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DEFINITION
A majority of today’s data is constantly evolving and fundamentally distributed in nature. Data for almost any large-scale
data-management task is continuously collected over a widearea, and at a much greater rate than ever before. Compared totra-
ditional, centralized stream processing, querying such large-scale, evolving data collections poses new challenges, due mainly
to the physical distribution of the streaming data and the communication constraints of the underlying network. Distributed
stream processing algorithms should guarantee efficiency not only in terms ofspaceand processing time(as conventional
streaming techniques), but also in terms of thecommunication loadimposed on the network infrastructure.

HISTORICAL BACKGROUND
The prevailing paradigm in database systems has been understanding the management ofcentralizeddata: how to organize,
index, access, and query data that is held centrally on a single machine or a small number of closely linked machines. Work
on parallel and distributed databases has focused on different notions of consistency and methods for effectively distribut-
ing query execution plans over multi-node architectures — the issues of monitoring or querying distributed, high-speed data
streams in a space-, time- and communication-efficient manner were not addressed in this realm. Similarly, the bulk of early
research on data-streaming algorithms and systems has concentrated on acentralizedmodel of computation, where the stream-
processing engine has direct access to all the streaming data records. Centralized stream-processing models can obviously
ignore communication-efficiency issues; still, such models are also painfully inadequate for many of the prototypicaldata-
streaming applications, including IP-network and sensornet monitoring.

SCIENTIFIC FUNDAMENTALS
Tracking and querying large-scale, evolving data collections poses a number of challenges. First, in contrast with conventional,
centralized models of data-stream processing, the task is inherentlydistributed; that is, the underlying infrastructure comprises
several remote sites (each with its own local data source) that can exchange information through a communication network.
This also means that there typically are importantcommunication constraintsowing to either network-capacity restrictions (e.g.,
in IP-network monitoring, where the volumes of collected utilization and traffic data can be huge [7]), or power and bandwidth
restrictions (e.g., in wireless sensor networks, where communication overhead is the key factor in determining sensorbattery
life [18]). Second, each remote site may see ahigh-speed streamof data and, thus, must solve a local (centralized) stream-
processing problem within its own local resource limitations, such asspaceor CPU-timeconstraints. This is certainly true for
IP routers (that cannot possibly store the log of all observed packet traffic at high network speeds), as well as wireless sensor
nodes (that, even though may not observe large data volumes,typically have very little memory on-board). Finally, applications
often requirecontinuous monitoringof the underlying streams (i.e., real-time tracking of measurements or events), not merely
one-shot responses to sporadic queries.

To summarize, the focus is on techniques for processing queries over collections of remote data streams. Such techniques
have to work in a distributed setting (i.e., over a communication network), support one-shot or continuous query answers, and
be space, time, and communication efficient. It is importantto note that, for most realistic distributed streaming applications,
the naive solution of collecting all the data in a single location is simplynot a viable option: the volume of data collection
is too high, and the capacity for data communication relatively low. Thus, it becomes critical to exploit local processing
resources to effectively minimize the burden on the communication network. This establishes the fundamental concept of “in-
network processing”: if more computational work can be donewithin the network to reduce the communication needed, then
it is possible to significantly improve the value of the network, by increasing its useful life and communication capacity, and
extending the range of computations possible over the network. This is a key idea that permeates the bulk of existing workon
distributed data-stream processing — this work can, in general, be characterized along three (largely orthogonal) axes:

(1) Querying Model:There are two broad classes of approaches to in-network query processing, by analogy to types of queries
in traditional DBMSs. In theone-shotmodel, a query is issued by a user at some site, and must be answered by “pulling” the
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current state of data in the network. For simple aggregates,this can be done in a few rounds of communication where only
small, partial-aggregate messages are exchanged over a spanning tree of the network. For more complex,holistic aggregates
(that depend on the complete data distribution, such as quantiles, topk-k, count-distinct, and so on), simple combination of
partial results is insufficient, and instead clever composable summaries give a compact way to accurately approximate query
answers.

In the continuousmodel, users can register a query with the requirement that the answer be tracked continuously. For
instance, a special case of such a continuous query is adistributed triggerthat must fire in (near) real-time when an aggregate
condition over a collection of distributed streams is satisfied (e.g., to catch anomalies, SLA violations, or DDoS attacks in
an ISP network). This continuous monitoring requirement raises further challenges, since, even using tree computation and
summarization, it is still too expensive to communicate every time new data is received by one of the remote sites. Instead,
work on continuous distributed streams has focused on “push-based” techniques that tradeoff result accuracy for reduced
communication cost, by apportioning the error in the query answer acrossfilter conditions installed locally at the sites to
reduce communication.

Approximationandrandomizationtechniques are also essential components of the distributed stream querying model, and
play a critical role in minimizing communication. Approximate answers are often sufficient when tracking the statistical
properties of large-scale distributed systems, since the focus is typically on indicators or patterns rather than precisely-defined
events. This is a key observation, allowing for techniques that effectively tradeoff efficiency and approximation accuracy.

(2) Communication Model:The architecture and characteristics of the underlying communication network have an obvious
impact on the design of effective distributed stream processing techniques. Most existing work has focused onhierarchical
(i.e., tree) network architectures, due to both their conceptual simplicity and their importance for practical scenarios (e.g.,
sensornet routing trees [18]). As an example, Figure 1(a) depicts a simplesingle-levelhierarchical model withm + 1 sites
andn (distributed) update streams. Stream updates arrive continuously at the remote sites1, . . . , m, whereas site0 is a special
coordinatorsite that is responsible for generating answers to (one-shot or continuous) user queriesQ over then distributed
streams. In this simple hierarchical model, them remote sites do not communicate with each other; instead, asillustrated in
Figure 1(a), each remote site exchanges messages only with the coordinator, providing it with state information for (sub)streams
observed locally at the site.

More general,multi-levelhierarchies have individual substream-monitoringsites at the leaves and internal nodes of a general
communication tree, and the goal is to effectively answer or track a stream queryQ(S1, . . . , Sn) at theroot nodeof the tree. The
most general setting arefully-distributedmodels, where individual monitor sites are connected through an arbitrary underlying
communication network(Figure 1(b)); this is a distinctly different distributed system architecture since, unlike hierarchical
systems, no centralized authority/coordination exists and the end goal is for all the distributed monitors to efficiently reach
some form ofconsensuson the answer of a distributed stream query.
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Figure 1:(a) Single-level hierarchical stream-processing model. (b) Fully-distributed model.

Besides the connectivity model, other important network characteristics for distributed stream processing include:the
potential for broadcasting or multicasting messages to sites (e.g., over a limited radio range as in wireless sensornets), and the
node/link-failure and data-loss characteristics of the supporting hardware.

(3) Class of Queries:The key dichotomy between simple,non-holisticaggregate queries (e.g.,MIN, SUM, AVG) andholistic
aggregates (e.g., median) has already been discussed; clearly, holistic aggregates introduce many more challenges for efficient
distributed streaming computation. Another important distinction is that betweenduplicate-sensitiveaggregates (that support
bag/multi-set semantics, such as median,SUM, or top-k) andduplicate-insensitiveaggregates (that support set semantics, such as
MIN or count-distinct). Finally, another important class is that of complexcorrelationqueries that combine/correlate streaming
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data across different remote sites (e.g., through a streaming join computation). Such correlations can be critical in understanding
important trends and making informed decisions about measurement or utilization patterns. Different classes of streaming
queries typically require different algorithmic machinery for efficient distributed computation.

The remainder of this section provides a brief overview of some key results in distributed data streaming, for both the
one-shot and continuous querying models, and concludes with a short survey of systems-related efforts in the area.

One-Shot Distributed Stream Processing. Madden et al. [18] present simple, exacttree-based aggregationschemes for
sensor networks and propose a general framework based ongenerate, fuse, andevaluatefunctions for combining partial results
up the aggregation tree. They also propose a classification of different aggregate queries based on different properties, such as
duplicate in/sensitivity, example or summary results, monotonicity, and whether the aggregate isalgebraicor holistic (which
essentially translates to whether the intermediate partial state is of constant size or growing). While the exact computation of
holistic aggregates requires linear communication cost, guaranteed-qualityapproximateresults can be obtained at much lower
cost by approximating intermediate results throughcomposable data synopses[1, 9].

Robustnessis a key concern with such hierarchical aggregation schemes, as a single failure/loss near the root of the tree
can have a dramatic effect on result accuracy.Multi-path routingschemes mitigate this problem by propagating partial results
along multiple different paths. This obviously improves reliability and reduces the impact of potential failures; in addition, this
improved reliability often comes essentially “for free” (e.g., in wireless sensornets where the network is a natural broadcast
medium). Of course, multi-path routing also implies that the same partial results can be accounted for multiple times inthe
final aggregate. As observed by Nath et al. [20], this duplication has no effect on aggregates that are naturallyOrder and
Duplicate Insensitive (ODI), such asMIN andMAX; on the other hand, for non-ODI aggregates, such asSUM andCOUNT,
duplicate-insensitive sketch synopses(e.g., based on the Flajolet-Martin sketch [9]) can be employed to give effective, low-
cost, multi-path approximations [20]. Hybrid approaches combining the simplicity of tree aggregation (away from the root
node) and the robustness of multi-path routing (closer to the root) have also been explored [19].

Gossip(or, epidemic) protocols for spreading information offer an alternativeapproach for robust distributed computation
in the more general, fully-distributed communication model (Figure 1(b)). ODI aggregates (and sketches) naturally fitinto
the gossiping model, which basically guarantees that alln nodes of a network will converge to the correct global ODI aggre-
gate/sketch afterO(log n) rounds of communication. For non-ODI aggregates/sketches, Kempe et al. [15] propose a novel
gossip protocol (termedpush-sum) that also guarantees convergence in a logarithmic number of rounds, and avoids double
counting by splitting up the aggregate/sketch and ensuring“conservation of mass” in each round of communication.

Continuous Distributed Stream Processing. The continuous model places a much more stringent demand on the distributed
stream processing engine, since remote sites must collaborate tocontinuouslymaintain a query answer that is accurate (e.g.,
within specified error bounds) based on the current state of the stream(s). Approximation plays a critical role in the design of
communication-efficient solutions for suchcontinuous monitoringtasks. In a nutshell, the key idea is to tradeoff result accuracy
and local processing at sites for reduced communication costs, by installinglocal filters at the remote sites to allow them to
only “push” significant updates to the coordinator; of course, these distributed local filters would have to besafe, that is, they
should guarantee the overall error bound for the global query result (based on the exact current state) at the coordinator. This
idea of local traffic filtering for continuous distributed queries is pictorially depicted in Figure 2(a).

A key concept underlying most continuous distributed monitoring schemes is that ofadaptive slack allocation— that is,
adaptively distributing the overall “slack” (or, error tolerance) in the query result across the local filters at different participating
sites based on observed local update patterns. Obviously, the complexity of such slack-distribution mechanisms depends on the
nature of the aggregate query being tracked. Olston et al. [21] consider the simpler case of algebraic aggregates (wherebreaking
down the overall slack to safe local filters is straightforward), and discuss adaptive schemes that continuously grow/shrink local
filters based on the frequency of observed local violations.As expected, the situation is more complicated in the case ofholistic
aggregates: Babcock and Olston [2] discuss a scheme for tracking an approximate global top-k set of items using a cleverly-built
set of local constraints that essentially “align” thelocal top-k set at a site with theglobal top-k; furthermore, their algorithm
also retains some amount of slack at the coordinator to allowfor possible localized resolutions of constraint violations. Das
et al. [8] consider the problem of monitoring distributed set-expression cardinalities and propose tracking algorithms that take
advantage of the set-expression semantics to appropriately “charge” updates arriving at the local sites.

Simple slack-allocation schemes are typically based on a naive static modelof local-site behavior; that is, the site’s “value”
is assumed constant since the last update to the coordinator, and communication is avoided as long as this last update value
stays within the slack bounds. Cormode and Garofalakis [5] propose the use of more sophisticated,dynamic prediction models
of temporal site dynamics in conjunction with appropriate sketching techniques for communication-efficient monitoring of
complex distributed aggregate queries. Their idea is to allow each site and the coordinator to share a prediction of how the site’s
local stream(s) (and, their sketch synopses) evolve over time. The coordinator uses this prediction to provide continuous query
answers, while the remote site checks locally that the prediction stays “close” to the actual observed streaming distribution
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Figure 2:(a) Using local filters for continuous distributed query processing: Most updates fall within the local-filter ranges and require no
communication with the coordinator (that can provide approximate answers with guarantees depending on the filter “widths”); only updates
outside the local-filter range require new information to be“pushed” by the local site to the coordinator. (b) Prediction-based approximate
query tracking: Predicted sketches are based on simple prediction models of local-stream behavior, and are kept in-sync between the coordi-
nator (for query answering) and the remote sites (for tracking prediction error).

(Figure 2(b)). Of course, using a more sophisticated prediction model can also impose some additional communication to
ensure that the coordinator’s view is kept in-sync with the up-to-date local stream models (at the remote sites). Combined with
intelligent sketching techniques and methods for boundingthe overall query error, such approaches can be used to tracka large
class of complex, holistic queries, only requiring concisecommunication exchanges when prediction models are no longer
accurate [5]. Furthermore, their approach can also be naturally extended to multi-level hierarchical architectures.Similar
ideas are also discussed by Chu et al. [4] who consider the problem of in-network probabilistic model maintenanceto enable
communication-efficient approximate tracking of sensornet readings.

A common feature of several distributed continuous monitoring problems is continuously evaluating a condition over dis-
tributed streaming data, andfiring when the condition is met. When tracking suchdistributed triggers, only values of the
“global” continuous query that are above a certain threshold are of interest (e.g., fire when the total number of connections to an
IP destination address exceeds some value) [13]. Recent work has addressed versions of this distributed triggering problem for
varying levels of complexity of the global query, ranging from simple counts [16] to complex functions [26] and matrix-analysis
operators [12]. Push-based processing using local-filter conditions continues to play a key role for distributed triggers as well;
another basic idea here is to exploit the threshold to allow for even more effective local traffic filtering (e.g., “wider”yet safe
filter ranges when the query value is well below the threshold).
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Figure 3:Distributed stream-processing dataflow.

Systems and Prototypes. Simple, algebraic in-network
aggregation techniques have found widespread ac-
ceptance in the implementation of efficient sensornet
monitoring systems (e.g., TAG/TinyDB [18]). On
the other hand, more sophisticated approximate in-
network processing tools have yet to gain wide adop-
tion in system implementations. Of course, Dis-
tributed Stream-Processing Engines (DSPEs) are still
a nascent area for systems research: only a few
research prototypes are currently in existence (e.g.,
Telegraph/TelegraphCQ [25], Borealis/Medusa [3],
P2 [17]). The primary focus in these early efforts has
been on providing effective system support forlong-running stream-processing dataflows(comprising connected, pipelined
query operators) over a distributed architecture (Figure 3). For instance, Balazinska et al. [3] and Shah et al. [25] discuss mech-
anisms and tools for supporting parallel, highly-available, fault-tolerant dataflows; Loo et al [17] propose tools fordeclarative
dataflow design and automated optimizations; Pietzuch et al. [22] consider the problem of distributed dataflow operatorplace-
ment and propose techniques based on a cost-space representation that optimize for network-efficiency metrics (e.g., bandwidth,
latency); finally, Xing et al. [27] give tools for deriving distributed dataflow schedules that are resilient to load variations in the
input data streams. To deal with high stream rates and potential system overload, these early DSPEs typically employ some
form of load shedding[3] where tuples from operators’ input stream(s) are dropped (either randomly or based on different QoS
metrics). Unfortunately, such load-shedding schemes cannot offer any hard guarantees on the quality of the resulting query
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answers. A mechanism based onrevision tuplescan be employed in the Borealis DSPE to ensure that results are eventually
correct [3]. AT&T’s Gigascope streaming DB for large-scale IP-network monitoring [7] uses approximation tools (e.g., sam-
pling, sketches) to efficiently track “line-speed” data streams at the monitoring endpoints, but has yet to explore issues related
to the physical distribution of the streams and holistic queries.

KEY APPLICATIONS
Enterprise and ISP Network Security: The ability to efficiently track network-wide traffic patterns plays a key role in
detecting anomalies and possible malicious attacks on the network infrastructure. Given the sheer volume of measurement
data, continuously centralizing all network statistics issimply not a feasible option, and distributed streaming techniques are
needed.

Sensornet Monitoring and Data Collection: Tools for efficiently tracking global queries or collectingall measurements from
a sensornet have to employ clever in-network processing techniques to maximize the lifetime of the sensors.

Clickstream and Weblog Monitoring: Monitoring the continuous, massive streams of weblog data collected over distributed
web-server collections is critical to the real-time detection of potential system abuse, fraud, and so on.

FUTURE DIRECTIONS
The key algorithmic idea underlying the more sophisticateddistributed data-stream processing techniques discussedin this
article is that of effectively trading off space/timeand communicationwith the quality of an approximate query answer. Ex-
ploring some of the more sophisticated algorithmic tools discussed here in the context of real-life systems and applications is
one important direction for future work on distributed streams; other challenging areas for future research, include:

• Extensions to other application areas and more complex communication models, e.g., monitoring P2P services over
shared infrastructure (OpenDHT [23] over PlanetLab), and dealing with constrained communication models (e.g., intermittent-
connectivity and delay-tolerant networks (DTNs) [14]).

• Richer classes of distributed queries, e.g., set-valued query answers, machine-learning inference models [11].

• Developing a theoretical/algorithmic foundation of distributed data-streaming models: What are fundamental lower
bounds, how to apply/extend information theory, communication complexity, and distributed coding. Some initial re-
sults appear in the recent work of Cormode et al. [6].

• Richer prediction models for stream tracking: Can models effectively capture site correlations rather than just local
site behavior? More generally, understand the model complexity/expressiveness tradeoff, and come up with principled
techniques for capturing it in practice (e.g., using the MDLprinciple [24]).

• Stream computations over anuntrusteddistributed infrastructure: Coping with privacy and authentication issues in a
communication/computation-efficient manner. Some initial results appear in [10].

DATA SETS
Publicly-accessible network-measurement data collections can be found at the Internet Traffic Archive: (http://ita.ee.
lbl.gov/), and CRAWDAD (the Community Resource for Archiving Wireless Data at Dartmouth,http://cmc.cs.
dartmouth.edu/data/dartmouth.html).
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