
Demo: Complex Event Processing over Streaming
Multi-Cloud Platforms - The FERARI Approach∗

Ioannis Flouris? Vasiliki Manikaki? Nikos Giatrakos? Antonios Deligiannakis?

Minos Garofalakis? Michael Mock� Sebastian Bothe� Inna Skarbovsky]

Fabiana Fournier] Marko Štajcer† Tomislav Križan† Jonathan Yom-Tov§

Marijo Volarević‡

?Technical University of Crete
{gflouris, manikaki, ngiatrakos, adeli, minos}@softnet.tuc.gr

]IBM Research - Haifa
{fabiana, inna}@il.ibm.com

�Fraunhofer IAIS
{michael.mock, sebastian.bothe}@iais.fraunhofer.de

§Technion, Israel Institute of Technology
jonyomtov@cs.technion.ac.il

†Poslovna Inteligencija
{marko.stajcer, tomislav.krizan}@inteligencija.com

‡T-Hrvatski Telekom
Marijo.Volarevic@t.ht.hr

ABSTRACT
We present FERARI, a prototype for processing voluminous event
streams over multi-cloud platforms. At its core, FERARI both
exploits the potential for in-situ (intra-cloud) processing and or-
chestrates inter-cloud complex event detection in a communication-
efficient way. At the application level, it includes a user-friendly
query authoring tool and an analytics dashboard providing granu-
lar reports about detected events. In that, FERARI constitutes, to
our knowledge, the first complete end-to-end solution of its kind.
In this demo, we apply the FERARI approach on a real scenario
from the telecommunication domain.

CCS Concepts
•Information systems→ Data streams; •Applied computing→
Event-driven architectures; •Computer systems organization
→ Distributed architectures;

Keywords
Complex Event Processing, Cloud Computing, Distributed Streams

1. INTRODUCTION
Many modern Big Data technologies such as Machine-to-

Machine (M2M) or Internet-of-Things (IoT) platforms create real-
time data streams that are structured in the form of series of interac-
tion event occurrences. Complex Event Processing (CEP) systems

∗A full version of this paper appears in [6].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS ’16 June 20-24, 2016, Irvine, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4021-2/16/06.

DOI: http://dx.doi.org/10.1145/2933267.2933289

encompass the ability to process and query such data so as to de-
tect complex patterns. Complex Event (CE) patterns, involve pre-
defined rules that match incoming event notifications on the basis
of their content and on some ordering relationships on them [7].

With the emergence of streaming cloud platforms that allow for
CEP at large scale, the design principles of respective systems need
to be adapted to exploit intra-cloud parallelization and elastic re-
source consumption. One step further, in vast scale distributed
CEP systems, centralizing voluminous raw events first and then
processing them is infeasible, as this would cause a bottleneck at
a central site/cloud. Streaming event data arriving at multiple, po-
tentially geographically dispersed, cloud platforms should be ef-
ficiently processed in-situ and then wisely combined to provide
holistic answers to global application queries. Efficient inter-cloud
CEP calls for reduced communication to avoid congested links
among sites with distinct cloud deployments.

Motivated by the above, in this demo we present FERARI [6],
a prototype that enables real-time CEP for large-volume event data
streams over distributed topologies. At its core, FERARI exploits
both the potential for intra-cloud and orchestrated inter-cloud CEP
in a communication-efficient way that simultaneously allows for
timely event detection. At the application level, it provides an
event query authoring tool together with an analytics dashboard
that presents a holistic picture with respect to the detected complex
events to final stakeholders. In that, FERARI constitutes, to our
knowledge, the first complete end-to-end solution of its kind. As
a proof of concept, we apply FERARI on a mobile fraud detection
scenario using real rules and real, anonymized, telecommunication
data from T-Hrvatski Telekom network in Croatia.

2. ARCHITECTURE
The architectural modules of FERARI are illustrated in Figure 1

and are discussed below along with our contributions.
CE Query Authoring Tool: As shown at the left top of Figure 1,
application queries are posed via a web-based user interface. Our
query design approach complies with the CEP concepts discussed
in [7, 8]. Hence, the basic building blocks for designing applica-
tion queries are Event Processing Agents (EPAs). An EPA handles
a pattern operator that receives as input certain types of events of in-

CEP Optimizer

logical plan

physical
plan

event
stream

analyzer

cost

Site Configurations

FERARI
Dashboard

runtime

statistics

Authoring

Tool

…

…

real-time
input streams

Output

FERARI

Inter-cloud

Orchestration

PullPush

Output [Complex or Pushed Events]

Time
Machine

C
o

m
m

u
n

ic
a
to

r

CEP
Engine

Input [Raw or Pulled Events]

Gate-
Keeper

FERARI

Intra-cloud

Topology

Figure 1: FERARI Architecture at Inter- & Intra-cloud levels

terest and outputs detected CEs. The whole query is an Event Pro-
cessing Network (EPN) describing the event flows among EPAs for
the detection of the final CEs. Manually coding all the application
rules and their specifications can be a painful task. Our authoring
tool facilitates and speeds up this process.
Inter-cloud CEP Optimization: To evaluate the submitted EPN in
our distributed setup, events arriving at distinct sites/clouds need to
be combined (after any possible in-situ processing). Each EPA will
be placed at some site, which will be responsible for synthesizing
information from other sites producing input events to this EPA.

To accomplish this task in a communication-efficient way, the
FERARI optimizer (middle top of Figure 1) greatly extends the
push/pull paradigm of [4] to allow for heterogeneous site inputs and
multiple choices of where to place each EPA. Based on available
event statistics, the FERARI optimizer picks the best plan including
both the determination of the placement for each EPA, as well as
the order by which relevant events will be pulled from/pushed to it.
An optimal plan best balances reduced communication - achieved
by postponing push/pull activity regarding higher frequency events
participating in a CE pattern until the occurrence of lower fre-
quency ones - and detection latency due to the postponed trans-
missions. Based on the chosen query plan, site configurations are
generated and disseminated to each site.
FERARI Intra-cloud CEP: Each site runs an Apache Storm [2]
topology, shown at the bottom of Figure 1, comprised of [5]:
• Input Spout: where streaming tuples arrive or pushed events

from other sites are fed into the CEP Engine.
• CEP Engine: details of our CEP Engine follow shortly.
• Time Machine Bolt: buffers & chronically orders derived events.
• Gatekeeper Bolt: responsible for advanced calculations and dis-

tributed CE resolution procedures.
• Communicator Bolt: responsible for the push/pull based com-

munication between different sites.
The CEP Engine module of our prototype, namely ProtonOn-

Storm [3], is an open-source platform that extends IBM Proactive
Technology Online (Proton) standalone. ProtonOnStorm is itself
distributed across a number of Storm bolts allowing for different
degrees of parallelization in different modules [3]. The CEP En-

gine receives events from the Input Spout and having processed
them in-situ, emits derived events towards the Time Machine. If a
CE is detected that needs to be transmitted to a remote cloud, it will
be then routed to the Communicator (Figure 1) to be pushed to the
proper remote site, according to the inter-cloud execution plan.
FERARI Dashboard: The web-based dashboard of our prototype
is generic enough to produce a wide variety of reports and analytic
results that are useful from an application viewpoint. As shown
in [1], it comprises of the following widgets: (1) the complex event
grid, which depicts detected events and relevant information, (2)
the event statistics widgets with cumulative statistics over different
time windows, (3) peek/offpeek statistics regarding events in dif-
ferent periods of the day, (4) a widget displaying the most frequent
CEs aggregates, (5) an interactive map of site/cloud locations and
detected events, and (6) a navigation panel.

3. DEMONSTRATION DETAILS
For the purposes of the demonstration, we will use a real,

anonymized, dataset of call data coming from HT’s network and
real (properly masked) fraud detection rules from HT to a priori
build a set of EPAs. Using the pre-built EPAs as a guide, users
will also be able via the authoring tool to build their own, fraud de-
tection related, queries. From an application viewpoint, users will
be able - having posed their fraud related queries - to experience
real-time CE notifications via FERARI’s analytics platform spe-
cializing the widgets discussed in Section 2 (also see [1]). To fully
assess the details of FERARI’s deployment and the function of in-
dividual components beyond the application’s viewpoint, interested
users will be able to have access to logging information presented
in a user-friendly way, including: (a) the inter-cloud execution al-
ternatives (logical and physical plans) and the procedure FERARI’s
optimizer followed to produce and choose the best plan, (b) logs of
inter-cloud (push/pull) and intra-cloud (i.e., per site) activity.

4. ACKNOWLEDGMENTS
This work was supported by the European Commission un-

der ICT-FP7-FERARI-619491 (Flexible Event pRocessing for big
dAta aRchItectures).

5. REFERENCES
[1] FERARI Dashboard Preview. http://recordit.co/4yi6Qpnlo6.
[2] Apache Storm Project Homepage. http://storm.apache.org/.
[3] IBM Proactive Technology Online on STORM.

https://github.com/ishkin/Proton.
[4] M. Akdere, U. Çetintemel and N. Tatbul. Plan-based complex

event detection across distributed sources. In PVLDB, 2008.
[5] S. Bothe, V. Manikaki, A. Deligiannakis and M. Mock.

Towards flexible event processing in distributed data streams.
In Proc. of the Workshops of the EDBT/ICDT, 2015.

[6] I. Flouris, V. Manikaki, N. Giatrakos, A. Deligiannakis,
M. Garofalakis, M. Mock, S. Bothe, I. Skarbovsky,
F. Fournier, M. Štajcer, T. Križan, J. Yom-Tov, T. Ćurin.
FERARI: A Prototype for Complex Event Processing over
Streaming Multi-cloud Platforms. In SIGMOD, 2016.

[7] O. Etzion and P. Niblett. Event Processing in Action. Manning
Publications Company, 2010.

[8] C. Moxey, M. Edwards, O. Etzion, M. Ibrahim, S. Iyer,
H. Lalanne, M. Monze, M. Peters, Y. Rabinovich, G. Sharon
and K. Stewart. A Conceptual Model for Event Processing
Systems. IBM Redguide publication, 2010.

