuous querdist@uted triggerthat must fire in (near) real-time when an aggregate
condition over a collection of distributed streams is $igis(e.g., to catch anomalies, SLA violations, or DDoS #&itaia
an ISP network). This continuous monitoring requiremeiges further challenges, since, even using tree compatatid
summarization, it is still too expensive to communicaterg\igne new data is received by one of the remote sites. ldstea
work on continuous distributed streams has focused on “pasled” techniques that tradeoff result accuracy for reduc
communication cost, by apportioning the error in the quargwaer acrossilter conditions installed locally at the sites to
reduce communication.

Approximatiorandrandomizatiortechniques are also essential components of the distdistiteam querying model, and
play a critical role in minimizing communication. Approxate answers are often sufficient when tracking the stadistic
properties of large-scale distributed systems, sincedbesfis typically on indicators or patterns rather than igedg-defined
events. This is a key observation, allowing for technighes ¢ffectively tradeoff efficiency and approximation aemy.

(2) Communication ModelThe architecture and characteristics of the underlyingroanication network have an obvious
impact on the design of effective distributed stream prsiogstechniques. Most existing work has focusech@rarchical
(i.e., tree) network architectures, due to both their cphea simplicity and their importance for practical sceosr(e.g.,
sensornet routing trees [18]). As an example, Figure 1(pictiea simplesingle-levelhierarchical model withn + 1 sites
andn (distributed) update streams. Stream updates arriveraanisly at the remote sités. . ., m, whereas sité is a special
coordinatorsite that is responsible for generating answers to (oneahcontinuous) user querig€3 over then distributed
streams. In this simple hierarchical model, theremote sites do hot communicate with each other; insteaidluasated in
Figure 1(a), each remote site exchanges messages onhheitbordinator, providing it with state information for (§etreams
observed locally at the site.

More generalmnulti-levelhierarchies have individual substream-monitoring sitéiseleaves and internal nodes of a general
communication treeand the goal is to effectively answer or track a stream q@€8, . . ., S,,) at theroot nodeof the tree. The
most general setting afelly-distributedmodels, where individual monitor sites are connected tijincan arbitrary underlying
communication networlFigure 1(b)); this is a distinctly different distributegistem architecture since, unlike hierarchical
systems, no centralized authority/coordination exist$ e end goal is for all the distributed monitors to efficigmeach
some form ofconsensuen the answer of a distributed stream query.

Substreams

Substreams
Approximate Answe /
A n,
for Q(S1,...,Sn) . . Substreams
/ Si.p -Sﬂ‘
Slilamw § S1lm u u SN
Substreams / Substreams

;

Coordinator
(Site 0)

i

Update State
Messages

SN R
5 T SubslrearrIs T SubstreanIs
(@) (b)

Figure 1:(a) Single-level hierarchical stream-processing modgl F(lly-distributed model.

Besides the connectivity model, other important networ&rahteristics for distributed stream processing incluide
potential for broadcasting or multicasting messages ¢3 $é.g., over a limited radio range as in wireless sensgrraetd the
node/link-failure and data-loss characteristics of thgpsuting hardware.

(3) Class of QueriesThe key dichotomy between simplepn-holisticaggregate queries (e.gd N, SUM AVG) andholistic
aggregates (e.g., median) has already been discussedly,diedistic aggregates introduce many more challengesffacient
distributed streaming computation. Another importantidction is that betweeduplicate-sensitivaggregates (that support
bag/multi-set semantics, such as med&y or top+) andduplicate-insensitivaggregates (that support set semantics, such as
M Nor count-distinct). Finally, another important class iattbf complexcorrelationqueries that combine/correlate streaming



data across different remote sites (e.g., through a stregoin computation). Such correlations can be critical in unéderding
important trends and making informed decisions about nreasent or utilization patterns. Different classes of strizgy
gueries typically require different algorithmic machinéor efficient distributed computation.

The remainder of this section provides a brief overview ohedey results in distributed data streaming, for both the
one-shot and continuous querying models, and concludésavghort survey of systems-related efforts in the area.

One-Shot Distributed Stream Processing. Madden et al. [18] present simple, exdee-based aggregatioachemes for
sensor networks and propose a general framework basgenamatefuse andevaluatefunctions for combining partial results
up the aggregation tree. They also propose a classificatidifferent aggregate queries based on different propersigch as
duplicate in/sensitivity, example or summary results, otonicity, and whether the aggregateaigebraicor holistic (which
essentially translates to whether the intermediate patage is of constant size or growing). While the exact comafen of
holistic aggregates requires linear communication castranteed-qualitgpproximateresults can be obtained at much lower
cost by approximating intermediate results throagmposable data synopgés 9].

Robustnests a key concern with such hierarchical aggregation scheasea single failure/loss near the root of the tree
can have a dramatic effect on result accurddylti-path routingschemes mitigate this problem by propagating partial tesul
along multiple different paths. This obviously improvekaikility and reduces the impact of potential failures; ddaion, this
improved reliability often comes essentially “for free”.@e in wireless sensornets where the network is a natucaldmast
medium). Of course, multi-path routing also implies tha #ame partial results can be accounted for multiple timélsan
final aggregate. As observed by Nath et al. [20], this dupboahas no effect on aggregates that are natuhyer and
Duplicate Insensitive (ODJ)such asM N and MAX; on the other hand, for non-ODI aggregates, suclsldgl and COUNT,
duplicate-insensitive sketch synop¢es., based on the Flajolet-Martin sketch [9]) can be epgaldo give effective, low-
cost, multi-path approximations [20]. Hybrid approachembining the simplicity of tree aggregation (away from toetr
node) and the robustness of multi-path routing (closereadiot) have also been explored [19].

Gossip(or, epidemi¢ protocols for spreading information offer an alternatyproach for robust distributed computation
in the more general, fully-distributed communication miodggure 1(b)). ODI aggregates (and sketches) naturallinfi
the gossiping model, which basically guarantees that albdes of a network will converge to the correct global ODIragg
gate/sketch afte©(logn) rounds of communication. For non-ODI aggregates/sketdkesipe et al. [15] propose a novel
gossip protocol (termepdush-suthat also guarantees convergence in a logarithmic nunmberumds, and avoids double
counting by splitting up the aggregate/sketch and ensticioigservation of mass” in each round of communication.

Continuous Distributed Stream Processing. The continuous model places a much more stringent demarfteatidtributed
stream processing engine, since remote sites must cadisbtarcontinuouslymaintain a query answer that is accurate (e.g.,
within specified error bounds) based on the current statkeo$tream(s). Approximation plays a critical role in theigie ®f
communication-efficient solutions for suchntinuous monitoringasks. In a nutshell, the key idea is to tradeoff result aaxyur
and local processing at sites for reduced communicatiots cbg installinglocal filters at the remote sites to allow them to
only “push” significant updates to the coordinator; of cajthese distributed local filters would have todade that is, they
should guarantee the overall error bound for the globalygresult (based on the exact current state) at the coordinBfis
idea of local traffic filtering for continuous distributedeyies is pictorially depicted in Figure 2(a).

A key concept underlying most continuous distributed manirig schemes is that @fdaptive slack allocatior— that is,
adaptively distributing the overall “slack” (or, error émnce) in the query result across the local filters at diffeparticipating
sites based on observed local update patterns. Obviokslgpimplexity of such slack-distribution mechanisms depem the
nature of the aggregate query being tracked. Olston etHIcfihsider the simpler case of algebraic aggregates (vidneading
down the overall slack to safe local filters is straightforjaand discuss adaptive schemes that continuously gnowkdocal
filters based on the frequency of observed local violatidissexpected, the situation is more complicated in the cakelidtic
aggregates: Babcock and Olston [2] discuss a scheme f&irigean approximate global topset of items using a cleverly-built
set of local constraints that essentially “align” tleeal top-k set at a site with thglobal top-k; furthermore, their algorithm
also retains some amount of slack at the coordinator to dibevypossible localized resolutions of constraint violaso Das
et al. [8] consider the problem of monitoring distributettegpression cardinalities and propose tracking algoritthat take
advantage of the set-expression semantics to appropriatelrge” updates arriving at the local sites.

Simple slack-allocation schemes are typically based orive static modebf local-site behavior; that is, the site’s “value”
is assumed constant since the last update to the coordimathicommunication is avoided as long as this last updatesval
stays within the slack bounds. Cormode and Garofalakisi&ppse the use of more sophisticatéghamic prediction models
of temporal site dynamics in conjunction with approprigtetshing techniques for communication-efficient monigriof
complex distributed aggregate queries. Their idea is tmadlach site and the coordinator to share a prediction of hewite’s
local stream(s) (and, their sketch synopses) evolve aver.tiThe coordinator uses this prediction to provide cowmtirsguery
answers, while the remote site checks locally that the ptiedi stays “close” to the actual observed streaming thistibn
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Figure 2:(a) Using local filters for continuous distributed query ggssing: Most updates fall within the local-filter ranged agquire no

communication with the coordinator (that can provide agpnate answers with guarantees depending on the filter hsfiit only updates

outside the local-filter range require new information td‘peshed” by the local site to the coordinator. (b) Predictimsed approximate
query tracking: Predicted sketches are based on simplé&poedmodels of local-stream behavior, and are kept inedyetween the coordi-
nator (for query answering) and the remote sites (for tragkirediction error).

(Figure 2(b)). Of course, using a more sophisticated ptiesianodel can also impose some additional communication to
ensure that the coordinator’s view is kept in-sync with tpetardate local stream models (at the remote sites). Cozdbirith
intelligent sketching techniques and methods for bounthiegverall query error, such approaches can be used todlacle
class of complex, holistic queries, only requiring conasenmunication exchanges when prediction models are naelong
accurate [5]. Furthermore, their approach can also be algtiextended to multi-level hierarchical architectureSimilar
ideas are also discussed by Chu et al. [4] who consider tH#eoofin-network probabilistic model maintenanteenable
communication-efficient approximate tracking of sensbreadings.

A common feature of several distributed continuous momitpproblems is continuously evaluating a condition over di
tributed streaming data, arfting when the condition is met. When tracking sudistributed triggers only values of the
“global” continuous query that are above a certain thrashot of interest (e.g., fire when the total number of connastio an
IP destination address exceeds some value) [13]. Recekthasraddressed versions of this distributed triggeringlera for
varying levels of complexity of the global query, rangingrr simple counts [16] to complex functions [26] and matnmakysis
operators [12]. Push-based processing using local-fitteditions continues to play a key role for distributed teggas well;
another basic idea here is to exploit the threshold to altmwef’en more effective local traffic filtering (e.g., “wideyét safe
filter ranges when the query value is well below the threshold

Systemsand Prototypes. Simple, algebraic in-network
aggregation techniques have found widespread ac-
ceptance in the implementation of efficient sensor
monitoring systems (e.g., TAG/TinyDB [18]).
the other hand, more sophisticated approximate
network processing tools have yet to gain wide ad Ofurce)
tion in system implementations. Of course, Dis-
tributed Stream-Processing Engines (DSPEs) are $ilrce)

a nascent area for systems research: only a few Node 2

research prototypes are currently in existence (e.g.,

Telegraph/TelegraphCQ [25], Borealis/Medusa [3], Figure 3:Distributed stream-processing dataflow.

P2 [17]). The primary focus in these early efforts has

been on providing effective system support feng-running stream-processing dataflogg®mprising connected, pipelined
guery operators) over a distributed architecture (Figlir&8r instance, Balazinska et al. [3] and Shah et al. [25udis mech-
anisms and tools for supporting parallel, highly-avaiéalfhult-tolerant dataflows; Loo et al [17] propose toolsdeclarative
dataflow design and automated optimizations; Pietzuch g2 consider the problem of distributed dataflow operatace-
ment and propose techniques based on a cost-space reptiesethiat optimize for network-efficiency metrics (e.gandwidth,
latency); finally, Xing et al. [27] give tools for derivingsiributed dataflow schedules that are resilient to loadhtiaris in the
input data streams. To deal with high stream rates and paltsgstem overload, these early DSPEs typically employesom
form of load shedding3] where tuples from operators’ input stream(s) are drogpeéher randomly or based on different QoS
metrics). Unfortunately, such load-shedding schemesatawifer any hard guarantees on the quality of the resultingry

Node 3



answers. A mechanism based rewision tuplescan be employed in the Borealis DSPE to ensure that res@svantually
correct[3]. AT&T’s Gigascope streaming DB for large-scale IP-netlvmonitoring [7] uses approximation tools (e.g., sam-
pling, sketches) to efficiently track “line-speed” dataains at the monitoring endpoints, but has yet to exploressselated

to the physical distribution of the streams and holisticripse

KEY APPLICATIONS

Enterprise and ISP Network Security: The ability to efficiently track network-wide traffic pattes plays a key role in
detecting anomalies and possible malicious attacks onehgonk infrastructure. Given the sheer volume of measurgme
data, continuously centralizing all network statisticsiimply not a feasible option, and distributed streamingtégues are
needed.

Sensornet Monitoring and Data Collection: Tools for efficiently tracking global queries or collectiatjmeasurements from
a sensornet have to employ clever in-network processirmnigaes to maximize the lifetime of the sensors.

Clickstream and Weblog M onitoring: Monitoring the continuous, massive streams of weblog dalfacted over distributed
web-server collections is critical to the real-time datatof potential system abuse, fraud, and so on.

FUTURE DIRECTIONS

The key algorithmic idea underlying the more sophisticatstributed data-stream processing techniques discussthis
article is that of effectively trading off space/tinamd communicatiowith the quality of an approximate query answer. Ex-
ploring some of the more sophisticated algorithmic toosedssed here in the context of real-life systems and apiplisais
one important direction for future work on distributed sires; other challenging areas for future research, include:

e Extensions to other application areas and more complex aormation models, e.g., monitoring P2P services over
shared infrastructure (OpenDHT [23] over PlanetLab), agalidg with constrained communication models (e.g., mtgent-
connectivity and delay-tolerant networks (DTNSs) [14]).

e Richer classes of distributed queries, e.g., set-valuedycpnswers, machine-learning inference models [11].

e Developing a theoretical/algorithmic foundation of distited data-streaming models: What are fundamental lower
bounds, how to apply/extend information theory, commuiivcacomplexity, and distributed coding. Some initial re-
sults appear in the recent work of Cormode et al. [6].

e Richer prediction models for stream tracking: Can moddisctfely capture site correlations rather than just local
site behavior? More generally, understand the model cotitplexpressiveness tradeoff, and come up with principled
techniques for capturing it in practice (e.g., using the Minciple [24]).

e Stream computations over amtrusteddistributed infrastructure: Coping with privacy and auttieation issues in a
communication/computation-efficient manner. Some ihittaults appear in [10].

DATA SETS

Publicly-accessible network-measurement data collestéan be found at the Internet Traffic Archivat ¢ p: / /it a. ee.
I bl . gov/), and CRAWDAD (the Community Resource for Archiving WireteData at Dartmoutthtt p://cnt. cs.
dart nout h. edu/ dat a/ dart mout h. ht m ).
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