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Abstract: This chapter addresses some of the problems raised by the high-volume, non-
terminating nature of  many data streams. We begin by outlining challenges 
for query processing over such streams, such as outstripping CPU or memory 
resources, operators that wait for the end of input and unbounded query state. 
We then consider various techniques for meeting those challenges. Filtering 
attempts to reduce stream volume in order to save on system resources. 
Punctuations incorporate semantics on the structure of a stream into the stream 
itself, and can help unblock query operators and reduce the state they must 
retain. Windowing modifies a query so that processing takes place on finite 
subsets of full streams. Synopses are compact, efficiently maintained 
summaries of data that can provide approximate answers to particular queries. 
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1. INTRODUCTION: CHALLENGES FOR 
PROCESSING DATA STREAMS 

 
The kinds of manipulations users would like to perform on data streams 

are reminiscent of operations from database query processing, OLAP and 
data mining: selections, aggregations, pattern-finding. Thus, one might hope 
that data structures and algorithms developed for those areas could be carried 
over for use in data stream processing systems. However, existing 
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approaches may be inadequate when confronted with the high-volume and 
unbounded nature of some data streams, along with the desire for near-real 
time results for stream operations. 

The data rate for a stream might outstrip processing resources on a steady 
or intermittent (bursty) basis. Thus extensive CPU processing or secondary 
storage access for stream elements may be infeasible, at least for periods of 
time. Nor can one rely on buffering extensive amounts of the stream input in 
memory.  For some applications, such as network monitoring, a few seconds 
of input may exhaust main memory. Furthermore, while buffering might 
handle bursty input, it does so at a cost of delaying results to users. 

The potentially unbounded nature of data streams also creates problems 
for existing database query operators, or for particular implementations of 
them. Blocking operators, such as group-by, difference and sort, and 
blocking implementations, such as most join algorithms, cannot in general 
emit any output until the end of one or more of the inputs is reached. Thus 
on a continuous data stream, they will never produce any output.  In the case 
of join, there are alternative implementations, such as symmetric hash join 
(Wilschut and Apers, 1991) that are non-blocking, and hence more suitable 
for use with streams. But the other operators mentioned are inherently 
blocking for any implementation.  Even if an operator has a non-blocking 
implementation, if it is stateful, such as join and duplicate elimination, it will 
accumulate state without limit, eventually becoming memory bound. 

Thus, extensions or alternatives for current query processing and data 
analysis techniques are needed for streams.  In this chapter, we survey 
several approaches to these challenges, based on data reduction, exploiting 
semantics of data streams, and approximation. We first cover exact and lossy 
filtering techniques, which attempt to reduce data stream volumes early in 
the processing chain, in order to reduce the computational demands on later 
operations.  We then consider the use of stream “punctuation” to incorporate 
knowledge about the internal structure in a data stream that might be useful 
in unblocking operators or limiting the amount of state that must be retained. 
We then consider “windowed” versions of classical operators, which can be 
viewed as a continuous user query being approximated by a series of queries 
over finite subsequences of an unbounded stream. In this context we also 
briefly consider issues with disordered inputs. The final class of techniques 
we cover are synopses, which in the stream case can be considered as 
representations of data streams that a) summarize the stream input, b) can be 
maintained online at stream input rates, c) occupy much less space the full 
data, and d) can be used to provide exact or approximate answers to some 
class of user queries. 



5. Filtering, Punctuation, Windows and Synopses 3
 
2. STREAM FILTERING: VOLUME REDUCTION 

Faced with stream volumes beyond what available resources allow 
processing in their entirety, a stream processor can simply abort, or 
somehow reduce the volume to a manageable level. Such reduction can take 
several forms: precise filtering, data merging, or data dropping. 

2.1 Precise Filtering 

Precise filtering extracts some portion of a stream query for application 
nearer the stream source, with the expectation of reducing stream volume 
while not changing the final query answer. Filtering operations generally 
need to be simple, such as selection or projection, and applicable on an item-
by-item basis, so as not to consume extensive processing cycles or memory. 
Filtering should also avoid introducing long delays into time-critical data 
streams. This filtering may happen at the stream source, near the stream-
processing system, or in between. 

A source may support subscription to a substream of the full data stream. 
For example, the Virtual Object Ring Buffer (VORB) facility of the 
RoadNet project (Rajasekar et al., 2004) supports access to real-time 
information from an environmental-sensing network. A VORB client can 
request a substream of this information restricted on (geographic) space, 
time and attribute. Financial feeds also support filtering, such as on specific 
stocks or currencies. 

Hillston and Kloul (2001) describe an architecture for an online auction 
system where active network nodes serve as filters on the bid stream. Such a 
node can filter out any bid for which a higher bid has already been handled 
for the same item. (It is also possible that highest bid information is 
periodically disseminated from the central auction server to the active 
network nodes, as otherwise an active node is only aware of bid values that it 
handles.) Such processing is more complex than item-at-a-time filtering. It 
essentially requires an anti-semijoin of incoming bids with a cache of 
previous bids. However, the space required can be reduced from what is 
required for a general semijoin by two considerations. First, only one record 
needs to be retained for each auction item – the one with the maximum price 
so far. (Actually, just the item ID and bid price suffice.) Second, the cache of 
previous bids does not need to be complete – failure to store a previous bid 
for an item only means that later items with lower prices are not filtered at 
the node. Thus an active node can devote a bounded cache to past 
information, and select bids to keep in the cache based on recency or 
frequency of activity on an item. 
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Gigascope (Johnson et al., 2003) is a stream-processing system targeted 
at network monitoring and analysis. It supports factoring of query conditions 
that can be applied to the raw data stream arriving at the processor. These 
conditions can be applied in the network interface subsystem. In some 
versions, these filter conditions are actually pushed down into a 
programmable network interface card (NIC). 

2.2 Data Merging 

Data merging seeks to condense several data items into one in such a 
way that the ultimate query can still be evaluated. Consider a query that is 
computing the top-5 most active network flows in terms of bytes sent. (Here 
a flow is defined by a source and destination IP address and port number.) 
Byte-count information for packets from the same flow can be combined and 
periodically transferred to the stream-processing system. This approach is 
essentially what routers do in generating Netflow records (Cisco Systems, 
2001), reducing the volume of data that a network monitoring or profiling 
application needs to deal with. Of course, only certain queries on the 
underlying network traffic will be expressible over the aggregated Netflow 
records. A query looking for the most active connections is expressible, but 
not an intrusion-detection query seeking a particular packet signature. 
Merging can be viewed as a special case of synopsis. (See Section 6.) 

2.3 Data Dropping 

Data dropping (also called load shedding) copes with high data rates by 
discarding data items from the processing stream, or limiting the processing 
of selected items. Naïve dropping happens in an uncontrolled manner – for 
example, items are evicted without processing from an overflowed buffer. 
More sophisticated dropping schemes introduce some criterion that identifies 
which data items to remove, based for example, on the effect upon the 
accuracy of the answer or an attempt to get a fair sample of a data stream. 

The simplest approaches can be termed blind dropping: the decision to 
discard a data item is made without reference to its contents. In the crudest 
form, blind dropping discards items when CPU or memory limits are 
exceeded: Data items are dropped until the stream-processing system catches 
up. Such a policy can be detrimental to answer quality, with long stretches of 
the input being unrepresented. Better approaches attempt to anticipate 
overload and spread out the dropped data items, either randomly or 
uniformly. For example a VORB client can throttle the data flow from a data 
source, requesting a particular rate for data items, such as 20 per minute. 
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Dropping can take place at the stream source, at the leaves of a stream 
query, or somewhere in the middle of a query plan. The Aurora data stream 
manager provides an explicit drop operator that may be inserted at one or 
more places in a network of query operators (Tatbul et al., 2003). The drop 
can eliminate items randomly or based on a predicate (which is termed 
semantic dropping). Another approach to intra-query dropping is the 
modification of particular operators. Das et al. (2003) and Kang and 
Naughton (2003) present versions of window join (see Section 4) that shed 
load by either dropping items or avoiding the join of particular items. 

Whatever mechanism is used for dropping data items, key issues are 
determining how much to drop and maximizing answer quality for a given 
drop rate. The Aurora system considers essentially all placements of drop 
operators in an operator network (guided by heuristics) and precomputes a 
sequence of alternative plans that save progressively more processing cycles, 
called a load-shedding road map (LSRM). For a particular level of cycle 
savings, Aurora selects the plan that maximizes the estimated quality of 
service (QoS) of the output. QoS specifications are provided by query clients 
and indicate, for example, how the utility of an answer drops off as the 
percentage of full output decreases, or which ranges of values are most 
important. The two window-join algorithms mentioned above attempt to 
maximize the percentage of join tuples produced for given resource limits. 
Das et al. point out that randomized dropping of tuples in a join can be 
ineffective by this measure. Consider a join between r tuples and s tuples on 
attribute A. Any resources expended on an r tuple with r.A = 5 is wasted if 
the only s tuple with s.A = 5 has been discarded. They instead collect 
statistics on the distribution of join values, and retain tuples that are likely to 
contribute to multiple output tuples in the join. Kang and Naughton look at 
how to maximize output of a window join given limitations on 
computational or memory resources. They demonstrate, for example, with 
computational limits, the operator should favor joining in the direction of the 
smaller window to the larger window. For limited memory, however, it is 
better to allocate that resource to storing tuples from the slower input. 

There are tensions in intelligent data dropping schemes, however. On one 
hand, one would like to select data items to discard carefully. However, a 
complicated selection process can mean more time is spent selecting a data 
item to remove than is saved by removing it. Similarly, the value of a data 
item in the answer may only be apparent after it passes through some initial 
operators. For example, it might be compared to frequent data values in a 
stream with which it is being joined. However, discarding a data item in the 
middle of a query plan means there are “sunk costs” already incurred that 
cannot be reclaimed. 
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2.4 Filtering with Multiple Queries 

For any of the filtering approaches – precise filtering, data merging and 
data dropping – the situation is more complicated in the (likely) scenario that 
multiple queries are being evaluated over the data streams. Now, the 
combined needs of all the queries must be met. With precise filtering, for 
example, the filter condition will need to be the union of the filters for the 
individual queries, which means the processing of the raw stream may be 
more complex, and the net reduction in volume smaller. In a semantic data-
dropping scheme, there may be conflicts in that the least important data 
items for one query are the most important for another. (In the multi-query 
case, Aurora tries to ensure different users receive answers of approximately 
equal utility according to their QoS specifications.) 

3. PUNCTUATIONS: HANDLING UNBOUNDED 
BEHAVIOR BY EXPLOITING STREAM 
SEMANTICS 

Blocking and stateful query operators create problems for a query engine 
processing unbounded input. Let us first consider how a traditional DBMS 
executes a query plan over bounded data. Each query operator in the plan 
reads from one or more inputs that are directly beneath that operator. When 
all data has been read from an input, the operator receives an end of file 
(EOF) message. Occasionally a query operator will have to reread the input 
when it receives EOF (e.g., a nested-loops join algorithm). If not, the query 
operator has completed its work. A stateful query operator can purge its state 
at this point. A blocking operator can output its results. Finally, the operator 
can send the EOF message to the next operator along in the query plan. 

The EOF message tells a query operator that the end of the entire input 
has arrived. What if a query operator knew instead that the end of a subset of 
the input data set had arrived? A stateful operator might purge a subset of the 
state it maintains. A blocking operator might output a subset of its results. 
An operator might also notify the next operator in the query plan that a 
subset of results had been output. We will explain how “punctuations” are 
included in a data stream to convey knowledge about ends of data subsets. 

For example, suppose we want to process data from a collection of 
environmental sensors to determine the maximum temperature each hour 
using a DBMS. Since data items contain the time they were emitted from the 
sensor, we can assume that data from each sensor is sorted (non-decreasing) 
on time. In order to calculate the maximum temperature each hour from a 
single sensor, we would use the following query (in SQL): 



5. Filtering, Punctuation, Windows and Synopses 7
 

SELECT MAX(temp) 
FROM sensor 
GROUP BY hour; 
Unfortunately, since group-by is blocking and the input is unbounded, 

this query never outputs a result. One solution is to recognize that hour is 
non-decreasing. As data items arrive, the group-by operator can maintain 
state for the current hour. When a data item arrives for a new hour, the 
results for the current hour can be output, and the query no longer blocks. 

This approach breaks down when the input is not sorted. Even in our 
simple scenario, data items can arrive out-of-order to the group-by operator 
for various reasons. We will discuss disorder in data streams in Section 5. By 
embedding punctuations into the data stream and enhancing query operators 
to exploit punctuations, the example query will output results before 
receiving an EOF, even if data arrive out-of-order. 

3.1 Punctuated Data Streams 

A punctuation is an item embedded into a data stream that denotes the 
end of some subset of data (Tucker et al., 2003). At a high level, a 
punctuation can be seen as a predicate over the data domain, where data 
items that pass the predicate are said to match the punctuation. In a 
punctuated stream, any data item that matches a punctuation will arrive 
before that punctuation. Given a data item d and a punctuation p, we will use 
match(d,p) as the function that indicates whether a d matches p. 

The behaviors exhibited by a query operator when the EOF message is 
received may also be partially performed when a punctuation is received. 
Clearly, EOF will not arrive from unbounded inputs, but punctuations break 
up the unbounded input into bounded substreams. We define three kinds of 
behaviors, called punctuation behaviors, to describe how operators can take 
advantage of punctuations that have arrived. First, pass behavior defines 
when a blocking operator can output results. Second, keep behavior defines 
when a stateful operator can release some of its state. Finally, propagate 
behavior defines when an operator can output punctuations. 

In the environmental sensor example, data output from each sensor are 
sorted on time. We can embed punctuations into the stream at regular 
intervals specifying that all data items for a particular prefix of the sorted 
stream have arrived. For example, we can embed punctuations at the end of 
each hour. This approach has two advantages: First, we do not have to 
enhance query operators to expect sorted input (though we do have to 
enhance query operators to support punctuations). Second, query operators 
do not have to maintain sorted output. 
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3.2 Exploiting Punctuations 

Punctuation behaviors exist for many query operators. Non-trivial 
behaviors are listed in Tables 5-1, 5-2, and 5-3. The pass behavior for group-
by says that results for a group can be output when punctuations have arrived 
that match all possible data items that could participate in that group. The 
keep behavior for group-by says that state for a group can be released in 
similar circumstances. Finally, the propagate behavior for group-by says that 
punctuations that match all possible data items for a group can be emitted 
(after all results for that group have been output). For example, when group-
by receives the punctuation marking the end of a particular hour, the results 
for that hour may be output, state required for that hour can be released, and 
a punctuation for all data items with that hour can be emitted. Notice that 
ordering of data items on the hour attribute does not matter. Even if data 
arrives out of order, as long as the punctuation correctly denotes the end of 
each hour, the results will still be accurate. 

Many query operators require specific kinds of punctuations. We saw 
above that the pass behavior for group-by was to output a group when 
punctuations had arrived that matched all possible data items that can 
participate in that group. A set of punctuations P describes a set of attributes 
A if, given specific values for A, every possible data item with those attribute 
values for A matches some punctuation in P. For example, punctuations from 
the environment sensors that denote the end of a particular hour describe the 
hour attribute, since they match all possible data items for a particular hour.  

Table 5-1. Non-trivial pass behaviors for blocking operators, based on punctuations that have 
arrived from the input(s). 
Group-by Groups that match punctuations that describe the grouping attributes. 
Sort Data items that match punctuations that have arrived covering all 

possible data items in a prefix of the sorted output. 
Difference (S1-S2) Data items in S1 that are not in S2 and match punctuations from S2. 

Table 5-2. Non-trivial propagation behaviors for query operators, based on punctuations that 
have arrived from the input(s). 
Select All punctuations. 
Dupelim All punctuations. 
ProjectA The projection of A on punctuations that describe the projection attributes. 
Group-by Punctuations that describe the group-by attributes. 
Sort Punctuations that match all data in a prefix of the sorted output. 
Join The result of joining punctuations that describe the join attributes. 
Union Punctuations that equal some punctuation from each other inputs. 
Intersect Punctuations that equal some punctuation from each other inputs. 
Difference Punctuations that equal some punctuation from each other inputs. 
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Table 5-3. Non-trivial keep behaviors for stateful query operators, based on punctuations that 
have arrived from the input(s). 
Dupelim Data items that do not match any punctuations received so far. 
Group-by Data items that do not match punctuations describing the grouping attributes. 
Sort Data items that do not match any punctuations covering all data items in the 

prefix of the sorted output defined in the pass behavior. 
Join Data items that do not match any punctuations from the other input that 

describe the join attributes. 
Intersect Data items that do not match any punctuations from the other input. 
Difference Data items that do not match any punctuations from the other input. 

 

3.3 Using  Punctuations in the Example Query 

Suppose in the environmental sensor example each sensor unit outputs 
data items that contain: sensor id, temperature, hour, and minute. Thus an 
example stream from sensor 3 might contain: [<3,75,1,15>, <3,78,1,30>, 
<3,75,1,45>, <3,76,2,0>, <3,75,2,15>, …]. We would like to have the 
sensors emit punctuations that denoted the end of each hour, to unblock the 
group-by operator. We treat punctuations as stream items, where 
punctuations have the same schema as the data items they are matching and 
each attribute contains a pattern. Table 5-4 lists the patterns an attribute in a 
punctuation can take. 

Table 5-4. Punctuation patterns 
Pattern Representation Match Rule 
wildcard * All values. 
constant c The value c. 
list {c1,c2,…} Any value ci in the list. 
range (c1,c2) Values greater than c1 and less than c2. 

 
We want punctuations embedded into the data stream denoting the end of 

data items for a specific hour. One possible instantiation of such a stream 
might be (where the punctuation is prefixed with P): [<3,75,1,15>, 
<3,78,1,30>, <3,75,1,45>, <3,76,2,0>, P<*,*,1,*>, <3,75,2,15>]. All data 
items containing the value 1 for hour match the punctuation. 

How will punctuations that mark the end of each hour help our example 
query, where we take input from many sensors? We examine each operator 
in turn. Suppose our query plan is as in Figure 5-1, and each sensor emits 
punctuations at the end of an hour. As data items arrive at the union 
operator, they are immediately output to the group-by operator. Note that 
union does not attempt to enforce order. Due to the propagation invariant for 
union, however, punctuations are not immediately output as they arrive. 
Instead, union stores punctuations in its state until all inputs have produced 
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equal punctuations. At that point, a punctuation is output denoting the end of 
data items for that hour. 

 

Sensors DBMS 

Union 

Group-By 

 

Figure 5-1. Possible query tree for the environment sensor query. 

When a data item arrives at group-by, the appropriate group is updated, 
in this case, the maximum temperature for a specific hour. When a 
punctuation denoting the end of an hour arrives, group-by can output results 
for that hour, clear out its state for that hour, and emit a new punctuation 
denoting the end of data items for that hour. Thus, the query is unblocked, 
and the amount of state required has been reduced, making it more 
appropriate for unbounded data streams. 

3.4 Sources of Punctuations 

We have seen how punctuated streams help query operators. However, 
we have not explained how punctuations get into a data stream. We posit a 
logical operator that embeds punctuations and can occur in various places: at 
the stream source, at the edge of the query processor, or after query operators 
within the query. We call this operator the insert punctuation operator. There 
are many different schemes for implementing the insert punctuation 
operator. Which scheme to choose depends on where the information resides 
for generating punctuation. We list some alternatives below: 
• Source or sensor intelligence: The stream source may know enough to 

emit a punctuation. For example, the individual environmental sensors 
produced data sorted on time. When an hour ended, the sensor emitted 
punctuation that all reports for that hour had been output. 

• Knowledge of access order: Scan or fetch operations may know 
something about the source, and generate punctuations based on that 
knowledge. For example, if scan is able to use an index to read a source, 



5. Filtering, Punctuation, Windows and Synopses 11
 

it may use information from that index to tell when all values for an 
attribute have been read. 

• Knowledge of stream or application semantics: An insert punctuation 
operator may know something about the semantics of its source. In the 
environmental example, temperature sensors might have temperature 
limits, say -20F and 125F. An insert punctuation operator can output two 
punctuations immediately: One that says there will not be any 
temperature reports below -20F and another that says there will not be 
any reports above 125F. 

• Auxiliary information: Punctuation may be generated from sources 
other than the input stream, such as relational tables or other files. In the 
environmental example, we might have a list of all the sensor units. An 
insert punctuation operator could use that to determine when all sensors 
output results for a particular hour, and embed the punctuation itself. This 
approach can remove punctuation logic from the sensors. 

• Operator semantics: Some query operators impose semantics on output 
data items. For example, the sort operator can embed punctuations based 
on its sort order. When it emits a data item, it can follow that data item 
with a punctuation stating that no more data items will appear that 
precede that item in order. 

3.5 Open Issues 

We have seen that punctuations can improve the behavior of individual 
query operators for processing unbounded data streams. One issue not 
addressed yet is how to determine if punctuations can improve the behavior 
of entire queries. There are two questions here: First, what kinds of queries 
can be helped by punctuations? Not all queries can be improved by 
punctuations; we would like to be able to characterize those that can. The 
second question is, given a query (that we believe can be improved by 
punctuations), what kinds of punctuations will help that query? We refer to 
the set of punctuations that will be emitted from a stream source as the 
punctuation scheme of that source. In the sensor query, a punctuations 
scheme that describes the hour attribute helps the query, but so do schemes 
that punctuate every 20 minutes, or at the end of every second hour. 

A related question is, of the kinds of punctuation schemes that will 
improve the behavior of a query, which are most efficient? Again referring 
to the environmental query, if punctuations are emitted at the end of each 
hour, memory usage is minimized since state is purged as soon as possible. 
However, this choice maximizes the number of punctuations in the stream. If 
instead punctuations are embedded every six hours, then memory usage is 
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increased but the number of punctuations in the stream is reduced and the 
processing time for them is reduced. 

One final issue relates to query optimization. Given a logical query, do 
two (or more) equivalent query plans exist that exhibit different behaviors 
based on the same input punctuation scheme? For example, if one query plan 
is unblocked by the scheme and another is not, then choosing the unblocked 
query plan is most logical. Optimizing for state size is more difficult, since 
punctuation schemes do not give guarantees on when a particular 
punctuation will arrive. However, it would be useful for a query optimizer to 
choose the query plan with the smallest predicted requirement for memory. 

3.6 Summary 

Punctuations are useful for improving the behavior of queries over 
unbounded data streams, even when the input arrives out-of-order. Query 
operators act on punctuations based on three kinds of behaviors: Pass 
behavior defines when a blocking operator can output results. Keep behavior 
defines what state must be kept by a stateful operator. Propagation behavior 
defines when an operator can emit punctuation. 

4. WINDOWS: HANDLING UNBOUNDED 
BEHAVIOR BY MODIFYING QUERIES 

Windowing operates on the level of either a whole query or an individual 
operator, by changing the semantics from computing one answer over an 
entire (potentially unbounded) input streams to repeated computations on 
finite subsets (windows) of one or more streams. Two examples: 
1. Consider computing the maximum over a stream of temperature readings. 

Clearly, this query cannot emit output while data items are still arriving. 
A windowed version of this query might, for example, compute the 
maximum over successive 3-minute intervals, emitting an output for each 
3-minute window. 

2. Consider a query that matches packet information from two different 
network routers. Retaining all items from both sources in order to 
perform a join between them will quickly exhaust the storage of most 
computing systems. A windowed version of this query might restrict the 
matching to packets that have arrived in the last 15 seconds. Thus, any 
packet over 15 seconds old can be discarded, once it has been compared 
to the appropriate packets from the other input. 
There are several benefits from modifying a query with windows. 
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• An operation, such as aggregation, that would normally be blocking can 

emit output even while input continues to arrive. 
• A query can reduce the state it must retain to process the input streams. 
• Windowing can also reduce computational demands, by limiting the 

amount of data an operation such as join must examine at each iteration. 
There have been many different ways of defining windows proposed. 

The size of a window can be defined in terms of the number of items or by 
an interval based on an attribute in the items, such as a timestamp. The 
relationship between successive window instances can vary. In a tumbling 
window (Carney et al., 2002), successive window instances are disjoint, 
while in a sliding window the instances overlap. Window instances may 
have the same or different sizes. For example, in a landmark window 
(Gehrke et al., 2001), successive instances share the same beginning point 
(the landmark), but have successively later endpoints. 

5. DEALING WITH DISORDER 

Stream query approaches such as windowing often require that data 
arrive in some order. For example, consider the example from Section 3, 
where we want the maximum temperature value from a group of sensors 
each hour. This query can be modified to a window query that reports the 
maximum temperature data items in each hour interval is output, as follows 
(using syntax similar to CQL (Arasu et al., 2003)): 

SELECT MAX(temp) 
FROM sensor [RANGE 60 MINUTES]; 
In a simple implementation, when a data item arrives that belongs to a 

new window, the results for the current window is “closed”, its maximum is 
output, and state for a new window is initialized. However, such an 
implementation assumes that data arrive in sorted order. Suppose the data 
items do not quite arrive in order. How can we accurately determine if a 
window is closed? 

5.1 Sources of Disorder 

A data stream is in disorder when it has some expected arrival order, but 
its actual arrival order does not follow the expected arrival order exactly. It 
may be nearly ordered, but with a few exceptions. For example, the 
following list of integers is in disorder: [1,2,3,5,4,6,7,9,10,8]. Clearly the list 
is close to being in order, and can be put back in order with buffering. 

Disorder can arise in a data stream for several reasons: Data items may 
take different routes, with different delays, from their source; the stream 
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might be a combination of many sources with different delays; the ordering 
attribute of interest (e.g., event start time) may differ from the order in which 
items are produced (e.g., event end time). Further, an operator in a stream 
processing system may not maintain sort order in its output, even if the data 
items arrive in order. For a simple example, consider the union operator. 
Unless it is implemented to maintain sorted order, its output will not 
necessarily be ordered. 

5.2 Handling Disorder 

A query operator requiring ordered data can be modified to handle data 
streams in disorder. First, it must know the degree of disorder in the stream: 
how far away from sorted order each data item in the stream can be. There 
are two approaches we discuss: global disorder properties and local 
disorder properties. Once the operator can determine the degree of disorder, 
it has a least two choices on how to proceed. It can put its input into sorted 
order, or it can process the input out of order. 

5.2.1 Expressing the Degree of Disorder in a Data Stream 

The degree of disorder can be expressed using global or local stream 
constraints. A global disorder property is one that holds for the entire stream. 
Several systems use this approach. In Gigascope (Johnson et al., 2003), the 
degree of disorder can be expressed in terms of the position of a data item in 
the stream, or in terms of the value of the sorting attribute in a data item. A 
stream is increasing within 

�
 if, for a data item t in stream S, no data item 

arrived 
�
 items before t on S that precede t in the sort order. Thus, disorder is 

expressed in terms of a data item’s position in the stream. Similarly, a stream 
is banded-increasing ( � ) for an attribute A if, for a data item t in stream S, no 
data item precedes t in S with a value for A greater than t.A + � .. 

Related to these notions from Gigascope are slack in Aurora (Carney et 
al., 2002) and k-constraints in STREAM (Babu et al., 2004). In Aurora, an 
operator that requires sorted input is given an ordering specification, which 
contains the attribute on which the order is defined and a slack parameter. 
The slack parameter specifies how out of order a data item might arrive, in 
terms of position. In STREAM, a k-constraint specifies how strictly an input 
adheres to some constraint. One kind of k-constraint is k-ordering, where k 
specifies that out-of-order items are at most k positions away from being in 
order. Note that k = 0 implies sorted input. 

There are two advantages to using a global disorder property approach. 
First, it is relatively simple to understand in that it is generally expressed 
with a single integer. Second, it generally gives a bound on the amount of 
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state required during execution and the amount of latency to expect in the 
output. However, global disorder properties also have disadvantages. First, it 
is not always clear what the constraint should be for non-leaf query operators 
in a query plan. For example, suppose a query has a windowed aggregate 
operator above the union of five inputs. We may know the degree of disorder 
of each input to the union, but what is the degree of disorder for the output of 
union? A second disadvantage is that it is generally not flexible. A bursty 
stream will likely have a higher degree of disorder during bursts and a lower 
degree during lulls. If we want accurate results, we must set global disorder 
constraint to the worst-case scenario, increasing the latency at other times. 

A second way to express the degree of disorder is through local disorder 
properties (Tucker and Maier, 2003). In this method, we are able to 
determine through properties of the stream the degree of disorder during 
execution. One method to determining local disorder is to use punctuations. 
Appropriate punctuation on an ordering attribute can be used, for example, 
to close a window for a windowed operator. Punctuations are propagated to 
other operators higher up in the query plan. Thus, there is not the problem of 
how disorder in lower query operators translates to disorder in operators 
further along in a query tree. In STREAM, the k value for a k-constraint can 
dynamically change based on data input, similar to a local disorder property. 
A monitoring process checks the input data items as they arrive, and tries to 
detect when the k value for useful constraints changes during execution. 

The main advantage of using a local disorder property approach is its 
flexibility. The local disorder property approach can adapt to changes in the 
stream, such as bursts and lulls. However, since the degree of disorder may 
not remain static throughout execution, we cannot determine a bound for the 
state requirement as we can with global disorder properties. 

5.2.2 Processing Disordered Data Streams 

Once an operator knows the degree of disorder in its input, it can begin 
processing data from the input stream. One approach in handling disorder is 
to reorder the data as they arrive in the leaf operators of the query, and use 
order-preserving operators throughout the query. In Aurora, disordered data 
streams are ordered using the BSort operator. BSort performs a buffer-based 
sort given an ordering specification. Suppose n is the slack in the ordering 
specification. Then the BSort operator sets up a buffer of size n+1, and as 
data items arrive they are inserted into the buffer. When the buffer fills, the 
minimum data item in the buffer according to the sort order is evicted. Note 
that if data items arrive outside the slack parameter value, they are still 
placed in the buffer and output as usual. Thus, the BSort operator is only an 
approximate sort, and its output may still be in disorder. 
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As data are sorted (at least approximately), later operators should 
preserve order. Some operators, such as select and project, already maintain 
the input order. It is a more difficult task for other operators. Consider an 
order-preserving version of union, and suppose it is reading from two inputs 
already in order. Union outputs the minimum data item, according to the sort 
order, from the two inputs. This implementation is simple for reliable inputs, 
but data streams are not always reliable. Suppose one of the inputs to union 
stalls. The union operator cannot output data items that arrive on the other 
input until the stalled input resumes. Maintaining order in other operators, 
such as join, is also non-trivial. 

Instead of forcing operators to maintain order, an alternative is for data to 
remain disordered, and process each data item as it arrives. Many operators 
(again select and project are good examples) do not require data to arrive in 
order. However, operators that require some sort of ordered input must still 
determine the degree if disorder in the input. If we use one of the global 
disorder property approaches, then we must estimate the degree of disorder 
of the output based on the global disorder properties of the input. However, 
if we use punctuations, then disorder information is carried through the 
stream automatically using each operator’s propagation behaviors. 

5.3 Summary 

Many operators, such as window operators, are sensitive to window 
order. However, as streams are not always reliable data sources, disorder 
may arise. To handle disorder, an operator must first determine the degree of 
disorder in its inputs. Once the degree of disorder is determined, then the 
operator can either resort the data process the data out-of-order. We have 
presented different ways to express disorder in a stream, and the advantages 
and disadvantages of sorting data compared to processing data out-of-order. 

6. SYNOPSES: PROCESSING WITH BOUNDED 
MEMORY 

Two key parameters for processing user queries over continuous, 
potentially unbounded data-streams are (1) the amount of memory made 
available to the on-line algorithm, and (2) the per-item processing time 
required by the query processor. Memory, in particular, constitutes an 
important design constraint since, in a typical streaming environment, only 
limited memory resources are available to the data-stream processing 
algorithms. In such scenarios, we need algorithms that can summarize the 
underlying streams in concise, but reasonably accurate, synopses that can be 
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stored in the allotted amount of memory and can be used to provide 
approximate answers to user queries along with some reasonable guarantees 
on the quality of the approximation. Such approximate, on-line query 
answers are particularly well suited to the exploratory nature of most data-
stream processing applications such as, e.g., trend analysis and fraud or 
anomaly detection in telecom-network data, where the goal is to identify 
generic, interesting or “out-of-the-ordinary” patterns rather than provide 
results that are exact to the last decimal. 

In this section, we briefly discuss two broad classes of data-stream 
synopses and their applications. The first class of synopses, termed AMS 
sketches, was originally introduced in an influential paper by Alon, Matias, 
and Szegedy (1996) and relies on taking random linear projections of a 
streaming frequency vector. The second class of synopses, termed FM 
sketches, was pioneered by Flajolet and Martin (1985) and employs hashing 
to randomize incoming stream values over a small (i.e., logarithmic-size) 
array of hash buckets. Both AMS and FM sketches are small-footprint, 
randomized data structures that can be easily maintained on-line over rapid-
rate data streams; furthermore, they offer tunable, probabilistic accuracy 
guarantees for estimating several useful classes of aggregate user queries. In 
a nutshell, AMS sketches can effectively handle important aggregate queries 
that rely on bag semantics for the underlying streams (such as frequency-
moment or join-size estimation), whereas FM sketches are useful for 
aggregate stream queries with set semantics (such as estimating the number 
of distinct values in a stream). Before describing the two classes of sketches 
in more detail, we first discuss the key elements of a stream-processing 
architecture based on data synopses. 

6.1 Data-Stream Processing Model  

Our generic data-stream processing architecture is depicted in Figure 5-2. 
In contrast to conventional DBMS query processors, our query-processing 
engine is allowed to see the data tuples in relations rRR ,...,1  only once and 
in the fixed order of their arrival as they stream in from their respective 
source(s). Backtracking over a stream and explicit access to past tuples is 
impossible; furthermore, the order of tuples arrival for each streaming 
relation iR  is arbitrary and duplicate tuples can occur anywhere over the 
duration of the stream. (In general, the stream rendering each relation iR  
can comprise tuple deletions as well as insertions, and the sketching 
techniques described here can readily handle such update streams.) 

Consider an aggregate query Q over relations rRR ,...,1 and let N denote 
an upper bound on the total number of streaming tuples. Our data-stream 
processing engine is allowed a certain amount of memory, typically 
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significantly smaller than the total size of its inputs. This memory is used to 
continuously maintain a concise sketch synopsis of each stream iR  (Figure 
5-2). The key constraints imposed on such synopses are that: (1) they are 
much smaller than the size of the underlying streams (e.g., their size is 
logarithmic or poly-logarithmic in N); and, (2) they can be easily maintained, 
during a single pass over the streaming tuples in the (arbitrary) order of their 
arrival. At any point in time, the approximate query-processing engine can 
combine the maintained collection of synopses to produce an approximate 
answer to query Q.  
 

Figure 5-2. Synopsis-based stream query processing architecture. 
 

6.2 Sketching Streams by Random Linear Projections: 
AMS Sketches 

Consider a simple stream-processing scenario where the goal is to 
estimate the size of a binary equi-join of two streams 1R and 2R on join 
attribute A, as the tuples of 1R  and 2R  are streaming in. Without loss of 
generality, let }1,...,0{][ −= MM denote the domain of the join attribute A, 
and let )(if k be the frequency of attribute value i in kR . Thus, we want to 
produce an estimate for the expression Q = � ⋅

i
ifif )()( 21 . Clearly, 

estimating this join size exactly requires space that is at least linear in M, 
making such an exact solution impractical for a data-stream setting.  

In their influential work, Alon et al. (1996, 1999) propose a randomized 
join-size estimator for streams that can offer strong probabilistic accuracy 
guarantees while using space that can be significantly sublinear in M. The 
basic idea is to define a random variable X that can be easily computed over 
the streaming values of AR .1  and AR .2  such that: (1) X is an unbiased (i.e., 
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correct on expectation) estimator for the target join size, so that E[X] = Q; 
and, (2) X's variance can be appropriately upper-bounded to allow for 
probabilistic guarantees on the quality of the Q estimate. This random 
variable X is constructed on-line from the two data streams as follows: 
• Select a family of four-wise independent binary random variables 

}1,...,0:{ −= Miiξ , where each iξ assumes a value of either +1 or –1, 
each with probability ½. Informally, the four-wise independence 
condition means that for any 4-tuple of iξ  variables and for any 4-tuple of 
{+1, -1} values, the probability that the values of the variables coincide 
with those in the {+1, -1} 4-tuple is exactly 1/16 (the product of the 
equality probabilities for each individual iξ ). The crucial point here is 
that, by employing known tools for the explicit construction of small 
sample spaces supporting four-wise independence, such families can be 
efficiently constructed on-line using only )(log MO  space. 

• Define 21 XXX ⋅= , where � ⋅=
i ikk ifX ξ)( , for k=1,2. The scalar 

quantities 1X  and 2X  are called the atomic AMS sketches of streams 1R  
and 2R , respectively. Each kX  is simply a random linear projection 
(i.e., an inner product) of the frequency vector of attribute ARk .  with the 
random vector of iξ ’s that can be efficiently generated from the 
streaming values of ARk . : Initialize a counter with 0=kX and simply 
add iξ  to kX whenever value i is observed in the ARk .  stream. 

Using the four-wise independence property for the iξ ’s, it is easy to verify 
that the atomic estimate X constructed using the process above is an 
unbiased estimate for Q and its variance can be appropriately upper bounded 
(Alon et al., 1996, 1999). Furthermore, note that, by virtue of linearity, 
handling deletions in the stream(s) becomes straightforward: To delete an 
occurrence of value i, simply subtract iξ  from the running counter. 

As an example, suppose the AR .1 and AR .2  streams comprise, in order, 
the data values [1, 1, 2, 3, 1, 3] and [3, 1, 3, 1, 1], respectively. Projecting on 
the family of random variables iξ , the atomic sketches of the two streams 
are 3213132111 23 ξξξξξξξξξ ++=+++++=X  and 312 23 ξξ +=X , 
respectively. Using a specific family of binary random variates, say =ξ  

}1,1,1{ 321 −=+=−= ξξξ , we get the atomic AMS sketches =1X -3+1-2 
= -4  and =2X -3-2 = -5, and the atomic estimate =X (-4)(-5) = 20, which 
approximates the true size of the binary join, i.e., 13. 

The approximation guarantees of the randomized AMS join-size estimate 
can be improved using standard boosting techniques that maintain several 
independent instantiations of the above-described process, and use averaging 
and median-selection operators over the atomic X estimates to boost 
accuracy and probabilistic confidence (Alon et al. 1996, 1999). Thus, the 
AMS sketch for each stream (Figure 5-2) essentially comprises several 
independent atomic AMS sketch instances (constructed by simply selecting 
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independent random seeds for generating the families of four-wise 
independent ξ 's for each instance). 

 
Extensions of the Basic Method and Applications.  The basic ideas of 
AMS (more generally, random-linear-projection) sketches have found 
applications in a number of important data-stream processing problems. 
Dobra et al. (2002, 2004) extend the techniques and results of Alon et al. to 
handle the estimation of complex, multi-join aggregate queries over streams; 
they also develop algorithms for effectively processing multiple such queries 
concurrently over a collection of streams by intelligently sharing sketching 
space and processing. Feigenbaum et al. (1999) and Indyk (2000) use 
random linear projections to accurately estimate pL  norms over vectors 
rendered as streams of item arrivals. AMS sketches are also employed by 
Charikar et al. (2002) to efficiently process top-k queries over a stream of 
items, and Gilbert et al. (2001, 2002) to build approximate histograms and 
wavelet decompositions over streams. Recent work has also demonstrated 
the utility of AMS sketching in dealing with more complex stream-
processing scenarios, such as approximating queries with spatial predicates 
(e.g., overlap joins) over streams of multi-dimensional spatial data (Das et 
al., 2004), or estimating tree-edit-distance similarity joins over streaming 
XML documents (Garofalakis and Kumar, 2003). 

 

6.3 Sketching Streams by Hashing: FM Sketches 

Consider the problem of estimating the number of distinct values in a 
stream of arriving attribute values R.A, where the domain of the attribute is 
again assumed, without loss of generality, to be }1,...,0{][ −= MM . (Here, 
R can denote the union of any subset of the iR  streams in Figure 5-2.) As a 
simple example, for the stream [1, 3, 1, 3, 5, 3, 7] the exact number of 
distinct values is 3; note that, unlike joins, this query has set semantics (i.e., 
the multiplicity of values appearing in the stream is unimportant). Once 
again, this estimation problem can be solved exactly in space that is linear in 
M, which could be impractical in a data-stream setting. 

To build a small-space estimate for the number of distinct values in a 
stream, Flajolet and Martin (1985) employ a combination of: (1) a hash 
function h() that maps incoming data values uniformly and independently 
over the collection of binary strings in the input data domain [M]; and, (2) 
the lsb() operator that returns the position of the least-significant 1-bit in its 
input binary string. The basic idea in their scheme is to map each incoming 
data value i to lsb(h(i)). Obviously, }1log,...,0{))(( −∈ Mihlsb  and, 
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furthermore, it is easy to verify that lsb(h(i))=k  with probability )1(2 +− k  for 
each 1log,...,0 −= Mk . 

An atomic FM sketch maintained by the basic Flajolet-Martin scheme is 
simply a bit-vector of size )(log MO . This bit-vector is initialized to all 
zeros and, for each incoming stream value i, the bit located at position 
lsb(h(i)) is switched on. The key observation here is that, by virtue of the 
exponentially-decaying probabilities for the lsb(h()) values, we expect a 
fraction of )1(2 +− k  of the distinct values in the stream to map to location k in 
the bit-vector; in other words, if D denotes the number of distinct values in 
the stream, we expect  D/2 values to map to bit 0, D/4 values to map to bit 1, 
and so on. Thus, intuitively, at any point in the stream, the location l of the 
leftmost zero in the FM bit-vector sketch provides a good basic estimate of 

Dlog , or Dl ≈2 . 
Again, the accuracy and probabilistic confidence of FM-sketching 

estimates can be boosted using several independent instantiations of the 
process above (i.e., several atomic FM sketches with independently-chosen 
hash functions). Detailed analyses and formal results for FM-sketching 
techniques can be found in (Alon et al., 1996; Flajolet and Martin, 1985; 
Ganguly et al., 2003). FM sketches can also handle deletions in the stream: 
The basic idea is to maintain a counter (instead of a bit) for each location of 
the synopsis vector, and simply increment (decrement) the counter at 
location lsb(h(i)) for each insertion (respectively, deletion) of value i. 

 
Extensions of the Basic Method and Applications.  Recent work has 
extended the ideas of FM (i.e., hashing-based) sketches and explored their 
use in different data-stream processing domains. Gibbons (2001) employs 
the idea of hashing into buckets with exponentially decaying probabilities to 
obtain a distinct sample summary for estimating SQL aggregates with a 
DISTINCT clause. Ganguly et al. (2003) extend the basic FM sketch 
synopsis structure and propose novel estimation algorithms for estimating 
general set-expression cardinalities over streams of updates. Finally, 
Considine et al. (2004) propose FM-sketching techniques for approximate, 
communication-efficient aggregation over wireless sensor networks. 
 

6.4 Summary 

AMS and FM sketches represent two important classes of randomized 
synopsis data structures for streaming data with several applications in 
stream-processing problems. Besides having a small memory footprint and 
being easily computable in the streaming model, these sketch synopses can 
also easily handle deletions in the streams. An additional benefit of both 
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AMS and FM sketches is that they are composable; that is, they can be 
individually computed over a distributed collection of sites (each observing 
only a portion of the stream) and then combined (e.g., through simple 
addition or bit-wise OR) to obtain a sketch summary of the overall stream. 

Several other types of (deterministic and randomized) stream synopses 
have been proposed for different streaming problems. Vitter’s reservoir-
sampling scheme for constructing a uniform random sample over an insert-
only stream (Vitter, 1985) is probably one of the first known stream-
summarization techniques. Greenwald and Khanna (2001) and Manku and 
Motwani (2002) propose deterministic, small-footprint stream synopses for 
computing approximate quantiles and frequent itemsets, respectively. Datar 
et al. (2002) consider the problem of maintaining approximate counts over a 
sliding window of an input stream; their proposed (deterministic) 
exponential histogram synopses employ histogram buckets of exponentially-
growing sizes and require space that is only poly-logarithmic in the size of 
the sliding window. Other stream-synopsis structures for sliding-window 
computation have been recently proposed by Gibbons and Tirthapura (2002), 
and Arasu and Manku (2004). 

7. DISCUSSION 

We wish to raise two points in closing. The first is that there are areas of 
overlap among the various techniques described in this chapter. For 
example, a windowed aggregate query is not that different from a group-by 
query on the window attribute with appropriate punctuation. Both serve to 
unblock a normally blocking operation, and both limit the amount of state 
the operations in a query must maintain. The second is that these techniques 
can sometimes be used in combination. For example, the Data Triage 
architecture of the TelegraphCQ system switches to computing a synopsis of 
an incoming data stream when it must drop tuples because it cannot keep up 
with the current data rate (Reiss and Hellerstein, 2004). 
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